
© JGRCS 2010, All Rights Reserved 12

ENHANCING USE CASE POINTS ESTIMATION METHOD USING SOFT

COMPUTING TECHNIQUES

Ali Bou Nassif
*1

, Luiz Fernando Capretz
2
 and Danny Ho

3

*
1
Electrical and Computer Engineering, University of Western Ontario, London, Ontario, Canada

Email: abounass@uwo.ca
2
Electrical and Computer Engineering, University of Western Ontario, London, Ontario, Canada

Email: lcapretz@uwo.ca
3
NFA Estimation Inc., Richmond Hill, Ontario, Canada

Email: danny@nfa-estimation.com

Abstract: Software estimation is a crucial task in software engineering. Software estimation encompasses cost, effort, schedule, and size. The importance of

software estimation becomes critical in the early stages of the software life cycle when the details of software have not been revealed yet. Several commercial and
non-commercial tools exist to estimate software in the early stages. Most software effort estimation methods require software size as one of the important metric

inputs and consequently, software size estimation in the early stages becomes essential. One of the approaches that has been used for about two decades in the early

size and effort estimation is called use case points. Use case points method relies on the use case diagram to estimate the size and effort of software projects.
Although the use case points method has been widely used, it has some limitations that might adversely affect the accuracy of estimation. This paper presents some

techniques using fuzzy logic and neural networks to improve the accuracy of the use case points method. Results showed that an improvement up to 22% can be

obtained using the proposed approach.

Keywords: Use Case Points, Early Software Size Estimation, Early Software Effort Estimation, Applied Soft Computing, Software Measurement

INTRODUCTION AND PROBLEM DEFINITION

As the role of software in the industry and the society

becomes vital, it becomes crucial to develop high-quality

and cost-effective software in a short period. To attain this

goal, software development processes should be managed

efficiently from the requirement phase to the

implementation phase. One of the main tasks of project

management is planning. Planning includes the cost and

effort estimation of the project in the early stages of the

software development life cycle. The earlier the estimation

is, the better the project management will be. Even though

early estimation is necessary, the accuracy of this estimation

is very important. Software estimators are notorious with

inaccurate estimation that leads to incomplete projects and

consequently millions of dollars are wasted. The

International Society of Parametric Analysis (ISPA) [1] and

the Standish Group International [2] identified poor

estimation as one of the main culprits behind software

failure. Software cost and effort estimation mainly depend

on the prediction of software size. This has led to the

substantial increase in research in software engineering for

estimating the size of software in the requirement stage.

Function Points Analysis (FPA) is one of the earliest models

that is used to predict the size of software in the early stages.

The FPA model was proposed by Albrecht in 1979 [3] and it

measures the size of software based on its functionalities.

The main advantages of the FPA model are that it is

independent of the technology and the programming

language used in the implementation. On the other hand, the

main issues with the FPA model are that function points

cannot be computed automatically and the decisions made in

counting function points are subjective [4].

Object-Oriented Modelling (OOM) has become dominant

since the release of Unified Modeling Language (UML)

version 1.1 in 1997 [5], but OOM has become more popular

since the release of UML 2.0 in 2005 [6]. UML models

include use case, sequence, component, activity and class

diagrams. Recently, many software organizations use UML

notation to convey the requirements and the design of their

software projects. For instance, use case, sequence and

component diagrams might be used to represent the

requirements of the system while the class diagram might be

used to represent the system design.

One of the size and effort estimation models that rely on the

use case diagram is called Use Case Points (UCP). The UCP

model was proposed by Gustav Karner in 1993 [7]. UCP is

measured by counting the number of use cases and the

number of actors, each multiplied by its complexity factors.

Use cases and actors are classified into three categories.

These include simple, average and complex. The

determination of the use cases’ complexity (simple, average

or complex) is determined by the number of transactions per

use case. For instance, a use case is classified as simple if

number of transactions is between one and three, classified

as average if the number of transactions is between four and

seven, classified as complex if the number of transactions is

greater than seven.

The UCP presents some limitations that affect the accuracy

of the estimation. The main drawback of this model is the

absence of the graduation when classifying the complexity

of the use cases. For example, if the number of the

transactions in a use case is three, the use case is classified

as simple, however, if the number of transactions is four, the

use case is classified as average. According to the UCP, if

project A contains ten use cases, each of three transactions

and project B contains ten use cases, each of four

transactions, then the size of project B will be double the

size of project A. In practice, this approach is incorrect.

Moreover, a use case of eight transactions has the same

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 13

complexity factor as the use case of twenty transactions

since this model does not distinguish between large, very

large and super large use cases.

