
Volume 2, No. 2, February 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 54

Experimental Analysis of New Fair-Share Scheduling Algorithm with Weighted Time

Slice for Real Time Systems

H.S. Behera*, Rakesh Mohanty, Jajnaseni Panda, Dipanwita Thakur and Subasini Sahoo

�

Department of Computer Science and Engineering,

Veer Surendra Sai University of Technology, Burla, Odisha, India
1hsbehera_india@gmail.com
2 rakesh.iitmphd@gmail.com

3 meennu22@gmail.com
�
dipanwitathakur31@gmail.com

5subasini.vssut@gmail.com

Abstract: The performance and efficiency of multitasking operating systems mainly depend upon the used CPU scheduling

algorithm. In Time Shared System, Round Robin(RR) scheduling gives optimal solution. But it is not suitable for real time system

because it gives more number of context switches, larger waiting and turnaround time. In this paper a new Fair-Share scheduling with

weighted time slice is proposed and analyzed which calculates time quantum in each round. Our proposed algorithm is based on a

novel approach which makes the time quantum repeatedly adjustable according to the burst time of the currently running processes.

This algorithm assigns a weight to each process and the process having the least burst time is assigned the largest weight. The process

having largest weight is executed first, then the next largest weight and so on. Experimental analysis shows that our proposed

algorithm gives better result, reduces the average waiting time, average turnaround time and number of context switches.

Keywords: Scheduling, Round Robin scheduling, Context Switching, Waiting Time, Turnaround time

������������	

CPU scheduling is a very essential task of operating system in

multitasking environment. When there is more than one

process to be executed, a ready queue is maintained. The

operating system follows a predefined procedure for selecting

process from a number of processes waiting in the ready

queue. The operating system must decide through the

scheduler the order of execution and should assign the CPU to

the processes. Careful attention is required to assure fairness

and avoid starvation during allocation of CPU to the

processes. The goal of scheduling is to minimize average

waiting time, average turnaround time and number of context

switches.

Scheduling Algorithms

There are many well known CPU scheduling algorithms such

as First Come First Serve(FCFS), Shortest Job First (SJF),

Priority etc. With FCFS, the process that arrives first in the

ready queue is allocated the CPU first. In SJF, when the CPU

is available, it is assigned to the process that has the smallest

next CPU burst. If two processes has same length next CPU

burst, FCFS scheduling is used to break the tie. In priority

scheduling algorithm, a priority is associated with each

process and the process having highest priority is executed

first and so on. All the above algorithms are non-preemptive

in nature and are not suitable for time sharing systems. The

Round Robin (RR) Scheduling is designed especially for time

sharing systems.. RR scheduling is similar to FCFS

scheduling, but preemption is added to switch between

processes. A small unit of time, called a time quantum or time

slice is defined. The CPU scheduler goes around the ready

queue, allocating the CPU to each process for a time quantum.

Related Work

Recently, a number of CPU scheduling algorithms have been

developed for predictable allocation of processor. Self-

Adjustment Time Quantum in Round Robin Algorithm [2] is

based on a new approach called dynamic time quantum in

which, time quantum is repeatedly adjusted according to the

burst time of the running processes. Dynamic Quantum with

Readjusted Round Robin Scheduling Algorithm[1] uses the

job mix order for the algorithm in [2]. According to [1], from

a list of N processes, the process which needs minimum CPU

time is assigned the time quantum first and then highest from

the list and so on till the Nth process. Again in the 2nd round,

the time quantum is calculated from the remaining CPU burst

time of the processes and is assigned to the processes and so

on. Both [1] and [2] are better than RR scheduling and

overcomes the limitations of RR scheduling .

H. S. Behera et al, Journal of Global Research in Computer Science, 2 (2) February 2011, 54-60

© JGRCS 2011, All Rights Reserved 55

Our Contribution

We have proposed a new algorithm in our paper which

improves the Dynamic Quantum with Readjusted Round

Robin Scheduling Algorithm (DQRRR) in [1]. Instead of

taking job mix order, we have taken the processes in

ascending order of burst time in the ready queue and the time

quantum is calculated using our proposed weighted time slice

method which changes with the every round of execution.

