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Abstract: We generalize the teleportation protocol of Bennet et al. to a noisy quantum teleportation protocol (NTP) in 

which noise factors are corresponded to noisy channels, imperfect measurement and non-maximally entangled channel 

(isotropic channel). Evolution of entanglement between every two parts of three-partite density matrix changing 

through five steps of NTP is considered employing concurrence and negativity measures. Then results of concurrence 

and negativity are evaluated and compared by mutual information as a criterion of correlation. We illustrate the 

necessity of entanglement in the middle steps of NTP. 
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I. INTRODUCTION 

 

Quantum entanglement is one of the most fascinating topics and also an important source in quantum information 

applications [1-5]. Quantum teleportation protocol of an unknown d-level system which was described in the original 

work of Bennet et al. is one of these applications [2]. Teleportation protocol implements classical communication and 

quantum entanglement to transfer an arbitrary unknown quantum state from a sender (Alice) to a receiver (Bob). In a 

standard quantum teleportation protocol (STP), an unknown quantum state can be reproduced with complete fidelity 

F=1, while maximum fidelity using a purely classical channel is F=2/3 [6]. Bennet et al. noted that non-maximally 

entangled quantum channel reduces the fidelity of teleportation [2]. However not every mixed entangled state can 

obtain quantum fidelities [7], there are suitable mixed states which do not violate any Bell type inequality but still can 

be used in teleportation with fidelities greater than the classical bounds [8,9]. Today quantum teleportation has been 

achieved in laboratories around the world using technology of light polarization [10–16]. 

 

Closed quantum systems do not interact with their external environment and they are considered as an ideal model 

[17]. But in real-world experiments, a quantum system interacts with the environment which is called open quantum 

system [18]. A pure state in an open quantum system can be changed into a mixed state. Interactions between a system 

and external environment as dynamical evolution of that system are described by quantum operation. In open quantum 

systems there are different noises like bit flip, phase flip [19], amplitude damping [17,19] and quantum depolarizing 

channels [20]. Dynamics of an open quantum system is described by a master equation in the form of Lindblad [21,22]. 

Fidelity of quantum teleportation subject to various types of noises during different steps of teleportation is achieved by 

Oh et al. [23] if the noisy quantum channel is described by a single Lindblad operator. Under these conditions, the 

average fidelity is always greater than 2/3 which is the best obtainable value for classical communication [23]. Iulia et 

al. studied imperfect one-to-one teleportation and generalized many-to-many teleportation protocol based on non-

maximally entangled channel [24]. Badziag et al. [25] showed it is possible to increase the fully entangled fraction [26] 

(f <1/2) by means of trace preserving LOCC operations and found a class of two-qubit states which can be used for 

teleportation with non-classical fidelity. Bandyopadhyay [27] analyzed the action of amplitude damping channel for 

Bell states where the qubits of the entangled pair undergo local interactions with their respective environments. W. Dur 

et al. [28] obtained fidelity of N pairs (a, c¬1), (c1, c2), … , (cn-1, b), each of the pairs is supposed to be in Werner 
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state with fidelity F in teleportation of entanglement (entanglement swapping) scheme. Knoll et al. [29] compared 

degree of agreement between theoretical local environment influences like amplitude damping and dissipative 

interactions with their experimental results. They investigated influence of particular dissipative interactions by 

evaluating the quantum fidelity. Local amplitude damping can increase the average teleportation fidelity for a class of 

entangled states [26,30]. In 2015, all types of noises namely the bit flip, phase flip, depolarizing and amplitude 

damping channels happening in real world implementations of quantum communication protocols were studied in [31].  

 

Evolution of entanglement through various steps of STP [32]. Also purity and impurity of subsystems of three-partite 

state across different steps of STP have investigated. In this work we investigate evolution of entanglement on total 

density matrix describing the initial state through different steps of NTP (generalized case of STP) which ensures the 

emergence of entangled states in the intermediate steps. Then we compare the results with evolution of entanglement in 

(STP) [2,32]. To this end, we design NTP scheme and divide it into five steps in which all noise factors involved are 

noisy channels known as depolarizing channel (an isotropic state) [33], imperfect operations (applied by Bob (BIO)) 

and finally imperfect measurements on a single qubit by a POVM [34] (performed by Alice (AIM)). After preparing 

structure of NTP, we analytically obtain mutual information entropy (MIE), conditional entropy (CE) [4], concurrence 

