Research and Reviews: Journal of Pure and Applied Physics

Estimation of Molecular Radius, M_r and Bayer's Non-Linearity Parameter, B/A in PBnA Series.

D Madhavi Latha¹, P Pardhasaradhi², PV Datta Prasad³, D Venkat Rao⁴ and VGKM Pisipati^{2,3}.

¹Department of Physics, National Institute of Technology, Warangal, 506 004, India. ²Liquid Crystal Research Centre, Department of Electronics and Communication Engineering, Koneru Lakshmaiah University, Vaddeswaram, 522 502, India. ³SD Techs, Machilipatnam, 521 001, India. ⁴S V College of Engineering, Nellore-524 316, India.

Research Article

Received: 05/05/2014 Revised: 10/06/2014 Accepted: 18/06/2014

*For Correspondence

SD Techs, Machilipatnam, 521 001, India.

Keywords:

Thermodynamic parameters; Beyer's nonlinearity parameter; Liquid crystal compounds; PBnA compounds, Moelwyn-Hughes Parameter, Sound velocity Thermal expansion coefficient, α estimated from density, ρ is utilized for the computation of thermodynamic parameters in case of phenylbenzylidene alkylanilines with alkyl chain varying from 4 to 10, 12, 14, 16 and 18. The thermodynamic parameters like, Beyer's nonlinearity parameter, B/A, is estimated. The molecular radius, M_r is also computed from density for these compounds for which the data is available in literature. The results are discussed how these parameters vary with the temperature in a particular phase, in a liquid crystal molecule and in a homologous series. The molecular radius and Beyer's nonlinearity parameter estimated using different expressions and their nature is discussed. The results are compared with the available data in literature of other compounds.

ABSTRACT

INTRODUCTION

It successfully finds one, it reports the found region. If it fails, the "signal graph matching" group will take over the The nonlinearity parameter B/A defined as the ratio of the quadratic term to that of the linear term in the equation of state, expressed as a Taylor series expansion, is an important parameter in non linear acoustics ^[1]. It has been used to represent the nonlinear effects such as wave form distortion, formation of higher harmonics and acoustic attenuation when a sound wave propagates through a medium. Researchers found that the acoustic nonlinearity parameter B/A was not only the parameter describing the degree of nonlinearity, but also the parameter which may provide some structural and state information of media.

Sehgal ^[2] has reported a set of relations involving the non linearity parameter, B/A for the determination of the molecular properties such as internal pressure, cohesive energy, effective Van der Walls constant, distance of closest approach of molecules, diffusion coefficient and rotational correlation time of pure liquids such as water, alcohols and fluorocarbons. Moreover, the nonlinearity parameter (B/A) has the potential importance in biological applications which provide information on the state of the tissues.

There have been many measurements of B/A in liquids from sound velocity by many workers utilizing different potentials ^[3]. These studies have shown that the value of B/A varies from 5 to 12. In some cases the extreme values of 2 and 13 are also reported ^[3]. Further, it is stated that this parameter can also be estimated from the thermal expansion coefficient, α obtained from the density data and from the sound velocity results, utilizing the expressions of Sharma ^[4], Hartmann et al ^[5] and Ballou ^[6]. The

data on B/A in liquid crystals is meager and the present work provides an opportunity for the study of its variation in a liquid crystal with temperature in different phases as well as at the phase transformation. Further, systematically its variation with the alkyl and alkoxy chain numbers in a homologous series is studied. In the present manuscript, the non-linearity parameter (B/A) is estimated in the case of *p*-*n*-phenylbenzylidene-p-alkylanilines with alkyl chain number, n = 4 to 10, 12, 14,1 6 and18.

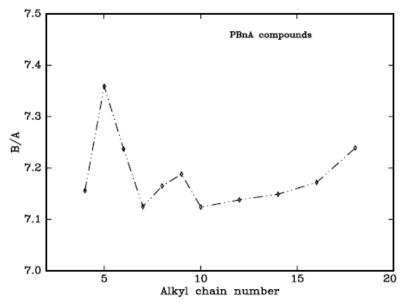
Theory

There are a number of reports in literature describing in detail the theoretical and empirical approach for the estimation of B/A from α and u respectively. However, for ready reference, the manuscript presents the relevant expressions that are used in the present study. The non-linearity parameter, B/A is given as ^[7]

$$B/A = 2u\rho[du/d\rho]_{T}$$
(1)