This paper introduces a new approach to overcome the

limitations of the UCP. First, rather than classifying a use

case as simple, average, or complex, the use case will be

classified as ux, such as x [1,10] where x represents the

number of transactions. This concludes that there will be ten

degrees of complexity for use cases (u1, u2, u3, etc.). The

proposed approach will be implemented in two independent

stages. First, a fuzzy logic approach is applied to determine

the complexity factor of ux. The second stage of the

proposed approach is implemented through a neural network

model. The neural network model is a black box that takes

ux (10 vectors) as an input, in addition to three vectors which

represent the three types of the actors (simple, average or

complex). The output of the neural network will be the size

of the software.

The rest of the paper is organized as follows: Section 2

presents the background and the related work for the

proposed approach. Sections 3 and 4 propose the fuzzy logic

and the neural network approaches respectively. Section 5

evaluates the proposed approaches. Section 6 presents

general discussion about the paper. Section 7 highlights the

threats to validity in this work. Finally, section 8 concludes

the paper and proposes the future work.

 BACKGROUND AND RELATED WORK

This paper presents a new approach to improve the accuracy

of the use case estimation model using fuzzy logic and

neural network. This section presents the terms that are

relevant to this work.

Use Case Points

This method is based on mapping a use case diagram to a

size metric called use-case points. When the size of software

is known, the software development effort can be estimated.

The use case model was first proposed by Jacobson et al. [8]

A use case diagram shows how users interact with the

system. A use case diagram is composed of use cases and

actors. Use cases represent the functional requirements

where an actor is a role played by a user. In the use case

diagram, a use case can extend or include another use case.

Figure 1 is an example of a use case diagram [9].

Figure 1: Use Case Diagram [9]

The use case points method mainly depends on four factors.

These include the number and the complexity of the use

cases, the number and the complexity of the actors, some

non-functional requirements such as usability and portability,

and some environmental factors where the software will be

developed. The complexity of a use case is determined by

the number of transactions of the use case scenario. A use

case scenario is usually composed of several points. These

include the actors involved in the scenario, the precondition

of the system, the main success scenario, the extensions or

exceptions and the post condition. The following example

introduces the scenario of the use case “Student Enrolls in a

Course” in a University Online Registration System.

Use Case Title: Student Enrolls in a Course

Actors: Student, Admin

Precondition: The student is not enrolled in a course

Main Success Scenario:

1. Check if the student has permission to register a course

2. Student chooses the course he or she wishes to enroll in

3. System checks for the deadline of enrollment

4. System checks for the prerequisite of the course

5. System checks if the student has registered in another

course which is scheduled at the same time

6. System checks for the maximum number of courses the

student can register

7. System checks if the course is full

Extensions

1a: The student does not have permission (e.g. the student

has not paid the tuition)

 1a1: Notify the student to contact the administrator

3a: The deadline has passed

 3a1: An Error message will be displayed

3a2: The student will be informed to contact the

registrar

4a: The prerequisite of the course is not fulfilled

4a1: The student will be advised to contact the

professor to obtain permission

4b1: If the student has permission from the

professor, the student will be advised to contact the

registrar to enroll him/her in the course

5a: Two courses have the same schedule

 5a1: The student is advised to choose either one

6a: The number of the enrolled courses has been exceeded

 6a1: An error message will be displayed

7a: The course is full

 7a1: An error message will be displayed

Post condition: The student has enrolled in a course

With respect to counting the transactions in the scenario, the

transactions should be counted in the success scenario as

well as in the extensions. For example, the number of

transactions of the above scenario will be fifteen. This

includes seven transactions in the success scenario and eight

transactions in the extensions (1a1 + 3a1 + 3a2 + 4a1 + 4b1

+ 5a1 + 6a1 + 7a1). For instance, counting the number of

transactions can be subjective and one might count 3a1 and

3a2 as one transaction. We argue in section 6 that counting

the transactions in the extensions the same way as counting

the transactions in the success scenario might lead to

overestimation. Thus, we believe that counting the

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 14

transactions in the extension part should be performed in a

different way.

Unadjusted and Adjusted Use Case Points: To estimate the

size of software using this method, several rules should be

applied. These rules include [7]

 Identify the complexity of each use case: The

complexity is said to be Simple if the number of

transactions within this use case is between one and

three. The complexity is Average if the number of

transactions is between four and seven. The

complexity is Complex if the number of

transactions is eight or more.

 Assign a weight factor for each level of complexity

for use cases: This factor depends on the type of

the project. Usually, if the complexity level is

Simple, the factor given is five. If the complexity

level is Average, the factor given is ten. If the

complexity level is Complex, the factor given is

fifteen.

 Identify the complexity of each actor: An actor is

defined as Simple if it is System Interface. An actor

is defined as Average if it is Interactive or Protocol-

Driven Interface. The actor is defined as Complex

if it is a Graphical Interface.