(C) [35,36] and negativity (N) [37] in each step, and then interpret classical correlation and evolution of entanglement 

on three-partite state (basically constructed from initial state and isotropic channel) across NTP steps. As we mentioned 

in the last paragraph fidelity of teleportation subject to various types of noises have investigated in different conditions 

[23,28-30]. The fidelity of teleportation (in terms of measurements on computational basis) across a Bell channel and 

also an isotropic channel in which noisy channels (like BIOs) and imperfect measurement (like AIM) involved in, has 

not achieved yet. Therefore determination of the average fidelities of STP and NTP subjected to denoted noises are 

other goals will be investigate in this paper. First we obtain average fidelity of STP in the presence of all noises 

analytically. Then we numerically investigate the BIO effect, the AIM effect and finally both BIO and AIM 

simultaneously across the Bell channel as the EPR source by plotting different figures. Then we repeat the above 

procedure for NTP across the isotropic channel a non-maximally mixed state as the EPR source. We show that the two 

different Bell and isotropic channels give different efficiencies when subjected to the same type of noises.  

 

The other sections of this paper are the following. The physical ideas and mathematical formalism are given in sections 

II and III. So that an explanation of different noise effects across the quantum teleportation investigated in the 

following section. In sections IIIA IIIB, correlation and entanglement measures introduced respectively. In section IV 

quantum circuit of NTP is designed and correlation and entanglement of parts of three-partite density matrix in five 

steps of NTP are analytically computed and the results are numerically interpreted by plotting curves against noise 

parameters. Average fidelities of STP (in the presence of noise) and NTP (generalized case) investigated in section V, 

A and B respectively. Finally section VI is devoted to the description of the results. 

 

II. MODELING NOISE: ISOTROPIC CHANNEL, IMPERFECT MEASUREMENT AND OPERATIONS 

 

Noisy channels are often explained in terms of operator-sum representation as [17,19]:

 
†

1

( ) ,
n

k k

k

A A 


 
     

(1) 

Where the operation elements Ak, are known as the Kraus operators which for trace preserving operations they satisfy 

the following condition: 
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Where I is the Hilbert space identity. In NTP, the basic idea is that Alice transmits a qubit to Bob through some 

communications channel with noise or distortion. To this end, depolarizing channel as a simple model for noise in 

quantum systems is defined according to operator-sum representation as the following [19,20]: 

1p
ch

pure

p

chpure

p
p

d


  


   1 ,   (3) 

d is the dimension for which the condition of complete positivity (CP) is: 

2

1
1

1
p

d
  


.      (4) 

In d dimensions the channel
p

ch  depends on one real parameter p. This channel maps the pure state ρ pure defined 

in H
d
 (Hilbert space) into a linear combination of itself and the d×d identity matrix 1. The limit p → 0 corresponds to a 

very noisy channel, while p → 1 describes a channel with very little noise. The density matrix: 

Bell

ch    ,    (5) 

That  00 11 2    as a completely pure Bell state, is mapped to the mixed state: 

(1 )
4

ch p p
I

      .    (6) 

In this work we use an isotropic quantum channel as a non-maximally entangled source shared between Alice and 

Bob in order to be delivered a two-level single qubit in NTP. One reason to use this channel is its convertibility into 

Bell channel. So by substituting (4 1) / 3p F 
 
(in which satisfy Eq. (4)) into Eq. (3), and considering two-qubit form 

of I from Eq. (2) we obtain: 

2 2

(4 1) (1 )
,

3 3

F
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F
I

F
   

  
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Where F and isoch denote “isotropic channel” according to F. 
F

isoch used as EPR source in NTP and is a two-qubit 

form of [33]: 
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In which: 
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1
, ,

d
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i i
d




      (9) 

Is a maximally d dimensional two-partite entangled state and F is defined as following: 

: .F

iso

AB ABF  
    (10) 

As we investigate generalized case of NTP, it is essential to change all perfect measurements and operations used in 

STP to imperfect measurements and imperfect operations respectively. An imperfect measurement on a single qubit in 

terms of POVM [28,37] is defined as the following: 

 

0 0 0 (1 ) 1 1 ,P        (11) 
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1 1 1 (1 ) 0 0 ,P    
    

(12) 

Eqs. (11) and (12) correspond to imperfect projectors.  is accounted as a quantity to determine the situation of the 

projection onto the basis. Then for =1 ideal measurement is obtained. Decreasing  to zero shows entrance of noisy 

measurement to the system. As a principal system coupled with environment, one can map quantum operation of single 

qubit and two-qubit gates to general imperfect gate. In open quantum systems some environment distortion effects 

could be corrected with the operation of bit flip channel (X) and phase flip channel (Z). X and Z are known as Pauli 

matrices. Thereby in noisy teleportation we need to use imperfect measurements and imperfect form of X, Z and ZX. 

