
 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st&22ndMarch, Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1787

I.INTRODUCTION

Aspect Oriented Software Development (AOSD) [10]

is a relatively new methodology for neatly encapsulating

functionalities and thereby increasing the modularity of

the software. The software development process is

driven by modelling and implementing the interactions

of various software concerns, which can be both core

and cross-cutting. Core concerns, are the basic

functionality of the system; for example, concerns that

specify the behaviour of certain application, such as the

function of a class, or the method of a class. In contrast,

cross-cutting concerns are concerns such as logging,

security, concurrency control, and

transactionmanagement that cut across many other

modules of the software.

 Service Oriented Architecture (SOA) is a

software architecture that defines the use of services, to

support software user requirements.. Aspect-oriented

programming (AOP) has been proposed as a mechanism

that enables the modular implementation of crosscutting

concerns [1]. It has proven popular [5] because it makes it

possible for developers to write modular code for

concerns such as synchronization [11, 4], error handling

[2], persistence [3,7] and many design patterns Being

able to code aspects cleanly is helping developers to think

in terms of aspects at earlier stages of the lifecycle [6].

 BPEL is a language used for the definition and execution

of business processes using Web services. BPEL enables

the top-down realization of Service Oriented

Architecture (SOA) through composition, of Web

services. The interactions are abstract in the sense that the

dependence is on port Type definitions, not on port

definitions. Define business processes using an XML-

based language [8]. Do not define a graphical

representation of processes or provide any particular

design methodology for processes. Define a set of Web

service orchestration concepts that are meant to be used

by both the external (abstract) and internal (executable)

views of a business process. Such a business process

defines the behaviour of a single autonomous entity,

typically operating in interaction with other similar peer

entities. It is recognized that each usage pattern will

require a few specialized extensions, but these extensions

are to be kept to a minimum and tested against

requirements such as import/export and conformance

checking that link the two usage patterns. Provide both

Enhancing the Performance Metrics of

Introducing Aspect Oriented Programming into

a Program Course
R.Kabilesh, P.C.Dinesh

PG Scholar, Kalasalingam Institute of Technology, Krishnankoil, India.

Assistant professor, Kalasalingam Institute of Technology, Krishnankoil, India.

Abstract— Service Oriented Architecture (SOA) is a

new method for building information systems. It

discusses about the effects of using aspect-oriented

paradigm in addition to object-oriented paradigm.

The results show that the use of aspect-oriented

programming as a supplement to object-oriented

programming enhances the productivity of program

code and reduces the Lines of Code and Cohesion

between the modules. Web services are distributed

autonomous applications that can be discovered and

interactively accessed over the internet. The

functional components as well as the non-functional

components such as security, reliability and quality

of services are given utmost importance for web

service languages.

Index Terms — Aspect-oriented programming

(AOP), programming, programming languages

Enhancing the Performance Metrics of Introducing Aspect Oriented Programming into a Program Course

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1788

hierarchical and graph-like control regimes, and allow

their use to be blended as seamlessly as possible. This

should reduce the fragmentation of the process modelling

space. Provide data manipulation functions for the simple

manipulation of data needed to define process data and

control flow.

 It deals with the AOP [9] implementation of

crosscutting concerns, and modular reasoning in the

presence of crosscutting concerns. But it requires an

important change in how module interfaces are specified.

With AOP interfaces are defined as aspects cut through

the primary module structure. So module interface cannot

be fully determined without a complete system

configuration. But crosscutting concerns inherently global

knowledge in order to support modular reasoning.

It deals with the AOP implementation of

crosscutting concerns, and modular reasoning in the

presence of crosscutting concerns. But it requires an

important change in how module interfaces are specified.

With AOP interfaces are defined as aspects cut through

the primary module structure. So module interface cannot

be fully determined without a complete system

configuration. But crosscutting concerns inherently global

knowledge in order to support modular reasoning. Using

AOP, programmers get modular reasoning benefits for

crosscutting concerns where without Aspect Oriented

Program they do not. Fig 1 describes the structure of AOP

and its specification.