 Assign a weight factor for each level of complexity

for actors: This is similar to the weight factors

given to use cases. The weight factor is one for

Simple, two for Average and three for Complex.

 Calculate the total use case weight factor

(UseCase_WeightFactor): This is the sum of all

Simple use cases multiplied by their weighting

factor + the sum of all Average use cases multiplied

by their weighting factor + the sum of all Complex

use cases multiplied by their weighting factor.

 Calculate the total actor weight factor

(Actor_WeightFactor): Apply the same rule as

above to calculate the total actor weight factor.

 Calculate the Unadjusted Use Case Points (UUCP):

UUCP = UseCase_WeightFactor +

Actor_WeightFactor. The Unadjusted Use Case

Points can be expressed as:

where ni is the number of items of variety i and Wi is the

complexity weight.

At this point, the UUCP is calculated. Some cost estimation

methods such as SEER-SEM takes the UUCP as an input of

software size to calculate the cost and effort of software

development. Karner [7] proposed an effort estimation

method based on the Adjusted Use Case Points (UCP). The

UCP is calculated by multiplying the UUCP by the technical

and environmental factors. The technical factors contribute

to the complexity of the system where the environmental

factors contribute to the efficiency of the system. Depending

on the technical and environmental factors, the UCP can be

same as, smaller or larger than the UUCP. At most, the UCP

can be larger or smaller than the UUCP by 30%. The

technical and environmental factors can be classified in

Table 1 and Table 2 respectively.

Table 1: Technical Factors [7]

Fi Factors Contributing to Complexity Wi

F1 Distributed Systems 2

F2 Application performance objectives 1

F3 End user efficiency 1

F4 Complex internal processing 1

F5 Reusability 1

F6 Easy Installation 0.5

F7 Usability 0.5

F8 Portability 2

F9 Changeability 1

F10 Concurrency 1

F11 Special security features 1

F12 Provide direct access for third parties 1

F13 Special user training facilities 1

Table 2: Environmental Factors [7]

Fi Factors contributing to efficiency Wi

F1 Familiar with Objectory 1.5

F2 Part-time workers -1

F3 Analyst capability 0.5

F4 Application experience 0.5

F5 Object oriented experience 1

F6 Motivation 1

F7 Difficult programming language -1

F8 Stable requirements 2

The Adjustment Use Case points (UCP) can be expressed as:

where TF is the Technical Factor and the EF is the

environmental factor. TF is calculated as:

where and is a factor that takes

values 0 or 1 or 2 or 3 or 4 or 5. The value 0 means

irrelevant while the value 5 means essential. The value 3

means that the factor is not very essential, neither irrelevant.

For instance, if all the factors have the value of 3, the TF

will be 1. On the other hand, the environmental factor EF is

calculated as:

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 15

where and is a factor which is

equivalent to the of the technical factor (i.e between 0 and

5). If all the factors have the value of 3, then the EF will be

1.

After the size of software is calculated in UCP, the effort to

develop this software can be estimated. According to Karner,

the effort required to complete one UCP is twenty person

hours.

Fuzzy Logic

Fuzzy logic is derived from the fuzzy set theory that was

proposed by Lotfi Zadeh in 1965 [10]. As a contrary to the

conventional binary (bivalent) logic that can only handle

two values True or False (1 or 0), fuzzy logic can have a

truth value which is ranged between 0 and 1. This means

that in the binary logic, a member is completely belonged or

not belonged to a certain set, however in the fuzzy logic, a

member can partially belong to a certain set. Mathematically,

a fuzzy set A is represented by a membership function as

follows:

Where is the degree of the membership of element x in

the fuzzy set A.

A fuzzy set is represented by a membership function. Each

element will have a grade of membership that represents the

degree to which a specific element belongs to the set.

Membership functions include Triangular, Trapezoidal and

S-Shaped. In fuzzy logic, linguistic variables are used to

express a rule or fact. For example, “the temperature is

thirty degrees” is expressed in fuzzy logic by “the

temperature is low” or “the temperature is high” where the

words low and high are linguistic variables. In fuzzy logic,

the knowledge based is represented by if-then rules. For

example, if the temperature is high, then turn on the fan. The

fuzzy system is mainly composed of three parts. These

include Fuzzification, Fuzzy Rule Application and

Defuzzification. Fuzzification means applying fuzzy

membership functions to inputs. Fuzzy Rule Application is

to make inferences and associations among members in

different groups. The third step in the fuzzy system is to

defuzzify the inferences and associations and make a

decision and provide an output that can be understood. In

this paper, fuzzy logic will be used to calibrate the

complexity weight of use cases.