Organization of the Paper��

Section II contains the background and preliminaries. Section

III presents the pseudo code, flow chart and illustration of our

proposed algorithm. In section IV, experimental analysis is

performed.. Conclusion and Future work is presented in

section V.

BACKGROUND AND PRELIMINARIES

Terminologies:

A process is a program in execution. Ready queue holds the

processes waiting to be executed or to be assigned to the

processer. Burst time (bt) is the time, for which a process

requires the CPU for execution. The time at which the process

arrives is called the arrival time(at).Time quantum(tq) or time

slice is the period of time given to each process to have CPU.

Waiting time (wt) is the time gap between arrival of a process

and its response by the CPU. Average waiting time(awt) is the

ratio of the sum of waiting time of all the processes and the

number of processes. Turnaround time (tat) is the time gap

between the instant of process arrival and the instant of its

completion. Average turn around time(atat) is the ratio of the

sum of turn around time of all the processes and the number of

processes. The number of times the CPU switches from one

process to another is called the context switches (cs)�

Dynamic Quantum with Re-adjusted Round Robin[1]

Scheduling Algorithm

The DQRRR scheduling [1] has improved the RR scheduling

by improving the turnaround time, waiting time and number of

context switches. Processes are arranged in job mix order in

the ready queue and time quantum is found using median

method. The CPU scheduler goes around the ready queue,

allocating the CPU to each process for a time interval of up to

1 time quantum. Again the time quantum is calculated from

the remaining burst time of the processes and so on. New

processes are added to the tail of the ready queue. The CPU

scheduler picks the first process from the ready queue and

allocates the CPU to the process for 1 time quantum. The

performance of the DQRRR algorithm can be improved by

using the weighted time slice.

OUR PROPOSED APPROACH

�

Our proposed Fair-share Scheduling with weighted Time

Slice(FSWT) algorithm finds the time quantum in an

intelligent way which gives better result than Dynamic

Quantum with Readjusted Round Robin Scheduling

Algorithm [1](DQRRR). This algorithm calculates the time

quantum in a dynamic manner in each cycle of execution by

using another method other than median method. The time

quantum is repeatedly adjusted in every round, according to

the remaining burst time of the currently running process. We

have taken the weighted time slice method to get the optimal

time quantum, where a weight (w) is assigned to each

processes. Process having highest burst time is assigned the

lowest weight 1, Process having next highest burst time is

assigned weight 2 and so on. In this algorithm the shorter

processes or the most weighted processes are executed first so

it gives better turnaround time and waiting time.
�

First the processes are arranged in descending order of weight

in the ready queue. The weighted time slice (WTS) is

calculated as below.

WTS = Y(n+1) / 2+{(i) / W(n+1) / 2},

 for odd number of processes.

WTS =[Yn/2+{(i) / Wn/2}] +Y1+n/2+{(i)/W1+n/2}]

 2

 for even number of processes.

 Where, Y n/2=Burst time of n/2th process

 Y1+n/2=Burst time of 1+n/2th process

 n= number of processes.

 W n/2= Weight of the n/2th process

 W1+n/2= Weight of the 1+n/2th process

This time quantum is assigned to each process and after that

again the time quantum is recalculated in the second round

from the remaining burst time and so on.

Pseudo code	

 Let n : number of processes

 b[i] : burst time of ith process.

 rb[i] : remaining burst time of ith process

Initialize: cs=0, awt=0, atatt=0.

 while (ready queue!= NULL)

 Sort the processes in ascending order of bt

 //find the time quantum using weighted time slice

 tq= WTS

 //Sort the processes in ready queue as follows.

 for i=1 to n

 Put the processes with descending order of weight

 in ready queue

 Assign tq to each process

 end for

 for i=1 to n

 if(b[i] < tq)

 p[i]=b[i]=tq and rb[i]=0

 else if (b[i] = = tq)

 p[i]=tq and rb[i]=0

H. S. Behera et al, Journal of Global Research in Computer Science, 2 (2) February 2011, 54-60

© JGRCS 2011, All Rights Reserved 56

 else

 p[i]=tq and rb[i]=b[i]-tq

 end of for

 if rb[i]=0, remove the process from the ready queue

 if rb[i] > 0, insert the process in the ready queue with rb[i]

 end of while

 awt , atat and cs are calculated.