General formalism for B/A in terms of the acoustical parameters (Kand K') for liquids and polymers has been made using Moelwyn-Hughes parameter (*C1*), isobaric acoustic parameter (*K*) and the isothermal acoustic parameter (*K"*) ^[8] obtained from the thermal expansion coefficient, α , and from the sound velocity, u respectively. The expressions for B/A from density are given as ^[7]

$$B/A = 2K+2\gamma K''$$
 (2)
 $B/A = C_1 - 1$ (3)


The molecular radius (M_r) for the LC molecule can be obtained from density and the expression is given below [9].

$$\mathbf{M}_{r} = \frac{1}{2} 3 \sqrt{\frac{\mathbf{M}\sqrt{2}}{\rho \mathbf{N}}} \tag{4}$$

where M is the molecular weight.

RESULTS AND DISCUSSION

The *p*-*n*-phenylbenzylidene-*p*-alkylanilines with alkyl chain number, n=4 to 10, 12, 14, 16 and 18 are chosen to evaluate, the Beyer's nonlinearity parameter (B/A) molecular radius, (M_l). The experimental data required for the estimation was taken from the literature [10, 11]. The estimated values of the above parameters are presented in tables 1 and 2 respectively.

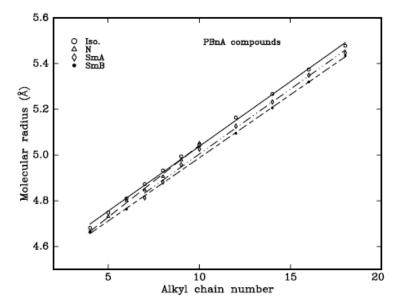


Figure 2: Variation of molecular radius (M_r) with alkyl chain number in different phases of PBnA series

	Phase	B/A = 2(K+K")	B/A = (C1-1)
PB4A	lso	7.156	6.324
	N	7.136	6.167
	В	7.126	5.881
PB5A	lso	7.359	7.372
	N	7.164	6.384
PB6A	lso	7.237	6.796
	N	7.168	6.409
	В	7.209	5.661
PB7A	lso	7.125	6.034
	Ν	7.142	5.769
	A	7.752	7.760
PB8A	lso	7.165	5.711
	Ν	7.633	5.802
	A	7.799	5.927
PB9A	lso	7.188	6.540
	N	7.144	5.762
	A	7.239	5.646
PB10A	lso	7.124	5.992
	N	7.126	5.867
	A	7.161	5.719
PB12A	lso	7.138	5.787
	A	7.140	5.776
	В	7.140	5.778
PB14A	lso	7.149	6.284
	A	7.129	5.840
	В	7.153	5.736
PB16A	lso	7.172	6.439
	A	7.223	5.652
	В	7.267	5.640
PB18A	lso	7.239	6.813
	A	7.185	6.520
	В	7.176	6.467

	Table 1: Variation of nonlin	earity parameter	r (B/A) in PBnA	series in different phases
--	------------------------------	------------------	-----------------	----------------------------

Compound	Phase	Temp. (°C)	Mol. Rad(Å)
	Phase P		
PB4A	Iso	135	4.681
	Ν	125	4.665
	В	120	4.662
PB5A	Iso	145	4.748
	N	135	4.731
PB6A	Iso	135	4.810
	N	130	4.801
	В	125	4.763
PB7A	Iso	140	4.873
	N	130	4.846
	A	126	4.813
PB8A	Iso	135	4.932
	N	129	4.906
	A	126	4.882
PB9A	Iso	137	4.994
	N	131	4.978
	A	127	4.958
PB10A	Iso	133	5.052
	N	126	5.026
	A	119	4.990
PB12A	Iso	129	5.164
	A	121	5.126
	В	114	5.095
PB14A	Iso	123	5.267
	A	115	5.232
	В	110	5.206
PB16A	Iso	120	5.374
	A	113	5.349
	В	106	5.320
PB18A	Iso	116.7	5.478
	A	107	5.446
	В	102.5	5.434

Table 2: Variation of molecular radius (Mr) in PBnA series in different phases.