 Artificial Neural Network

Artificial Neural Network (ANN) is a network composed of

artificial neurons or nodes which emulate the biological

neurons [11]. ANN can be trained to be used to approximate

a non-linear function, to map an input to an output or to

classify outputs. There are several algorithms available to

train a neural network but this depends on the type and

topology of the neural network. The most prominent

topology of ANN is the feed-forward networks. In a feed-

forward network, the information always flows in one

direction (from input to output) and never goes backwards.

An ANN is composed of nodes organized into layers and

connected through weight elements. At each node, the

weighted inputs are aggregated, thresholded and inputted to

an activation function to generate an output of that node.

Mathematically, this can be represented by:

Where are neuron inputs, are the weights and is

the activation function.

Feed-forward ANN layers are usually represented as input,

hidden and output layers. If the hidden layer does not exist,

then this type of the ANN is called perceptron. The

perceptron is a linear classifier that maps an input to an

output provided that the output falls under two categories.

The perceptron can map an input to an output if the

relationship between the input and output is linear. If the

relationship between the input and output is not linear,

multi-layer perceptron (MLP) can be used. A MLP contains

at least one hidden layer. MLPs can be trained using the

backpropagation algorithm. In this paper, a MLP is used and

trained using the backpropagation algorithm.

Evaluation Criteria

Several methods exist to compare cost estimation models.

Each method has its advantages and disadvantages. In this

work, three methods will be used. These include the Mean

of the Magnitude of Relative Error (MMRE), the Mean of

Magnitude of error Relative to the Estimate (MMER) and

the Mean Error with Standard Deviation.

MMRE: This is a very common criterion used to evaluate

software cost estimation models [12]. The Magnitude of

Relative Error (MRE) for each observation i can be obtained

as:

MMRE can be achieved through the summation of MRE

over N observations:

MMER: MMER is another method for cost estimation

models evaluation [13]. MER is similar to MRE with a

difference that the denominator is the predicted effort

instead of the actual effort. Consequently, the equations for

MER and MMER are:

When using the MMRE and the MMER in evaluation, good

results are implied by lower values of MMRE and MMER.

Mean Error with Standard Deviation: Although MMRE and

MMER have been used for a long time, both methods might

lack accuracy. If the actual effort was small, MMRE would

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 16

be high. On the other hand, if the predicted effort was low,

MMER would also be high. Foss et al. argued that MMRE

should not be used when comparing cost estimation models

and using the standard deviation would be better [14]. The

standard deviation method was first proposed by Karl

Pearson in 1894 [15]. The equation for the mean error for

each observation i and total number of observations N is:

Where

The equation of the standard deviation can be seen as:

The mean error with standard deviation can be represented

as:

 Related Work

Little work has been done to improve the use case points

model, however soft computing techniques such as fuzzy

logic and neuro-fuzzy have been widely implemented to

improve cost estimation models such as COCOMO II,

Function Points Analysis and SEER-SEM. This section

presents the work relevant to applying soft computing

techniques on cost estimation models. These include the

following:

Fetcke et al. [16] mapped UML use case diagrams to the

software size metric Function Points. This method is based

on four main steps. In the first step, Fetcke et al. define

boundary concepts. This is similar to the boundary

definition in FPA IFPUG. The authors suggest that actors

are mapped into users and external applications, but the

relationship is not always one-to-one. In the second step, the

identification of items within the boundary is defined. In

FPA, there are 2 types of items, transactional functions and

files (data functions). Use cases are mapped in transactional

functions. In order to count transactional functions, use

cases must be described in further detail (use case scenarios).

The concept of a file in Object Oriented is the object. The

authors distinguish between typed objects and untyped

objects. Each is treated in a specific way. Aggregation (Part-

Of) and Inheritance (IS-A) relationships are also taken into

consideration. In the third step, the identification of item

types is defined. Transactional functions are treated as

external outputs, external inquiries and external inputs. Files

are treated as internal logical files and external interface

files. The counting rules for transactional functions and files

are the same as reported in the IFPUG Counting Practices

Manual [17]. Finally, weight factors are applied. In this step,

transactions and files are weighed based on IFPUG

Counting Practices Manual.

Issa et al. [18], used the use case diagram of software to

determine the effort of the software based on three steps.

First, the effort estimation can be roughly calculated based

on the number of use cases multiplied by 0.67 person-

months. Secondly, estimation can be done using the use case

patterns catalogue estimation method. Finally, object points

can be extracted using the use case model method.

Mittal et al. [19], used fuzzy logic to tune the parameters of

COCOMO cost estimation model. After that, a comparison

between the proposed model and other models was

conducted.

Huang et al. [20], proposed a new model using neuro-fuzzy

technique to improve the estimation of the COCOMO model.

This model can be easily trained and evaluated by experts. A

learning algorithm for this model was also put forward.

 PROPOSED MODEL USING FUZZY LOGIC

APPROACH

As explained in section 1, the main problem of the use case

points model is that there is no graduation when classifying

the complexity factors of use cases. In this section of the

work, fuzzy logic with triangular membership was used to

solve this issue. The input and output memberships are

displayed in Figure 2 and Figure 3 respectively.

