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INTRODUCTION

The demand for renewable, sustainable energy is rising because of global efforts to re

emissions 1.2, Among renewable energy sources, solar energy is a green pollutiong

utilization [81. The key to solar-photo thermal conversion technol

density and can effectively absorb and convert sunlight into h

ency can reach 81% 11, Used solid sodium acetate as a raw material to prepare a graphene
gwork with large specific surface area, high thermal stability, and high thermal conductivity through a pyrolysis
and the photo thermal conversion rate of the prepared composite phase change material is an increase of
approximately 78% [121, combined experimental and numerical methods to study the optical properties of PA doped
with ZnO or CuO nanoparticles, and analyzed the influence of nanoparticles on the thermal and optical properties of
PA. The results show that because of the presence of nanoparticles, the light transmittance of nano reinforced PA is
reduced, and the light absorption rate is increased. The volume fraction of metal particles has the best light and heat
performance in the range of 5x10-4-1.5x10-3% 1. Prepared high-quality graphene aerogels under high-
temperature conditions and CPCMs via vacuum impregnation. The CPCMs have excellent light-to-heat conversion

capabilities, with a conversion efficiency of up to 84% 113, introduced functionalized graphene nanosheets to prepare
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new CPCMs. Those materials not only effectively prevent the leakage of the PCM, but also improves the thermal
conductivity, and the CPCM has a higher phase change enthalpy (248.3 J/g). The addition of graphene nanosheets
significantly improves the solar light absorption characteristics of the PCM and provides a high light-heat efficiency
of 92.6% 141, used a one-pot method to synthesize a light-driven polymer composite with high thermal conductivity
and phase change enthalpy. The latent heat value of the composite material is 180.3 J/g, and the light-to-heat
conversion efficiency is 72.1% 15, Prepared a new type of stable CPCM using a vacuum impregnation method. The
results show that the material has good phase change performance, low sub cooling, good thermal cycle stability,
and good solar light absorption performance; in addition, the enthalpy of fusion is 207.3 J/g, and a light-to-heat
conversion efficiency of up to 80.6% is achieved [16l. Used sucrose and sodium bicarbonate as raw materials to

prepare a CPCM with excellent performance using a template method. The thermal conductivity of the CPCM was

increased by 180% and the light-to-heat conversion efficiency was as high as 89%.

At present, when PCMs are applied to solar-thermal energy conversion technology, there are still proh

PA, with a phase transition temperature of 40°C, was purchased r Energy Technology Co., Ltd.

(Hangzhou, China). An acrylic sample mold with an inner diameter i of 30 mm, and thickness of 2

98% concentration, were purchased from Zhengzhou

Preparation of biomass carbon materials

intensity Was + 0.1 W/m2. The acquisition instrument (temperature accuracy of 0.1 °C, Agilent Technologies, Santa
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Clara, CA, USA) recorded the temperature as a function of time and calculated the light-to-heat conversion rate of the
CPCM.

RESULTS AND DISCUSSION
Thermal analysis

Most organic PCMs have low thermal conductivity, which reduces the energy storage and release rate, thus |igais

mean free path of phonons [271. Therefore, under the synergistic effect of hi

linking reactions, the strong thermal vibration of phonons greatly impr: ductivity of the CPCM.

1 v v 1
90% 80% 70%
PA(WL%)

torage characteristics

The late at value of the phase change is an important parameter for evaluating the energy-storage capacity of
CPCMs. Figure 2 (a) and (b) show the Differential Scanning Calorimetry (DSC) temperature rise and fall curves of pure
PA and the prepared composite material with different porous carbon contents. The melting and crystallization
temperatures of pure PAwere 41.19°C and 42.51°C, respectively, and the melting and crystallization temperatures
of the CPCM (70% wt PA) were 39.25°C and 41.43°C, respectively. The decrease in the melting temperature might
be due to the addition of carbon-based materials to improve the thermal conductivity of the composite material. When

the temperature increased, the melting of PA accelerated.
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Figure 2. (a) Differential Scanning Calorimetry (DSC) heating curve of pure Paraffin Wax (PA) and the PA-Biomass
Porous Carbon (BPC) composites (b) DSC heating curve of pure PA and the PA-BPC composites.
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Melting | nasetransition | ppaee transition Start End
potential temzﬁgture end Crystallization | crystallization | crystallization
(J/8) °0) temperature potential temperature | temperature
Samp ( (°C) (/8 (°C) (°C)
PA 212.3 41.19 50.91 226.4 42,51 31.46
70% PA-
BPC 173.8 39.25 50.04 183.4 41.43 12 hrs
80% PA-
BPC 182.1 40.12 51.36 193.9 41.36 30.47
90% PA-
BPC 192 40.81 49.76 209 41.25 29.83
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Optical performance characterization

Organic PCMs have a high latent heat capacity; however, their photo thermal conversion capacity is weak.

