
ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1526

Abstract: Test case prioritization is the process of
ordering the execution of test cases to increase the
rate of fault detection. Increasing the rate of error
detection can be more feedback to system developers ,
improving debt establish activity and , ultimately ,
software delivery. Many existing test case
prioritization techniques believe that tests can be
performed in any order. Functional dependencies
that may exist between a number of test cases , a test
case should be performed before another , often not
the case . A family of test case prioritization
techniques is presented using the dependency
information from a test suite to test suite that
priority. The nature of the techniques preserves the
ordering dependencies in the test . The hypothesis of
this work is that dependencies between tests represent
interactions in the system under test and perform less
complex interactions would increase the error
detection compared with random testing
arrangements. Empirical evaluations built on six
systems towards industry show that these techniques
increase the speed of fault detection in comparison
with the results of the untreated order rates , random
assignments , and ordered test suites under existing
purposes " - coarse grained " techniques based on
function coverage.

Keywords: Software engineering, testing and
debugging, test execution

1.INTRODUCTION
A software product development

organization invests resources in product development
and expects maximal added value from their investments.

This means that providing value to

different customer and end-user segments with products
is a necessity for the business of product development
companies. Providing value with the product requires,
however, a successful selection of the requirements to be
implemented in the products.Requirements prioritization
is defined as an activity during which the most important
requirements for the system (or release) should be
discovered. In practice, only a limited set of requirements
can be implemented in one release, but the product
should, however, meet the needs of the customers and
reach the markets in time. This means that trade-offs
have to be made during the development work.

1.1 THE BACKGROUND OF THE RESEARCH

The ultimate sponsors of the project expect
that the project's end result will be to add more value for
them than they are paying the project team to create it.
On a high level, this means that companies expect their
product development organization to add more value to
them than they invest in product development.
Prioritizing requirements is recognized as an important
activity to ensure value provision in product
development. By definition, requirements prioritization
is an activity during which the most important
requirements for the system (or release) should be
discovered. Origins for the importance of prioritization
are in limited product development resources, since time
and money are finite in practice. When customer
expectations are high and timelines short, the product
must deliver the most essential functionality as early as
possible. However, the scope of each release must be
limited. The challenge is therefore to select the 'right'
requirements out of a given superset of candidate

Establishing a Test Case Prioritization Technique Using
Dependency Estimation of Functional Requirement

T.Dinesh Parthiban, Mr.R.Kamalraj, Dr.S.Karthik
PG Scholar, Department of CSE, SNS college of technology, Coimbatore, India

Associate Professor, Department of CSE, SNS college of technology, Coimbatore, India
Dean & Professor, Department of CSE, SNS college of technology, Coimbatore, India

ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1527

requirements so that all the different key interests,
technical constraints, and preferences of the critical
stakeholders are fulfilled and the overall business value
of the product is maximized. Requirements prioritization
is, however, also recognized as a very challenging
activity. It is widely 3 accepted that requirements
prioritization involves complex decision-making. In
order to prioritize requirements successfully, domain
knowledge and estimation skills are required. . In
addition, requirements depend on each other and
priorities are always relative. An important requirement
in one release or to a certain customer may not be as
important in the next release or to another customer.

The aim is to investigate the current state
of practice in the area of requirements prioritization in
software companies operating in the product business
and the relationship between industrial practice and
requirements prioritization methods from the literature.

The focus is on how the prioritization and
selection of requirements is organized in software
product development organizations and what the
practical challenges involved are. In addition, the
suitability of prioritization methods for solving these
challenges is investigated.

Requirements prioritization is an activity
during which the most important requirements for the
system (or release) should be discovered. This concept
originates from the context of the development of
customer-specific systems, where all the requirements
are elicited, analyzed, documented, and validated within
one project. Many of the findings concerning
requirements prioritization in the literature, can,
however, be generalized to concern the prioritization of
features as well. To avoid unnecessary complexity, the
term requirements prioritization is used as a general term
for both feature and requirements prioritization.
Additionally, the term prioritization practice is used as a
general term for any activity performed to find the
optimum implementation order of features or
requirements.