The action of imperfect operation is represented by two relations [28].  

Imperfect one-qubit operation acts on the first qubit (Eq. (13)) and imperfect two-qubit operation acts on qubits 1 and 2 

(Eq. (14)) which are defined as the following: 

 1

1 1 1 1 1

1
,

2

ideal p
O p O tr I  


     (13) 

 2

12 2 12 12 12

1
,

4

ideal p
O p O tr I  


    (14) 

Where ρ is an entangled state of several qubits, 1

idealO  and 12

idealO  are ideal (perfect) operations act on ρ. In (13) and (14) 

p1 and p2 denote quantities that measure the reliability of operations. pj=1 (j=1, 2) shows ideal operation. Decreasing pj 

to zero shows increasing of imperfection in channel and finally increasing noise in system. 1I  
and 12I

 
express identity 

operations act on subsystems which 
idealO (the perfect operation) acts. We have p2 =1 for an ideal two qubit perfect 

operation.  

III. CORRELATION MEASURES AND ENTANGLEMENT MEASURES 

 

Below we express correlation measures and entanglement measures in subsections A and B respectively. 
 

Mutual Information Entropy (MIE) and Conditional Entropy (CE) 

In the fields of quantum statistical and quantum information theory, entropy is accounted as a measure of the disorder 

and of the missing information about a state. Entropy progressed into a key concept in classical information theory and 

quantum information theory [1,4,17,19]. Quantum systems used as carriers of information to describe transfer and 

process of information [4]. The von Neumann entropy of the statistical mixture with the density operator 𝜌 [25,38] is 

defined by 

2( ) Tr( log ),S         (15) 

Where Tr denotes the trace. If the subsystems of a two partite system not to be separable, videlicet they are not 

independent, therefore the whole system has more information than can be read out of the two subsystems together; so 

extra information places in correlations between the subsystems. This quantity is named mutual information and we use 

it as a measure of the degree of correlation of the subsystems [15]. MIE is defined as: 

 

       

 || 0

:

,

a b a b a

a

b

a bbS

S S S S  



 

 

 

 



  (16)

 

Where S(ρa) and S(ρb) are the von Neumann entropies of ρa and ρb, obtained by tracing out system "b" and "a" 

respectively from ρab. S(ρab) is the von Neumann entropy of the total state. S(ρ||σ) = Tr(ρ log ρ − ρ log σ) is quantum 

https://quantiki.org/wiki/Von%20Neumann%20entropy
https://quantiki.org/wiki/tracing%20out
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relative entropy. MIE for bipartite quantum systems is non-negative, and bears the interpretation of total correlation 

between the two subsystems. One can compute conditional entropy (CE) from: 

S( | ) S( ) S( ) 

( ) ( : ).

a b ab b

a a bS S

   

  

 

 
   (17)

 

Negative values of S( | )a b  can be considered as an effective criterion for measuring of non-separability [19]. 

 

 
Concurrence and Negativity Measures 

In order to consider evolution of entanglement through all steps of NTP, we measure entanglement between parts of 

total density matrix in all steps by concurrence and negativity. Concurrence and negativity as two common powerful 

measures are used for measuring entanglement of two-qubit systems. Concurrence and negativity measures are 

introduced as follow respectively: 

 ( ) max 0,2max ,ab i i
i

i

C   
 

  
 


  

(18) 

1,aT

d abN        (19) 

In which Eq. (18) i s are eigenvalues in decreasing order of ( ) ( )ab ab ab a b ab a bR Y Y Y Y        where Ya (Yb) is 

the Pauli operator 
0

0

i

i

 
 
 

. In Eq. (19) aT

ab  is the partial transpose with respect to system a, and || ... || denotes the 

trace norm. The following section is devoted to analytical computation of correlation in NTP using the mentioned 

measures. 