. Figure 1 Structure of AOP

 Automation in Experimental Test Bed

Aspect oriented programming in the logic of web

service, it is possible to develop the quality attributes like

maintainability, reusability. The functionalities modelled

through the web service fuses the implementation of core

and crosscutting concerns. BPEL is used for the

composition of web services and models both core

business logic and crosscutting functionalities. A typical

SOA application development involves designing

software components for reuse and converting realized

software components as web services and for service

consumptions in end user applications.

II.ASPECT WEAVER

Aspect weavers take instructions known as

advice specified through the use of point cut and join

points, special segments of code that indicate

what methods should be handled by aspect code. The

implementation of the aspect then specifies whether the

related code should be added before, after, or throughout

the related methods. By doing this, aspect weavers

improve modularity, keeping code in one place that would

otherwise have been interspersed throughout various,

unrelated classes. It processes the source code and

produces the byte code. A weaver produces byte code that

conforms to the java byte code specification, allowing

java virtual machine to execute those class files. Without

an aspect weaver, this feature would

necessitate duplication of code in the class for every

method. Instead, the entry and exit code is defined solely

within the aspect. The aspect weaver analyzes the advice

specified by the point cut in the aspect and uses that

advice to distribute the implementation code into the

defined class. Figure 3 shows the combination of Aspect

code and base code the weaver get compiles it and

produced the modified code. The Aspect weaver acts here

as the compiler to compile the base code and aspect

whether correctly working are not. Linking aspects with

other applications and to compile the code. This is the

main function of Aspect Weaver. By means of Aspect

Weaver new services can be activated at any time and

older services are deactivated at any time. Service is a

piece of functionality delivered to the service consumer.

Figure 2 Structure of Aspect Weaver

III.POINT CUT

The Figure 3 shows that point cut is a set of join

points. Whenever the program execution reaches one of

the join points described or explained in the point cut, a

Enhancing the Performance Metrics of Introducing Aspect Oriented Programming into a Program Course

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1789

piece of code associated with the point cut (called advice)

is executed. This allows a programmer to describe where

and when additional code should be executed in addition

to an already defined behavior.

Figure 3 Structure of Point Cut

IV.JOIN POINT

A join point is a specification of when, in the

corresponding main program, the aspect code should be

executed. The join point is a point of execution in the base

code where the advice specified in a corresponding point

cut is applied. A join point is an executable point in a

system. A call to a method is called field access. AspectJ

deliberately exposes only a subset of all possible join

points. AspectJ can be implemented in many ways,

including source-weaving or byte code-weaving, and

directly in the virtual machine (VM). In all cases, the

AspectJ program becomes a valid Java program that runs

in a Java VM. Classes affected by aspects are binary-

compatible with unaffected classes (remain compatible

with classes compiled with the unaffected originals).

Supporting multiple implementations allows the language.

Figure 4 Structure of Join Point

VII.ADVICES

 AspectJ supports dynamic crosscutting through

advice, a method like construct that defines crosscutting

action at the join points selected by a point cut. we need

to surround the original code with the caching logic:

obtain a value from the cache, execute the original code if

the cache doesn’t contain a value, and add the value to the

cache after executing the original code. AspectJ offers

three kinds of advices.

1) Before advice: Executes prior to the point

execution.

2) After advice : Executes after to the point

execution

3) Around device: This advice has the ability to

continue the original execution with the same

context or altered context, zero or more times

V.CODE SCATTERING

 Figure 5 Structure of Code Scattering

It is caused when a single functionality is implemented in

multiple modules. Because cross cutting concerns, by

definition are spread over many modules, related

implementations are also scattered over all modules. The

above figure 5 shows its structure.

VI.CODE TANGLING

 A concern is tangled if its code is spread out over

multiple modules. The concern affects the implementation

of multiple modules. Its evaluation is not modular.

Developers often consider concerns such as performance,

business logic, logging, security and so forth when

implementing a module. Figure 6 shows the structure of

code tangling.