�

�

�

�

�

���

��

���
��F

 T

��

���T�������

�

��F����

�

�

��������������������������T

���

��

��T��

���

�

�

������������������

�����������������������

���

���������������������������T��F

�

�

��������������

Flowchart of fair-share scheduling with weighted time slice

����������������

Illustration

 The burst time of five processes P1, P2, P3, P4, P5 are 33,

68, 57, 85, 49 along with weights 5, 2, 3, 1, 4 respectively.

Here the arrival time is assumed to be zero. First, all the

processes are sorted in ascending order of burst time such as

33, 49, 57, 68, 85. Then the time quantum is calculated

through weighted time slice. Here tq=62. In the next step,

processes are rearranged in ready queue in ascending order of

burst time. i.e. P1 with bt=33, P5 having bt=49, P3 with

bt=57, P2 with bt=68, P4 with bt=85. After assigning tq to

each process the remaining burst time of all processes are

P1=0, P5=0, P3=0, P2=6, P4=23. Once a process completes its

execution, it is automatically deleted from ready queue. Again

the next time quantum is calculated from the remaining burst

time as per the algorithm. Here tq=16. So the remaining burst

times are P4=7, P2=0.. According to algorithm the next tq will

be 7 and in the last step P4 will complete its execution and

will be deleted from the ready queue.

.

EXPERIMENTAL ANALYSIS

�

Assumptions

The environment where all the experiments are performed is a

single processor environment and all the processes are

independent. Time quantum is assumed to be not more than

the maximum burst time of the given processes. Here we have

taken ’n’ processes and all these processes are independent

from each other. All the attributes like burst time, number of

processes, weight of each process and the time quantum of

all the processes are known before submitting the processes to

the processor. All the processes are CPU bound.

Experimental Frame Work

Our experiments consists of several input and output

parameters. The input parameters consist of burst time, arrival

time, weight, time quantum and the number of processes. The

output parameters consist of average waiting time, average

turnaround time and number of context switches.

Data set

We have taken two cases, i.e. Case 1 is for processes without

arrival time (at=0, here each process arrives at the same time)

and Case 2 is for processes with arrival time (here processes

arrive at different time). Under these two cases we have

performed three different experiments taking three different

types of data sets (in increasing order, decreasing order and

random order).

Experiments Performed

To evaluate the performance of our proposed FSWT

algorithm, we have taken a set of processes in six different

cases. This algorithm can work effectively with large number

of data. In each case we have compared the experimental

results of algorithm with the scheduling algorithm DQRRR

[1].

Start

 loop

Sort the processes and

find tq

 loop

Put processes with descending

order of weight in ready queue

 i<=n?

 loop

b[i] < tq?

b[i] = tq?

P[i]=tq, rb[i]=b[i]-tq

 i<=n?

rb[i]=0?
Insert the process

in ready queue

Remove the process

from ready queue

Ready

queue!=null?

����

P[i]=b[i]=tq,

rb[i]=0

P[i]=tq, rb[i]=0

Calculate awt, atat

and cs

H. S. Behera et al, Journal of Global Research in Computer Science, 2 (2) February 2011, 54-60

© JGRCS 2011, All Rights Reserved 57

Case 1: Arrival Time equal to zero	

Increasing Order

We consider six processes p1, p2, p3, p4, p5 and p6 arriving at

time 0 with burst time 30, 42, 50, 85, 97, 120 respectively

shown in Table I. Table II shows the comparing result of

DQRRR algorithm and our proposed FSWT algorithm.

Table I: Data in Increasing Order
No. of

process

at bt Weight(wt)

P1 0 30 6

P2 0 42 5

P3 0 50 4

P4 0 85 3

P5 0 97 2

P6 0 120 1

 tq= 67 tq=30 tq=23

P1 P6 P2 P5 P3 P4 P6 P5 P4 P6

0 30 97 139 206 256 323 353 383 401 424

Fig I: Gantt chart for DQRRR in Table I

 tq=73 tq=27 tq=20

P1 P2 P3 P4 P5 P6 P4 P5 P6 P6

0 30 72 122 195 268 341 353 377 404 424

Fig II: Gantt chart for FSWT in Table I

Table II: Comparison between DQRRR and FSWT

Algorithms DQRRR FSWT

tq 67,30,23 73,27,20

cs 9 9

awt 201.5 171.1

 atat 272.16 229

Decreasing Order

We consider six processes p1, p2, p3, p4, p5 and p6 arriving at

time 0 with burst time 85, 73, 65,54,42 respectively shown in

Table III. Table IV shows the comparing result of DQRRR

and our proposed FSWT algorithm.