IV. ANALITICAL COMPUTATION OF CORRELATION IN VARIOUS STEPS OF NTP 

 

In this section, we design an NTP circuit as illustrated in Fig. 1. The top two qubits belong to Alice and the bottom 

qubit belongs to Bob. We break down NTP in five steps. Our mission is to analytically compute the amount of initially 

shared entanglement by Alice and Bob among three qubits (a single input qubit 
in  and two qubit channel 

F

isoch  on 

Fig.1) due to the interaction in five steps of NTP. An unknown quantum state to be teleported can be written as

in
0 1     with

2 2
| | | | 1   . 

 

Its density matrix is: 
2

2
,in


 












 
 
 
 



    

(20) 

Where the subscript in refers to “input” and ∗ denotes to complex conjugation. It is useful to explain NTP in terms of 

density operators. To this end we write output state of NTP as the following: 

 †

1,2 NTP NTP ,F

out in isochTr U U   
     

(21) 

Where Tr1,2 is partial trace over qubits 1 and 2. The unitary operator NTPU  is implemented by the teleportation circuit as 

illustrated in Fig. 1. Actually NTPU  is related to noisy channels at steps 2, 5 (ICNOT and BIO respectively), non-

maximally entangled isotropic channel and AIMs. 
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Fig. 1. Quantum circuit in order to teleport the qubit in . The two top lines represent Alice’s qubits and the bottom line is Bob’s 

qubit.  means of Alice’s imperfect measurements (AIM1 and AIM2). ICNOT, BIO: X and BIO: Z denote noisy channels which 

the two last correspond to Bob’s imperfect operation of X and Z known as Pauli operators. The filled lines mean of delivering 

classical information (bits). 

 

In STP, the teleported density-matrix,
out , is identical to 

in  up to the normalization factor. In subsections that lie 

ahead, we need to calculate the bounds of entropy, MIE, CE, C and N values finding the extrema affiliated to their 

analytical functions parameter as: 

   min (x ) (x ) max (x ) ,i i if f f 
    

(22) 

Where f is one of the mentioned measures in this paper and xi are noise parameters involved in each step. These bounds 

can be used in order to present the properties (purity and impurity) of density matrices. The application of Eq. (22) is 

presented through Tables 1 to 4 in this paper. 

 

Interaction of Input State in  with an Isotropic Channel
F

isoch  at Step 1 

The initial total state describing the three qubits before implementing of any quantum operation is given by: 

1 .step F

F in isoch   
      (23)

 

The density matrix of Eq. (23) is represented as: 
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   (24) 

 
In which ∗ denotes to complex conjugation and  
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The measures MIE, CE, C and N at step 1 between every two parts of 
1step

F  are computed as the following. 

Conditional entropies (CEs) between each two parts are: 
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(27) 

 

Mutual information entropies (MIEs) between each two parts are given by: 
1 1

1 2

1 1

1 3
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( : ) 0,
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(29) 

 

Concurrence (C) and negativity (N) between each two parts are: 

 
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The superscript 1 is related to the step 1 of NTP. The indices 1, 2 and 3 are related to the first, second and third part of 
1step

F  obtained by tracing out system “23”, “13” and “12” from 
1step

F  
respectively. The indices 12, 13 and 23 denote 

to the joint entropies obtained by tracing out system “3”, “2” and “1” from 
1step

F  
respectively. If one substitutes F=1 in

1step

F , entropy will be zero that shows a pure density matrix and its density matrix is similar to STP [32]. According to 

Eq. (22) the bounds of entropy, MIE and CI are determined at step 1 in Table 1. According to Table 1,
 

1

12  and 
1

13  are 

always mixed density matrices. For F=0.24 the maximally mixed case is obtained for 
1

23  (
F

isoch ). 
1 1

1 2( : ) 0S   
 
and 

1 1

1 3( : ) 0S     show inexistence of correlation that is exactly in agreement with related mutual entropy of STP [32]. For 

F=1 (STP) we obtain 
1 1

2 3( : ) 2S   
 
(Fig. 2a). Conditional entropies are 

1 1

1 2|S( ) 0   , 
1 1

1 3( | ) 0S    and 

1 1

2 3|1 S( ) 1.     It means that 
1

12
 
and 

1

13  are separable. Interestingly 1 1

2 3|S( )   
and 1 1

3 2|S( )   are exactly similar 

and both are negative. For F=1, 
1 1

3 2|S( )= 1    that shows Bell-EPR source as the channel in STP (Fig. 2b). For F > 0.8 

something more than classical correlation (quantum correlation) is shown in Fig. 2: (a) and (b). These results are in 

accordance with the results of concurrence and negativity at step 1 illustrated in Fig. 2c. For 0≤F<0.5 no entanglement 

is seen. For F greater than 0.5 inseparability is found. In Fig. 2, solid lines and dashed lines illustrate STP and NTP 

situations respectively. 