2. RELATED WORKS

2.1 Test Case Prioritization

Prioritization is a process of scheduling
test case to be executed in a particular order so that the
test case with higher priority is executed first in the
sequence. It is necessary to execute test suite in order of
priority to utilize limited resource and time effectively.
The main aim of is to increase the fault detection for a
test suite. The priority is defined relative to some test
criteria.

2.2 Open and closed dependency structure

A Open dependency structure is one in
which a dependency between the two test cases t1 and t2
specifies that t1 must execute before t2 but not
immediately.

A Closed dependency structure is not same
as open dependency, dependency between the two test
cases t1 and t2 specifies that t1 must execute
immediately before t2. Some dependency structure
contains both the open and closed dependency such
structure is named as closed dependency structure. The
closed dependency structure is regrouped into a single
test, resulting in an open dependency structure.

2.3 Independent and dependent test case

Independent test case is a test case whose
execution of one test case is not dependent on any other
test cases.

Dependent test case is a test case whose
execution of one test case is dependent on any other test
cases.

There are several tests related to these two
operations;however, we consider only five for
illustration:
1. select a binary file,
2. select a record file (a nonbinary file),
3. attempt to read a binary file where the selected file is
not a binary file,
4. attempt to update a binary file where the selected file
is not a binary file, and
5. attempt to update a binary where the selected file is a
binary file and is successfully read.
2.4 Prioritizing test cases based on dependency
structure

The dependency structure between test
cases is closely related to the interaction between the

ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1528

parts of systems. They found that concatenating test
together increases the fault detection rate of the tests due
to the interaction occur between the tests.
Dependency structure prioritization is a technique that
assign priority based on a graph coverage value. The
graph coverage value of a test case is the measurement of
the complexities of the dependents of the test case.

Two ways to measure the graph coverage
value of a test case based on a dependency structure:
1. the total number of dependents of the test case, and
2. the longest path of direct and indirect dependents of
the test case.

The prioritization for open dependency
structure is based on the two measurements DSP Volume
and DSP Height.
DSP Volume:

It is a measure which gives a higher weight
to those test cases that have more dependents. To
calculate the DSP volume of a test case, one need to
calculate all direct and indirect dependents of that test
case.

DSP Height:

The DSP height measure gives a higher
weight to those test cases that have a higher dependents.
To calculate the DSP Height of a test case, one needs to
calculate the height of all paths form that test case, and
take the length of the longest paths as a weight. This can
be done using a straight forward depth-first search
algorithm on the graph.The Prioritization for closed
dependency structure is based on DSP Sum, DSP Ratio,
DSP sum / ratio.
DSP Sum:

The DSP Sum coverage measure gives a
higher weights to the paths that have more nonexecuted
test cases. To calculate the DSP Sum of a path, one
simply counts the number of nonexecuted test cases in
that path.
DSP Ratio:

The DSP ratio coverage measure gives a
higher weight to paths that have a higher ratio of
nonexecuted tests to executed tests, while also giving
weight to longer paths. To calculate the DSP ratio of a
path, one first calculates the weighted sum of the path in
which the weight of a test case is its index in the path if it

has not been executed, or otherwise, and then divides
this by the height of the path.

DSP Sum/Ratio

The DSP sum / ratio coverage is simply
the number of nonexecuted test cases divided by the
height of the path.
Ranking Algorithm:

The ranking approach to retrieval seems to
be more oriented toward these end-users. This approach
allows the user to input a simple query such as a sentence
or a phrase (no Boolean connectors) and retrieve a list of
documents ranked in order of likely relevance.

The main reason the natural
language/ranking approach is more effective for end-
users is that all the terms in the query are used for
retrieval, with the results being ranked based on co-
occurrence of query terms, as modified by statistical
term-weighting (to be explained later in the chapter).
This method eliminates the often-wrong Boolean syntax
used by end-users, and provides some results even if a
query term is incorrect, that is, it is not the term used in
the data, it is misspelled, and so on.