Table III. Data in decreasing Order

No. of process at bt Weight

P1 0 85 1

P2 0 73 2

P3 0 65 3

P4 0 54 4

P5 0 42 5

 tq =65 tq= 14 tq= 6

P5 P1 P4 P2 P3 P1 P2 P1

0 42 107 161 226 291 305 313 319

Fig.III: Gantt chart for DQRRR

 tq=70 tq=11 tq=4

P5 P4 P3 P2 P1 P2 P1 P1

0 42 96 161 231 301 304 315 319

Fig. IV Gantt chart for FSWT

Table IV. Comparison between DQRRR and FSWT

Algorithms DQRRR FSWT

tq 65,14,6 70,11,4

cs 7 7

awt 161.4 120.6

atat 225.2 184.4

Random Order

We consider six processes p1, p2, p3, p4, p5 and p6 arriving at

time 0 with burst time 35, 92, 68,86,49,83 respectively shown

in Table V. Table VI shows the comparing result of DQRRR

algorithm and our proposed algorithm FSWT.

H. S. Behera et al, Journal of Global Research in Computer Science, 2 (2) February 2011, 54-60

© JGRCS 2011, All Rights Reserved 58

Table V. Data in Random Order

No. of

process

at bt Weight

P1 0 35 6

P2 0 92 1

P3 0 68 3

P4 0 86 2

P5 0 49 5

P6 0 83 4

 tq=75 tq=11 tq=6

P1 P2 P5 P4 P3 P6 P2 P4 P6 P2

0 35 110 159 234 302 377 388 399 407 413

Fig V: Gantt chart for DQRRR

 tq=81 tq=8 tq=3

P1 P5 P3 P6 P4 P2 P6 P4 P2 P2

0 35 84 152 233 314 395 397 402 410 413

Fig.VI: Gantt chart for FSWT

Table VI. Comparison between DQRRR and FSWT

Algorithms DQRRR FSWT

tq 75,11,6 81,8,3

cs 9 9

awt 242.6 178.3

atat 285.8 247.1

Case 2: Arrival Time not equal to zero

Increasing Order

We consider six process p1,p2,p3,p4,p5 and p6 arriving at

time 0,2,3,4,5,6 and burst times 32,48,57,69,73 and 80

respectively shown in the table VII. Table VIII shows the

comparing result of DQRRR alogorithm and our proposed

algorithm FSWT.

Table VII. Data in Increasing Order

No.of process at bt Weights

P1 0 32 6

P2 2 48 5

P3 3 57 4

P4 4 69 3

P5 5 73 2

P6 6 80 1

 tq= 32 tq=69 tq =7 tq=4

P1

P2 P6 P3 P5 P4 P6 P5 P6

0 32 80 149 206 275 344 351 355 359

Fig.VII Gantt chart for DQRRR

 tq=32 tq=76 tq=4

P1 P2 P3 P4 P5 P6 P6

0 32 80 137 206 279 355 359

Fig VIII: Gantt chart for FSWT

Table VIII. Comparison between DQRRR and FSWT

Algorithms DQRRR FSWT

tq 32,69,7,4 32,76,4

cs 8 6

awt 165.8 119

atat 226 178.8

Decreasing Order

We consider six processes p1, p2, p3, p4, p5 and p6 arriving at

time 0,2,4,6,6,8 and burst time 116,97,75,64,45,35

respectively shown in table IX. Table X shows the comparing

result of DQRRR algorithm and our proposed algorithm

FSWT.