 
Fig. 2. (a) 1 1

2 3( : )S   , (b) 1 1

2 3( | )S   , (c) 1

23( )E  (concurrence and negativity) as a function of F for αmax, βmax at step 1. 

Effect of ICNOT and the Action of Hadamard (H) Gate on
1step

F  at Steps 2 and 3 

After obtaining 
1step

F  we apply an ICNOT gate achieved from (14) on the first two qubits of
1

F

step . Then we tend to 

   
2

†2

, 2 12 3 1 12 3CNOT CNOTstep F

F p stepp I I     2

1,2 1 12

1
( )

4

F

step

p
Tr I


 

 (34)
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In which I3 and I12 are 2×2 and 4×4 identity matrices respectively and CNOT12 is: 

 

12

1 0 0 0

0 1 0 0
CNOT

0 0 0 1

0 0 1 0

 
 
 
 
 
 

    (35) 

 

Measures bound 

1

1( ) 0S    
1

2( ) 0S    
1

3( ) 1S    

1

12( ) 1S    
1

13( ) 1S    
1

230 ( ) 2S    

1 1

1 2( : ) 0S     
1 1

1 3( : ) 0S     
1 1

2 30 ( : ) 2S     

 1 1

1 2| 0S      1 1

1 3| 0S      1 1

2 31 | 2S      

Table 1. Entropy, MIE and CE bounds in step 1. 
 

The density matrix of Eq. (34) is represented by: 

 

 
 

 

 

 

 

 

 

 

 

2

2

2 2 2 2

2

2 2

2

2 2

2

2 2 2 2

2

2 2

2

2 2 2

2

2

,

2

2

2 2 2 2

2 2

1

0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

8

1
i

8

1

0 0 0 0

0 0 0 0 0 0

0

8

0 0 0

0 0 0

0 0 0 0

i
8

1

8

1
i

1

8

1

8

1
i

8
0

step

F p

p
Ap Bp Dp Cp

p
Ep p

p
Ep p

p
Bp Ap Cp Dp

p
p Jp

p
D p C p Gp Hp

p
C p D p Hp Gp

p
p Jp



 

 





































 








 


























 


 

 

(36) 

In this step the CE, MIE, C and N between each two parts of 
2

2

,

step

F p are calculated analytically as follows. 

Conditional entropies (CEs) between each two parts are:  

2 2 22

1

2

2

2

2 2

1 1 1 1
S( ) log log 1

2 4 2 4
|

p p p
ρ

p
ρ

      
     

   


    

(37) 
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2 2

21 3 2S( ) log log 1
2

|
2

T T
T Tρ ρ

 
    

     
   

      (38) 

2 2

2 3 2 2 2S( ) log log log 1,
2 2 2

|
u S S

u S Sρ ρ
 

     
       

     

     (39) 

Mutual information entropy (MIE) between each two parts is: 

 

2 2 2 2

2 2

2 2

1 2

1 Λ 1 Λ 1 Λ 1 Λ
S( ) 1 log log

2 2 2 2
:ρ ρ

p p p p   


  
    

   
 

2 2 2 2

2 2

1 1 1 1
log log ,

2 4 2 4

p p p p      
    

   
 (40) 

2 2 2 2 2 2

23 21

1 Λ 1 Λ 1 Λ 1 Λ
1 log lo( : ) g

2 2 2 2
S ρ ρ

p p p p   


  
    

   
 

2 2 2log log log ,
22 2

u S S
u S S

 
     

      
     

 (41) 

2 2

2 3 2 2 2S( ) 2 log log log ,
2 2

:
2

ρ
S

u Sρ
u S

S
 

     
       

     

 (42) 

in which 

 

2 22 2 221 1
9 64( ) 36 , | | | |

2 6
Λ ,

4

p
T F α β α β   

     



 




 
  2

2

4 1 3 1
, 3 4 1 Λ .