The ranking methodology also works well
for the complex queries that may be difficult for end-
users to express in Boolean logic. For example, "human
factors and/or system performance in medical databases"
is difficult for end-users to express in Boolean logic
because it contains many high- or medium-frequency
words without any clear necessary Boolean syntax.

3. CONCLUSION

The techniques prioritize tests based on the
dependency structure of the test suite itself. Six systems
being developed toward use in industry are used to
empirically assess the strength of these new techniques,
measured by the average fault detection rate, in
comparison to randomly generated test suites, greedily
generated test suites, and the untreated test suite used by
test engineers , where available. The results indicate that
test suites prioritized of the techniques outperform the
random and untreated test suites, but are not as efficient
as the greedy test suites. In addition, for open
dependency graphs, the techniques achieved better
APFDs for most experiments than the state-of-the-art

ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1529

coarse-grained function coverage techniques. For open
dependency structures, this improvement was at a greatly
lower execution cost. For closed dependency graphs, the
techniques achieved better APFDs than total function
coverage, and were comparable to additional function
coverage. The results indicate that techniques offer a
solution to the prioritization problem in the presence of
test cases with dependencies. There are two significant
strengths of this approach. First, information from
previous test runs is not needed to calculate the priorities,
so the techniques can be used on first versions of
systems. Furthermore, it can be used even if previous test
runs have not completed, which is useful in development
processes containing short iterations. Second,
maintaining fine-grained test suites and prioritizing these
based on dependencies preserves the flexibility of fine-
grained test suites, while also enabling larger test
scenarios to be uncovered, thus increasing the probability
of each test finding a fault. The dependency utilization
rate towards the application functioning the ranking
algorithm is used to measure the functional dependency
and precision recall and F-measure is calculated.
Functional estimation is based on the no. of accurate
function in an application.

REFERENCES
[1] J. Bach, “Useful Features of a Test Automation System (Part iii),”
Testing Techniques Newsletter, Oct. 1996.
[2] F. Basanieri, A. Bertolino, and E. Marchetti, “The Cow_Suite
Approach to Planning and Deriving Test Suites in UML Projects,”
Proc. Fifth Int’l Conf. Unified Modeling Language, pp. 275-303, 2002.
[3] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
Varying Test Costs and Fault Severities into Test Case Prioritization,”
Proc. 23rd Int’l Conf. Software Eng., pp. 329-338, 2001.
[4] S. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE Trans.
Software Eng., vol. 28, no. 2, pp. 159-182, Feb. 2002.
[5] R.W. Floyd, “Algorithm 97: Shortest Path,” Comm. ACM, vol. 5,
no. 6, p. 345, June 1962.
[6] D. Jeffrey and N. Gupta, “Experiments with Test Case Prioritization
Using Relevant Slices,” J. Systems and Software, vol. 81, no. 2, pp.
196-221, 2008.
[7] B. Jiang, Z. Zhang, W. Chan, and T. Tse, “Adaptive Random Test
Case Prioritization,” Proc. IEEE/ACM Int’l Conf. Automated Software
Eng., pp. 233-244, 2009.
[8] J. Kim and D. Bae, “An Approach to Feature Based Modelling by
Dependency Alignment for the Maintenance of the Trustworthy
System,” Proc. 28th Ann. Int’l Computer Software and Applications
Conf., pp. 416-423, 2004.

[9] R. Krishnamoorthi and S.A. Sahaaya Arul Mary, “Factor Oriented
Requirement Coverage Based System Test Case Prioritization of New
and Regression Test Cases,” Information and Software Technology,
vol. 51, no. 4, pp. 799-808, 2009.
[10] D. Kundu, M. Sarma, D. Samanta, and R. Mall, “System Testing
for Object-Oriented Systems with Test Case Prioritization,” Software
Testing, Verification, and Reliability, vol. 19, no. 4, pp. 97- 333, 2009.