The Nonlinearity parameter (B/A) calculated using eq. (2) and eq. (3) are presented in Table 1. The B/A value almost remains constant in a particular phase except at the vicinity of the phase transition where it shows a peak and the peak magnitude depends on α . The magnitude of B/A is slightly smaller in LC phases compared to that in isotropic phase,

The values of B/A estimated from eq. 3 are slightly lower to those obtained from eq.2. The results in table 1 reveal that the values obtained in isotropic phase are slightly higher compared to those obtained in liquid crystalline phases. Further, it is found that there is no regualr variation B/A with the n value and at the same it cannot be conclude conclusively about odd-even effect.

The molecular radius (M_r) is calculated using the eq. (4) and their values in different liquid crystalline phases in all the compounds is depicted in table 2. The variation of molecular radius with temperature follows as that of molar volume in all the cases. It exhibits jumps at the phase transition temperature and it is found that the molecular radius, M_r increases with the increase of alkyl chain number. From the results it is found that the core radius is 4.49 Å and the increment for methylene unit is 0.056 Å. In the case of alkoxy benzoic acids [12] it is found that these values are 3.58 Å and 0.084 Å respectively.

ACKNOWLEDGEMENTS

D.Madhavi Latha acknowledges the financial support of DST-WOS-A through the grant No.SR/WOS-A/PS-05/2010. The authors P. Pardhasaradhi and Dr.V.G.K.M.Pisipati, express thanks to The Head, ECE Dept. and the management of K.L.University, Vaddeswaram 522 502, India for providing facilities. This work is supported by the Department of Science and Technology (Grant No: SR/S2/CMP-0071/2008). Dr.P.V.Datta Prasad expresses their deep appreciation to the management of the SD Techs, Machilipatnam, India for providing assistance and D.Venkat Rao thanks the management of S V College of Engineering, Nellore-524 316, India for allowing him to work on this aspect.

REFERENCES

1. Z Lu, J L Daridon, B Lagourette and S Ye., Mat. Sci. Technol 9, 1699 (1998).

- 2. Chandra. M. Sehgal, Non-linear ultrasonics to determine molecular properties of pure liquids, Ultrasonics 33, 155(1995).
- 3. B.Frank, J.D.N.Cheeke, On the Mie potential and the acoustic nonlinear parameter *B/A*, J.Acoust.Soc.Am 101 (2) 1184 (1997)
- 4. B.K.Sharma, Nonlinearity acoustical parameter and its relation with Rao's acoustical parameter of liquid state, J.Acoust.Soc.Am 73, 106 (1983).
- **5.** B.Hartmann, Potential energy effects on the sound speed in liquids. J.Acoust.Soc.Am 65, 1392 (1979).
- 6. A.B. Coppens, R.T. Beyer, J. Ballou, Parameter of Nonlinearity in Fluids. III. Values of Sound Velocity in Liquid Metals, J. Acoust. Soc. Am 41, 1443 (1966).
- 7. J.D.Pandey, Ranjan Dey, Vinay Sanguri, Jyotsna chhabra, T.Nautiyal; A comparative study of nonlinearity parameter for binary liquid mixtures; Pramana- J.Phys. 65, 535 (2005).
- 8. J.D Pandey, R. Dey, and J. Chhabra, Computation of intermolecular free length by application of thermoacoustical parameters for multicomponent liquid mixtures Phys Chem Comm 6, 55 (2003).
- 9. J.D. Pandey, R. Dey and B.D Batt; Estimation of molecular radius of liquids and liquid mixtures from sound velocity; J.of Mol. Liquids. 111, 67 (2004).
- 10. Ch. Srinivasu, V.G.K.M. Pisipati, C.R. Prabhu, P. Narayanamurthy, S.Lakshminarayana, Phase transitions in p-(phenyl benzylidene)-p'-alkylaniline compounds: A dilatometric study,Z. Naturforsch. 62a, 75 (2007).
- 11. D.M. Potukuchi, S. Lakshminarayana, C.R. Prabhu, V.G.K.M. Pisipati, Growth of smectic-B (crystal) and phase transitions in liquid crystalline PBnA (n=4, 5 and 6) compounds, Cryst. Res.Tech. 31, 685 (1996).
- 12. V.G.K.M. Pisipati, D.Madhavi Latha, B.T.P.Madhav and P.V.Datta Prasad, Computation of molecular free length L_f and molecular radius M_r of p-n-alkoxy benzoic acids, Mol.Cryst. Liq.Cryst, 524, 166 (2010).