6 6

F p
u S F p

 
    

 

 

Concurrence (C) and negativity (N) between each two parts are given by: 

 

 

2

12

2

13

C  0,

C  0,








       

(43) 

 2

23

1
C max 0, max

2
 




   2 2 2 21 4 , 1 4 ,p p E G H p E G H p          

    2 2 2 21 4 , 1 4 4 4p A B J p p A B J p           

   2 2 2 2

1 1
1 4 1 4 ,

4 4
p p E G H p p E G H


          

  (44) 

 

Measures Bond 

1

20 ( ) 1S    
2

2( ) 1S    
2

3( ) 1S    

4

121 ( ) 2S    
2

130 ( ) 2S    
2

230 ( ) 2S    

4 4

1 2:0 ( ) 1S     
2 2

1 3:0 ( ) 1S     
2 2

2 3:0 ( ) 2S     

2 2

1 20 ( ) 1S     
2 2

1 30 ( ) 1S     
2 2

2 31 ( ) 1S      

Table 2. Entropy, MIE, CE bounds in step 2. 
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 

 

2

12

2

13

N  0,

N  0,








   

(45)

 
 

 2

23 2 2

1 1 1 1
N

4 4 4 4
E G B p B E G p
   

           
   

 2 2

1 1 1 1
1

4 4 4 4
A H J p A H J p

   
             

   
(46) 

 

The bounds of measures in this step using Eq. (22) are shown in Table 2. By the action of ICNOT, pure density 

matrix
1

1  collapses to mixed density matrix
2

1 and increases impurity of the compound density matrices through step 1 

to step 2. Bounds of MIE and CE for 
2

12  and
2

13  show classical correlations between the two parts in this step. 

Bounds of MIE, CE, C and N for 
2

23  demonstrate non-separability of the two parts. These results show that the 

entanglement related to 
2

23  is not going to be collapsed by the action of ICNOT through step 1 to step 2 but depended 

on p2. Figs. 3a-3g show quality of correlations between every two parts of 
2

2

,

step

F p . For 
2

12 , MIE and CE are 

independent of F but the classical correlation is increased by enhancement of p2 (Figs. 3a and 3b). For
2

13 , MIE and 

CE are depended on both F and p2 so that by increasing these parameters correlation is raised (Figs. 3c and 3d). For
2

23 , 

MIE and CE go beyond the classical limit (1 and 0 respectively) and show entanglement by increasing F or p2 (Figs. 3e 

and 3f). In the case of quantum correlation the result of MIE and CE are in accordance with C (Fig. 3g). From Fig. 3 

curves, it is found that CE and MIE curves are showing the same concept. 

 

 

Fig. 3. Representation of classical correlation and entanglement of various partites of 
2

2

,

step

F p  for αmax, βmax. In (a) 2 2

1 2( : )S  
 
and (b) 

2 2

1 2( | )S    show that classical correlation is independent of F and alters by changing p2. In (c) and (d), 2 2

1 3( : )S  
 
and 2 2

1 3( | )S    

show classical correlation alters by changing p2 and F. In (e) and (f), 2 2

2 3( : )S  
 
and 2 2

2 3( | )S    illustrate entanglement for the values 

more than 1 and less than 0 respectively. This acclaim is confirmed by the C curve in (g). 
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Hadamard gate (H) is applied on the first qubit of 
2

2

,

step

F p . Then 
2

2

,

step

F p
 
tends to:  

 

   2

2

†,3

, 1 2 2 1 2

F pstep

F p stepI I I I      
  

(47) 

 

In which I1 and I2 are 2×2 identity matrices and Hadamard gate is: 

1 11

1 12

 
  

 
H       (48) 

 

Alice Imperfect Measurements (AIM) at Step 4 

STP predicts that once the particles 1 and 2 are projected into one of the four computational bases, particle 3 is 

instantaneously projected into one of the four pure states found as the matrix coefficients of these bases [32]. In NTP 

Alice performs imperfect measurements at the computational basis of the joined 12–system of
2

3

,

step

F p . Imperfect two-

qubit measurement of Alice in 00 bases has the form of: 

2

00

2

00 00 (1 ) 01 01

(1 ) 10 10 (1 ) 11 11 .