Figure 2: Fuzzy Logic Input Membership

Figure 3: Fuzzy Logic Output Membership

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 17

Fuzzy Logic Rules:

If Input = 2 transactions then output = 5

If Input = 6 transactions then output = 10

If input = 10 transactions then output = 15

Rather than classifying the use cases into three classes

(simple, average and complex) as in Karners’s work, the use

cases will be classified into ten categories according to the

number of transactions per use case. Since the main goal of

our approach is to enhance the current model proposed by

Karner and not to completely modifying it, we assume that

the largest use case contains ten transactions. We also

assume that the complexity factor of the largest use case is

fifteen. Table 3 presents a comparison between the original

work (Karner’s method) and the proposed fuzzy logic

approach. The table shows that in the proposed approach,

the weights of the use cases are gradually increasing as

opposed to the abrupt increase in Karner’s method.

Table 3: Adjusted Weight

Use case

contains

Karner’s

weight

Adjusted

weight

1 transaction 5 5

2 transactions 5 5

3 transactions 5 6.45

4 transactions 10 7.5

5 transactions 10 8.55

6 transactions 10 10

7 transactions 10 11.4

8 transactions 15 12.5

9 transactions 15 13.6

10 transactions 15 15

PROPOSED MODEL USING NEURAL NETWORK

APPROACH

In this stage, a neural network approach is used to map the

input vectors (use cases and actors) to an output vector

(UUCP) as shown in Figure 4. Since the nature of the

problem is non linear, Multi Layer Perceptron with one

hidden layer was used to simulate the problem. There are

thirteen input vectors. These include ten vectors that

represent the use cases and three vectors that represent the

actors.

 Figure 4: Multi Layer Perceptron

The training algorithm used was Levenberg-Marquardt

backpropagation (trainlm). Several experiments were

conducted to determine the number of neurons in the hidden

layer. As a rule of thumb, the number of neurons in the

hidden layer must be greater than the number of neurons of

the input layer. However, there are no standard rules to

determine the number of neurons in the hidden layer other

than trial and error [21]. Twelve experiments were

performed. The number of neurons was set between fourteen

and twenty five. The best results were obtained when the

number of neurons in the hidden layer was twenty. Seven

projects were used in training the neural network and

thirteen projects were used for testing and validation. The

next section demonstrates the results of applying the neural

network approach.

EVALUATION

The evaluation of this work was conducted on twenty

different projects. There is no standard and known

conversion between the size in UCP and the size in function

points or SLOC. Since some information about the

complexity of the projects and the team experience is known

about each project, the Technical Factor (TF) and the

Environmental Factor (EF) were calculated. Karner

suggested that the effort required to develop one UCP is

twenty person hours. This method had been criticized by

many researchers. Schneider et al. [22] refined Karner’s

method in determining the effort from UCP. Schneider

suggested counting the number of factor ratings of F1-F6 in

Table 2 (Technical Factors) that are below three and the

number of factor ratings of F7-F8 that are above three. If the

total is three or less, then twenty person hours per UCP

should be used. If the total is three or four, twenty eight

person hours per UCP should be used. If the total is five or

more, then the project team should be reconstructed so that

the numbers fall at least below five. A value of five

indicates that this project is at significant risk of failure with

this team. In this paper, Schneider’s method has been used

to calculate the size of the projects in UCP from the effort.

Equation 2 is used to determine the size of each project in

UUCP. To distinguish between the results in the proposed

fuzzy logic and neural network approaches, the evaluation

of each approach was done separately. Furthermore, to

determine the effect of the extension part of the use case

scenario on size, two different experiments were conducted.

Evaluation of the Fuzzy Logic Approach

Karner ignored the “extend” and “include” use cases when

applying the UCP model, however we believe that the

“extend” and “include” use cases of the use case model

should be considered when estimating the size of software.

The evaluation of the fuzzy logic approach was conducted in

three different stages. First, the evaluation was done on

seven projects. The use case models of these projects

contain no or very few “extend” and “include” use cases. In

the second stage, the evaluation was done on five projects.

The use case models of these projects contain a fair number

of “extend” and “include” use cases. In this stage, the

number of “extend” and “include” use cases in each project

is between 15% to 25% of the number of total use cases.

Finally, in the third stage, eight projects were chosen for

evaluation. In these projects, the number of the “extend” and

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 18

“include” is more than 25% of the number of total use cases.

In each stage, the error (MER, and MRE) of each project

was calculated between the original size in UUCP and each

of Karner’s method and the proposed fuzzy logic approach.

At the end of each stage, the error was presented as MMRE,

MMER and mean error with standard deviation. Table 4

shows a comparison between the Karner’s model and the

proposed fuzzy logic approach.