Researchers have generally added materials with good optical properties to PCMs to improve their optical prg

ultraviolet light (below 400 nm), 50 % visible light (400-760 nm) an

% infrared light (abov

60 nm). Visible light

and near-infrared radiation account for approximately 93% of solar rgy. Therefore e transmittance, reflectance,
. The reflectance spectrum in
Figure 3(a) showed the reflectance of PA and its compggite materials | gth range of 190-2000 nm. In

the visible light range (400-760 nm), PA had a higher eaching more than 75%. However, the CPCM had

and absorbance of CPCMs in the visible and near-infrared spectra very import

a low reflectivity between 5% and 10%. The transmissio e 3(b) showed that the CPCM had a lower
Oximately 5%). Figure 3(c) compared the absorbance

between PA and its composite materi 3 ‘ 90-2000 nm, and the absorbance of the CPCM was

approximately 1.3; furthermore, approximately 95% of the solar

radiation energy was abs and stored as thermal energy. Therefore, according to the above
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Analysis of photo thermal ¢

The photo thermal conversi icS@PA and its CPCMs were studied by exposing samples with the same weight

and thickness to a si g light intensity of 164 W/m2 and placing thermocouples at the center

sed before the overall temperature reached 50 °C. By turning off the solar simulator switch,

dropped rapidly, and 4850s elapsed before the system decreased to the initial

ance significantly improved. The temperature decreased from 50°C to 30°C in the absence of light; pure PA
d 4850s for this decrease, but 70% PA-BPC only required 3600s, which was 1250’s shorter and reflected the

onductivity of the material was greatly improved.
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Figure 4. Temperature change as a function of time in the presence or absence of sunlight (a) Pure Paraffin Wax (PA)

(b) 90% PA-Biomass Porous Carbon (BPC) (¢) 80% PA-BPC (d) 70% PA-BPC
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In addition, based on

, 85.6%, and 72.5%, respectively, showing high photo thermal conversion ability.
he heat production and heat transfer of CPCMs absorbing solar photons under simulated sunlight, the photo

thermal c8®Version process of PCMs under continuous sunlight was observed using an infrared thermal imager, and
the change in the internal temperature of CPCMs with illumination time was observed.

Figure 5 shows a schematic of the photo thermal conversion experiment. The prepared CPCM was pressed into a
cylindrical mold. A solar simulator xenon lamp was placed directly above the sample. When the solar simulator was
turned on, the mold was irradiated using a xenon lamp. The front surface of the sample was subjected to photo

thermal conversion. An infrared thermal imager (FLIR T640, Teledyne FLIR, Wilsonville, OR, USA) was placed in front
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of the sample to collect the real-time temperature distribution diagram of each sample during the illumination

process.
Figure 5. Simple schematic diagram of the photo thermal conversion experiment.

Solar
simulator

Figure 6 is the temperature distribution diagram of eacgiisam et O min, 40 min, and 60 min (from Figure 6).
From left to right are pure PA, 90% PA- _ d 70% PA-BPC). As shown in Figure 6, BPC effectively
converted sunlight into heat energy. A i ion, the surface of the CPCM absorbed a large amount
of heat energy, and the PCM began ure reached 50-60 °C. However, there was almost no

visible light range.

Comparing the temp ent CPCMs indicated that the overall temperature of the material

PC. This result occurred because the thermal conductivity increased with an

ot diffuse from the top in a timely manner, an obvious temperature difference appeared. The

emperature of the sample increased over time.
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Figure 6. Infrared photos of different time periods during solar heating.
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Potential applications of solar CPCMs

indoor or space heating in a later period, and for medical equipment,

can be compared to traditional thermal compression bags. These

Load (%) baatligt(?f;)t conversion rate (%) Source
tearyl alcohol/graphene-based 13.3 196.2 84 1]
aerogel
Paraffin/biomass aerogel _ 115.2 71.4 [29]
Phase change microcapsule/GO _ 234.7 76.03 [30]
matrix/l:f’:riigocnh;ir;gez I[:)(Z)lilclgrt];rcarbon - 180.3 721 [14]
Paraffin/BPC 30 173.8 89.6 This work
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CONCLUSION

In this study, biomass materials were prepared into biomass carbon-based materials by high-tess

added was increased, the overall rate of the temperature rises of t

because, as the content of BPC increased, the light absorption

, the 70% PA-
um photo th

thermal conversion experiment, compared with those of pure CPCM had a faster heating rate,

and the time required for cooling was greatly reduced. The m al conversion rate of the 70% PA-
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