P   

  

  

   
  (49)

 

 

   

   

   

   

2

2

2

2

†,2

00 00 3 3 00 3

†,

01 3 3 01 3

†,

10 3 3 10 3

†,2

11 3 3 11 3

 

(1 )  

(1 )  

(1 )  ,

F p

step

F p

step

F p

step

F p

step

P I P I

P I P I

P I P I

P I P I

  

  

  

 

  

   

   

   
   (50) 

Imperfect two-qubit measurements of 01, 10, 11 basis could be calculated similarly. If Alice obtains 00 results after 

measurements, its density operator is expressed as follows in which Pijs are defined as 00 00 00 ,P  01 01 01P  ,

10 10 10P  , 11 11 11 .P  10 , 01  and 11  can be computed similarly. The general density operator at step 4 is 

computed as the following: 

2

4

, , 00 01 10 11

step

F p        
      

(51) 

 

The density matrix of Eq. (32) is represented as: 
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2

2

2

2

2

2

2

2

2

4
, ,

0 0 0 0 0 0
4

0 0 0 0 0 0
4

0 0 0 0 0 0
4

0 0 0 0 0 0
4

,

0 0 0 0 0 0
4

2

2

2

0 0 0 0 0 0
4

0 0 0 0 0 0
4

0

2

2

2

2

2
0 0 0 0 0

4

step
F p

S

S

D p

D p

D p

D p

D p

D p

S

S

S

S

S

p S

D p

D















 











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 







 

 
 
 
 
 

   (52) 

 

Expression (52) is independent of the parameter η, measure for the quality of the projection onto the basis states. CE for 

each two parts are computed as follows

 

in step 4: 

4 4

1(2) 2(1)|S 1,( )ρ ρ        (53) 

4 4 2

2 21(3) 3(1)

0.5 ( )1
S( ) ( ) log

2
|

2

D D p
D D p 



    
     

   
 

2

2 2

0.5 ( )1
( ) log

2 2
1

D D p
D D p



    
     
  




   (54) 

4 4

2(3) 3(2) 2 2S( ) log log 1
2 2

|
S S

S S 
 

 
   

    
   

   (55) 

 

MIE between each two parts in this step is given by: 

 4 4

1 2( : ) 0,S           (56)
 

2

2

4 4

1 3 2

0.5 ( )1
2 ( ) log

2
( : )

2

D D p
DS D p 



    
     
   



 

2

2 2

0.5 ( )1
( ) log

2 2

D D p
D D p



    
     
   

,   (57) 

4

2 2

4

2 3 log log
2 2

( : ) 2
S S

S SS  
 

 


  
   

   
 ,  (58) 

 
 
In which ∗ denotes to complex conjugation. Negativity and Concurrence in this step 4 are computed as the 
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 

 

4

4

C 0,

N 0,

ij

ij








       (59) 

 

Where, ( 1, 2) ( 2,3)i j   . According to Eq. (22) the bounds of entropy, MIE and CE, are determined at step 4 in 

Table 3. From Table 3 some classical correlation between parts one and three as well as two and three is found. There’s 

no negative value for conditional entropy at step 4. At step 4 imperfect measurements are performed by Alice. 

Moreover, action of measurement not only does not make any entanglement between parts of 
2

4

, ,

step

F p   through step 3 to 

step 4, but also makes it separability. The action of noisy measurement diminishes entanglement between parts of 

general state to zero. In Figs. 4a and 4b show that parts one and three of 
2

4

, ,

step

F p   are classically correlated as well as 

parts two and three illustrated in Figs. 4c and 4d.  

 

Measures bound 
4

1( ) 1S    
4

2( ) 1S    
4

3( ) 1S    

4

12( ) 2S    
4

131 ( ) 2S    
4

231 ( ) 2S    

4 4

1 2( : ) 0S     
4 4

1 30 ( : ) 1S     
4 4

2 30 ( : ) 1S     

4 4

1 2( ) 1S     
4 4

1 30 ( ) 1S     
4 4

2 30 ( ) 1S     

Table 3. Entropy, MIE, CE bounds. 