Table 4: Comparison between Karner's and the Proposed Models

Project Actual

 Size

UUCP

Karner's

Estimation

PropoSed

 Model (Fuzzy)

MRE

Karner

MRE

 Fuzzy

 Logic

MER

Karner

MER

Fuzzy

Logic

Error

 Karner

(Karner–
Actual)

Error

Fuzzy

(Fuzzy–
Actual)

Project 1
72.44 128.96 104.98 0.78 0.45 0.44 0.31 56.52 32.54

Project 2
74.33 128.54 108.65 0.73 0.46 0.42 0.32 54.21 34.32

Project 3
55.50 51.00 48.70 0.08 0.12 0.09 0.14 -4.50 -6.80

Project 4
68.00 108.50 92.40 0.60 0.36 0.37 0.26 40.50 24.40

Project 5
48.75 74.25 61.25 0.52 0.26 0.34 0.20 25.50 12.50

Project 6
94.50 168.75 144.00 0.79 0.52 0.44 0.34 74.25 49.50

Project 7
72.50 108.41 92.44 0.50 0.28 0.33 0.22 35.91 19.94

Mean 0.57 0.35 0.35 0.26 40.34 23.77

Standard

 Dev

 25.33 17

Improv-

ement

 +22% +9%

Project 8

96.80 81.05 74.82 0.16 0.23 0.19 0.29 -15.75 -21.98

Project 9
79.80 98.67 84.54 0.24 0.06 0.19 0.06 18.87 4.74

Project 10
91.50 118.45 109.75 0.29 0.20 0.23 0.17 26.95 18.25

Project 11
86.58 63.21 65.12 0.27 0.25 0.37 0.33 -23.37 -21.46

Project 12
188.64 132.54 128.67 0.30 0.32 0.42 0.47 -56.10 -59.97

Mean 0.25 0.21 0.28 0.26 -9.88 -16.08

Standard
Deviation

 33.67 30.01

Improv-
ement

 +4% +2%

Project 13

94.36 54.88 48.44 0.42 0.49 0.72 0.95 -39.48 -45.92

Project 14
87.44 52.87 46.55 0.40 0.47 0.65 0.88 -34.57 -40.89

Project 15
111.50 75.84 62.54 0.32 0.44 0.47 0.78 -35.66 -48.96

Project 16
119.88 67.84 72.59 0.43 0.39 0.77 0.65 -52.04 -47.29

Project 17
144.60 86.17 74.85 0.40 0.48 0.68 0.93 -58.43 -69.75

Project 18
102.87 82.40 72.88 0.20 0.29 0.25 0.41 -20.47 -29.99

Project 19
124.60 64.21 52.62 0.48 0.58 0.94 1.37 -60.39 -71.98

Project 20
168.65 72.89 61.25 0.57 0.64 1.31 1.75 -95.76 -107.40

Mean 0.40 0.47 0.72 0.97 -49.60 -57.77

Standard

 Deviation

 23.00 24.47

Improv-

ement

 -7% -25%

In the first stage, there is 22% improvement in MMRE and 9%

improvement in MMER by applying the proposed fuzzy

logic approach. According to equation 13, the mean error

with standard deviation of Karner’s method can be

expressed as
 . However, for the fuzzy logic

approach, the mean error with standard deviation is

 . In the second stage, there is slim improvement

in the proposed method. The MMRE is enhanced by 4% and

the MMER is only enhanced by 2%. In the third stage, the

new approach has a negative impact and Karner’s estimation

provided better results. Section 6 will address this change in

the results.

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 19

Evaluation of the Neural Network Approach

Seven random projects were selected to train the neural

network presented in section 4. The neural model was tested

and evaluated over thirteen projects. Good results were

obtained in the training process. The mean error was 0.0215,

and the standard deviation was 0.0616. Table 5 presents the

results of the neural network approach.

Table 5: Comparison between Karner's and Neural Network Approach

 MRE

 (Karner)

MRE

 (Neural

 Network)

MER

(Karner)

MER

(Neural

Network)

Error

 (Karner)

Error

 (Neural

 Network)

Mean 0.44 0.79 0.51 0.31 36.15 49.45

Standard

 Deviation

 23.66 33.89

Improvement -35% +20%

The results show that an improvement of 20% in the MMER

was obtained. Table 5 also shows that the neural network

approach had adverse results in the MMRE and in the mean

error with standard deviation. Section 6 will discuss the

results of the neural network approach.

Effect of the Extension Part in the Use Case Scenario on

Size Estimation

According to Karner’s model, the transactions in the

extensions are counted the same way as in the main scenario.