Table IX. Data in Decreasing Order

No of

processes

at bt weights

P1 0 116 1

H. S. Behera et al, Journal of Global Research in Computer Science, 2 (2) February 2011, 54-60

© JGRCS 2011, All Rights Reserved 59

P2 2 97 2

P3 4 75 3

P4 6 64 4

P5 6 45 5

P6 8 35 6

 tq =116 tq=64 tq=22 tq=11

P1 P6 P2 P5 P3 P4 P2 P3 P2

0 116 151 215 260 324 388 410 421 432

Fig IX: Gantt chart for DQRRR

 tq=116 tq=69 tq=19 tq=9

P1 P6 P5 P4 P3 P2 P3 P2 P2

0 116 151 196 260 329 398 404 423 432

Fig X: Gantt chart for FSWT

Table X. Comparison between DQRRR and FSWT

Algorithms DQRRR FSWT

tq 116,64,22,11 116,69,19,9

cs 8 8

awt 218.3 184.3

atat 290.5 255.5

 �

Random Order

We consider six processes p1, p2, p3, p4, p5 and p6 arriving at

0,2,2,3,5,6 and burst time 92,70,35,40,53,82 respectively

shown in Table XI. Table XII shows the comparing result of

DQRRR algorithms and our proposed algorithm FSWT.

Table XI. Data in Random Order

No. of

processes

at bt Weights

P1 O 92 1

P2 2 70 3

P3 2 35 6

P4 3 40 5

P5 5 53 4

P6 6 82 2

tq= 92 tq=53 tq=23 tq=6

P1 P3 P6 P4 P2 P5 P6 P2 P6

0 92 127 180 220 273 326 349 366 372

Fig XI: Gantt chart for DQRRR

 tq=92 tq=58 tq=20 tq=4

P1 P3 P4 P5 P2 P6 P2 P6 P6

0 92 127 167 220 278 336 348 368 372
Fig XII: Gantt chart for FSWT

Table XII: Comparison between DQRRR and FSWT

Algorithm DQRRR FSWT

tq 92,53,23,6 92,58,20.4

cs 8 8

awt 202.16 156

atat 247.5 218

Fig XIII: Comparison of average waiting time between

DQRRR and FSWT

H. S. Behera et al, Journal of Global Research in Computer Science, 2 (2) February 2011, 54-60

© JGRCS 2011, All Rights Reserved 60

Fig. XIV: Comparison of average turnaround time between

DQRRR and FSWT

Fig XV: Comparison of average waiting time between

DQRRR and FSWT

Fig XVI: Comparison of average turnaround time between

DQRRR and FSWT

CONCLUSION

The above comparisons show that the proposed Fair-share

Scheduling with Weighted Time slice provides much better

results than the algorithm proposed in [1] and in some cases

perhaps more than other approaches based on fixed time

quantum in terms of average waiting time, average turnaround

time and number of context switches. This algorithm can be

further investigated to be useful in providing more and more

task oriented results in future.

REFERENCES

[1] H.S. Behera, R. Mohanty, Debashree Nayak “A New

Proposed Dynamic Quantum with Readjusted Round

Robin Scheduling Algorithm and its Performance

Analysis”, International Journal of Computer

Applications(0975-8887) Volume 5- No.5, August 2010.

[2] Rami J. Matarneh. “Self-Adjustment Time Quantum

in Round Robin Algorithm Depending on Burst Time

of Now Running Processes”, American J. of Applied

Sciences 6(10):1831-1837,2009.

[3] Silberschatz,A.,P.B.GalvinandG.Gange,2004.”Operating

systems concepts”. 7th Edn.,John wiley and Sons,

USA. ,ISBN:13:978-0471694663,pp:944.

[4] Tanebun, A.S., 2008,”Modern Operating Systems”, 3rd

Edition. Prentice Hall , ISBN: 13:9780136006633,

pp:1104.

[5] C. Yaashuwanth, Dr. R. Ramesh. “A New

Scheduling Algorithms for Real Time Tasks ” ,

(IJCSIS)International Journal of Computer Science

and Information Security, Vol.6, No.2, 2009.

[6] Abhishek Chandra, Micah Adler, Pawan Goyaly and

Prashant Shenoy “Surplus Fair Scheduling: A

Proportional-Share CPU Scheduling Algorithm for

Symmetric Multiprocessors”, 4th USENIXOSDI

Symposium 23 Oct 2000 pp. 45-58.

[7] Tarek Helmy, Abdelkader Dekdouk, “Burst Round Robin

as a Proportional-Share Scheduling Algorithm”, IEEE

proceding of the 4th IEEE-GCC Conference on Techno

Industrial Inovations, pp 424-428, at the Gulf

International Convention Center, Bahrain, 2007.