 

 

Fig. 4. Scheme of classical correlation of various two parts of 
2

4

, ,

step

F p   for αmax, βmax. (a) 4 4

1 3( : )S  
 
and (b) 4 4

1 3( | )S    illustrate 

classical correlation alters by F and p2 simultaneously as well as 4 4

2 3( : )S  
 
and 4 4

2 3( | )S    in (c) and (d). 

According to Figs. 4a-4d correspond to
4

13  and
4

23  respectively, by increasing p2 and F classical correlation is raised 

and MIE confirms CE. 

Bob Imperfect Operation at Step 5 

Based on Alice’s reports, Bob applies unitary imperfect operators on his qubit. For example if the Alice’s measurement 

result is 00, Bob according to (13) will apply an imperfect unitary matrix on his qubit: 

     
†

2

00 12 3 00 1 12 3 00 12 3  imper per perI I p I I I I       
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 1

3 00 3

1
.

2

p
tr I


 

   (60)
 

01,  10 ,  and 11  are computed similarly and imperfect operators X, Z and ZX are applied on them respectively. 

Matrix form of the final density operator is: 

 

1 2

5

, , ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

step

F p p








  
 

 
  
 

  
  
 

  
  
 
   



      (61) 

 

In which: 

 

Measures bound 
51 ( ) 1.06iS    for  i 1,2,3  

5

121.8 ( ) 2S    
5

131 ( ) 2S    
5

231 ( ) 2S    

5 5:0 ( ) 0.31i jS     for ( 1,2) ( 2,3)i j    

5 50.75 ( ) 1i jS     
for ( 1,2) ( 2,3)i j    

Table 4. Entropy, MIE, CE bounds. 

 

 
22

1 1 2

1 2
1 1 2 (4 2) 2 1 ,

8 3
p p p F   

   
            

   
 

22

1 1 2

1 2
 1 1 1 (4 2) 2 1 ,

8 3
p p p F   

   
            

   

   
2

1 2 4 1 2 1 (1 ) .
12

p p
F          

 

CE, MIE, C and N at step 5 are computed as follows: 

   5 5 4 ,| Γ Ωi jS ρ ρ  
 

 (62) 

     5 5

24 Γ Ω log 4: Γ Ω ,i jS ρ ρ        
(63) 

 

 

5

5

C 0,

N 0,

ij

ij








        (64) 

In which ( 1, 2) ( 2,3)i j  
 
and i j . At step 5, Bob applies his imperfect operators to reproduce the main state. In 

this section maximum values of MIE are not large and there’s no negative value for CE too. Considering Eq. (22) the 



 
 

  
  ISSN(Online): 2319-8753 

  ISSN (Print): 2347-6710 

 

International Journal of Innovative Research in Science, 

Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 

Vol. 7, Issue 4, April 2018 

 

Copyright to IJIRSET    

 

bounds of entropy, MIE and CE are determined at step 5 in Table 4. It is found that there is no eligible correlation 

between any two parts of 
1 2

5

, , ,

step

F p p from Table 4. 

V. CONCLUSION  

 

In summary, we designed an NTP in which most possible noise factors in various steps have been added. All these 

noise factors appeared in the highest or lowest values in teleportation process. We analyzed the purity and derived the 

behavior of the entanglement in different steps of NTP. Looking at Tables 1-4 the initial pure 1

k  (k=1..5, is devoted to 

the number of steps) in step one evolves to a mixed state in step 5. 2

k  and 3

k  stay mixed through all steps. Entropy of 

k

ij  in which ( 1,2) ( 2,3)i j   (i, j denote partite indices) increases through step 1 to step 5. So the purity of k

ij  is 

decreased. According to Table 1, there is no entanglement between parts one and two nor is it between one and three at 

step 1. However between parts two and three there’s correlation that depends on the fidelity of F which has been 

revealed in isotropic channel. Then for 0 1/ 2F   the entanglement of common pair is zero. Applying an ICNOT 

gate on the first two parts of 
1

F

step  tend to create correlation between part one and two as well as one and three. 

Applying Hadamard gate doesn’t change the conditions therefore the emergence of the entangled states in the 

intermediate steps is ensured. The MIE 2 2

1 3( : )S    becomes non-zero before performing quantum measurement which 

seems to be consistent with original purpose of the quantum teleportation. By implementing an imperfect measurement 

at step 4, the entanglement between any two parts would vanish. Our computations show there’s no entanglement 

between any two parts of 
1 2

5

, , ,

step

F p p . 
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