Two experiments were performed on two projects (project 3

and project 4) to learn the effect of the extension part on size

estimation. There were two reasons for choosing these

projects. First, the number of “extend” and “include” use

cases in these two projects is about 5% of the number of

total use cases in the use case diagram. This is important to

put the problem of counting the “extend” and “include” use

cases aside while working with extensions. Secondly, we are

very familiar with these projects. Surprisingly, the MMRE

and the MMER of both Karner and the fuzzy logic approach

had improved when the extension part of the scenario was

ignored. This concluded that in the first stage of projects

(project 1 to project 7) where the number of “extend” and

“include” use cases is very low, one of the reasons behind

the overestimation in both Karner’s and the fuzzy logic

approach was counting the transactions in the extension part

the same way as in the success scenario. For instance, in the

projects where the number of transactions in the extensions

is approximate to the number of transactions in the success

scenario (like the scenario proposed in section 2.1), counting

the transactions of the extensions in the same way as in the

success scenario might lead to overestimation in the

software effort by 30% to 50%.

DISCUSSION

Upon conducting experiments in this paper, some important

points are noted. These include:

 In about 80% of the projects, the average size of

the projects using the fuzzy logic approach was less

than the average size of the projects using Karner’s

approach. This is because the fuzzy logic approach

provided a gradual and smooth increase of the

complexity weights of the use cases as opposed to

the abrupt change in Karner’s model.

 Karner did not consider the “include” and the

“extend” use cases when counting the transactions

in each use case, however the number of “extend”

and “include” use cases has an impact on

estimation and should be considered. However,

more research is required to compare the effort

needed to develop the “extend” and “include” use

cases with the effort needed to develop the main

use cases. In a nut shell, counting the “extend” and

“include” use cases might differ from counting the

main use cases. Furthermore, the experiments show

that Karner’s model leads to overestimation when

there are no “extend” or “include” use cases. On

the other hand, Karner’s method gives better results

when there is a fair number of “extend” and

“include” use cases. It might be concluded that

Karner made a rough estimation when he assigned

the complexity weights by indirectly including the

“extend” and “include” use cases.

 Regarding the extensions in the use case scenario,

the transactions in the extension part should be

considered, but they should be counted in a

different way than in the success scenario. For

instance, in the scenario proposed in section 2.1,

the number of transactions in the extension part is

larger than the number of transactions in the

success scenario. Nonetheless, the effort required

to develop the extension part might be about 30%

of the effort required to develop the success

scenario.

 According to Karner, the actor that interacts with

five use cases has the same value as if it interacts

with one use case. In practice, this might be

incorrect. However, since the weight of actors is

very low in comparison with use cases, the error is

negligible, especially in large projects.

 The results of the fuzzy logic approach were better

than the Karner’s model in the first two stages (see

Table 4). However, the fuzzy logic approach could

not beat Karner’s model in stage three. The main

reason is that the average size of these projects is

large and an assumption was made in Section 3 to

set the complexity weight of the largest use case to

fifteen as Karner proposed. Had the complexity

weight of the largest use case been greater than

fifteen, the fuzzy logic approach would have given

better results.

 The results of the neural network were good in the

MMER and not as favourable in the MMRE. This

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 20

is because more projects are required for training

and testing. Moreover, in some situations, the

MMRE and the MMER work against each other.

This means that improving the MMRE might

worsen the MMER and vice versa. This is because

the denominator in the MRE is the actual value,

however the denominator in the MER is the

estimated value.

 THREATS TO VALIDITY

In these experiments, threats to validity can be summarized

as follows:

 In the neural network approach, promising results

were obtained in the training phase, however this

model was not effective in the testing phase when

using the MMER criteria. The main reason of this

is the lack of projects. The industrial projects that

are available for evaluation are scarce. This is

because industrial firms are not ready to divulge

the UML diagrams of their projects.

 Most of the projects used were educational projects.

Some students may not follow the steps of the

software development life cycle effectively.

Moreover, the quality of some projects might be

poor and if the same projects are developed in

industry, the actual size might be much more than

the size obtained by students.

 There were difficulties in calculating the actual size

in UCP or UUCP. Since there is no conversion

metrics between UCP and other size metrics, the

size in UCP was obtained from the effort, and then

equation 2 was used to obtain the size in UUCP.

Although Schneider’s method (Karner’s refined

method) was used to calculate the size in UCP, this

method might not be as accurate as other

sophisticated cost estimation models such as

SEER-SEM.

 The use case points model mainly depends on the

use case diagram. If the use case diagram was not

properly designed, a huge error could be incurred.