 Figure 6 Structure of Code Tangling

VIII.CONS OF SCATTERING AND TANGLING

Scattering and tangling of behaviour are the

symptom that of a concern is not well modularized. A

concern that is not modularized does not exhibit a well

Enhancing the Performance Metrics of Introducing Aspect Oriented Programming into a Program Course

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1790

fledged defined interface. The interactions between the

implementation of the concern and the modules of the

system are not explicitly declared. They are encoded

implicitly through the dependencies and interactions

between fragments of code that implement the concern

and the implementation of other modules as well. The

lack of interfaces between the implementation of

crosscutting concerns and the evaluation of the modules

of the system impedes the development, the evolution and

the maintenance of the system.

XI.PERFORMANCE METRICS

Greater the number of operations inherit makes it

more complex(Inheritance) gets reduced, Larger the

number of operations makes the code length

more(Weighted operations in a module) gets reduced, If

the Lines of Code gets increased more operations need to

inherit are reduced when using aspects in service oriented

architecture.

X.RESULT

 In this different web services were mentioned for

the Service Oriented Courseware Information System

were created. These web services were made to run on

different machines with different operating systems to

achieve platform independence. Composition of web

service is done using Glassfish. The future of this project

work involves, in making BPEL engine aware of aspect

and then introducing aspect into the BPEL process and to

creating an aspect weaver that in turn weaves the advice

defined in the point cut into the join point. By using of

Aspect we can add service even at run time.

XI.CONCLUSION

AOP enables modular implementation of crosscutting

concerns, and modular reasoning in the presence of

crosscutting concerns. But it requires an important change

in how module interfaces are specified. With AOP

interfaces are defined as aspects cut through the primary

module structure. So a module’s interface cannot be fully

determined without a complete system configuration. But

crosscutting concerns inherently require global

knowledge to support reasoning. Using AOP,

programmers get modular reasoning benefits for

crosscutting concerns whereas without AOP they do not.

In the future work, by means of AOP to support the

compatibility futures.

REFERENCES

[1] Anderson.N, Mache.J, and Watson.W “Learning CUDA: Lab

Exercises and Experiences” in Proc.ACM Int.Conf.Companion Object

Oriented Program 2011 pp 183-188.

[2] Bockisch, Haupt.C, Mezini.M “Virtual Machine Support for

Dynamic Join Points, Int.Conf on Aspect-Oriented Software
Development, 2004, ACM Press 83-92.

[3] Chiba.S, Nakagawa.K, Josh:”An Open AspectJ Like language”,

International Conference on aspect-Oriented Software Development,
2004, ACM Press 102-111.

[4] DeLine.R and Fahndrich.M “Typestates for Objects” European

Conference on Object-Oriented Programming, 2004
[5] Eichberg.M, Mezini.M and Osterman.K “First-Class Pointcuts as

Queries. Asian Symposium on Programming Languages and Systems,

2004, Springer Lecture Notes.
[6] Fowler.M and Beck.K “Refractoring: improve the design of existing

code” Addison-Wesley, Reading, MA 1999.

[7] Grundy.J, and Lesiecki.N “Mastering AspectJ: Aspect Oriented
programming in Java” International Symposium on Requirements

Engineering, 1999, IEEE Computer Society Press, 84-91.

[8] Hannemann.J and Kichzales.G” Using Design Pattern
Implementation in Java and AspectJ” Symposium on Object Oriented

Programming: Systems, Languages and Applications, 2002, 161-173.

[9] Hilslade.E and Hugunin.J “Advice Weaving in AspectJ”
International Conference on Aspect-Oriented Software Development,

2004, ACM Press, 26-35.

[10] Kiselev.I “An Aspect-Oriented Programming using AspectJ” Sams,

Indianapolis, Ind.2003.

[11] Laddad.R “AspectJ in Action: practical aspect-oriented

programming” Greenwich, CT, 2003.

BIOGRAPHY

Mr. R. Kabilesh

The author is currently an ME

Student in Computer Science

and Engineering Department at

Kalasalingam Institute of

Technology. He had completed

B.E from Government College

of Engineering Tirunelveli.

Mr. P.C.Dinesh

The author is an Assistant

Professor in Department of

Computer Science and

Engineering Department at

Kalasalingam Institute of

Technology. He received his BE

Degree from National Engineering

College and M.E. Degree from

SSN Engineering College.