CONCLUSION AND FUTURE WORK

The use case points model is one of the cost estimation

models that has been widely used because it is simple, fast,

accurate to a certain degree and can be automated. The use

case points model is based on the number and the

complexity of the use cases as well as the actors. The

original model suggested three degrees of complexity to the

use cases and there is no graduation among the complexity

weights of the use cases. This paper presented the

disadvantages of the current model and proposed an

enhancement to this model using fuzzy logic and neural

network. The fuzzy logic approach presents ten degrees of

complexity of the use cases. Moreover, this approach

provides graduation among the complexity weight. The

neural network approach was used as a black box to map the

input vectors of the use case model to software size. The

results showed that the UCP software estimation can be

improved up to 22% in some projects.

 Future work will focus on revamping the use case model.

First, the largest use case should contain at least twenty

transactions as opposed to eight transactions as in Karner’s

model. Secondly, the complexity weight of the use cases

will be calibrated using the neuro-fuzzy approach. Thirdly,

“extend” and “include” use cases should be considered

when estimating the software size. Finally, the future work

will focus on how the “extend” and “include” use cases as

well as the transactions in the extension part should be

counted.

REFERENCES

[1] D. Eck, B. Brundick, T. Fettig, J. Dechoretz and J.

Ugljesa, "Parametric estimating handbook," The

International Society of Parametric Analysis (ISPA), Fourth

Edition. 2009.

[2] J. Lynch. (2009, Oct.). Chaos manifesto. The Standish

Group. Boston. [Online]. Available:

http://www.standishgroup.com/newsroom/chaos_manifesto.

php.

[3] A. Albrecht, "Measuring application development

productivity," in IBM Application Development Symp. 1979,

pp. 83-92.

[4] C. R. Symons, "Function Point Analysis: Difficulties and

Improvements," IEEE Trans. Software Eng., vol. 14, pp. 2-

11, 1988.

[5] G. Booch, "UML specification version 1.1," OMG, Aug.

1997.

[6] G. Booch, I. Jacobson and J. Rumbaugh, "UML version

2.0," Jul. 2005.

[7] G. Karner, "Resource Estimation for Objectory

Projects," Objective Systems, 1993.

[8] I. Jacobson, M. Christerson, P. Jonsson and G.

Overgaard, Object-Oriented Software Engineering: A use

Case Driven Approach. Addison Wesley, 1992.

[9] J. Rumbaugh, I. Jacobson and G. Booch, "Use cases," in

UML Distilled, 3rd ed., M. Fowler, Ed. Pearson Higher

Education, 2004, pp. 103.

[10] L. A. Zadeh, "Fuzzy sets," Information and Control,

vol. 8, pp. 338-353, 6, 1965.

[11] R. P. Lippman, "An Introduction to Computing with

Neural Nets," IEEE ASSP Magasine, vol. 3, pp. 4-22, 1987.

[12] L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek

and K. D. Maxwell, "An assessment and comparison of

common software cost estimation modeling techniques,"

ICSE'99, vol. 0, pp. 313-322, 1999.

[13] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell and

M. J. Shepperd, "What Accuracy Statistics Really Measure,"

IEE Proc. -Softw, vol. 148, pp. 81-85, 2001.

[14] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit,

"A Simulation Study of the Model Evaluation Criterion

MMRE," IEEE Transactions on Software Engineering, vol.

29, pp. 985-995, 2003.

[15] P. Karl, "On the dissection of asymmetrical frequency

curves," Philosophical Transaction of Royal Society, vol.

185, pp. 71, 1894.

[16] T. Fetcke, A. Abran and N. Tho-Hau, "Mapping the

OO-jacobson approach into function point analysis," in

Technology of Object-Oriented Languages and Systems,

1997. TOOLS 23. Proceedings, 1997, pp. 192-202.

[17] IFPUG. (1986, IFPUG counting practices manual.

Available: www.ifpug.org.

[18] A. Issa, M. Odeh and D. Coward, "Software cost

estimation using use-case models: A critical

Ali Bou Nassif et al, Journal of Global Research in Computer Science, 1 (4), November 2010, 12-21

© JGRCS 2010, All Rights Reserved 21

evaluation," in Information and Communication

Technologies, 2006. 2006, pp. 2766-2771.

[19] A. Mittal, K. Parkash and H. Mittal, "Software cost

estimation using fuzzy logic," SIGSOFT Softw. Eng. Notes,

vol. 35, pp. 1-7, 2010.

[20] X. Huang, D. Ho, J. Ren and L. F. Capretz, "Improving

the COCOMO model using a neuro-fuzzy approach," Appl.

Soft Comput., vol. 7, pp. 29-40, 2007.

[21] I. V. Tetko, D. J. Livingstone and A. I. Luik, "Neural

network studies. 1. Comparison of overfitting and

overtraining," J. Chem. Inf. Comput. Sci., vol. 35, pp. 826-

833, 09/01, 1995.

[22] G. Schneider and J. P. Winters, Applied use Cases,

Second Edition, A Practical Guide. Addison-Wesley, 2001.

