
Volume 3, No. 10, October 2012
Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 32

EXTRACTION OF STRUCTURED INFORMATION FROM UNSTRUCTURED OR
SEMI- STRUCTURED MACHINE READABLE WEB PAGES

Vinod Kumar Raavi*1 and Satya P Kumar Somayajula2
*1 M Tech (Information technology) Student,

Avanthi Institute of Engineering & Technology, Narsipatnam, AndhraPradesh, India
2

Abstract: In now a days the extraction of structured information from unstructured or semi- structured machine readable documents
extemporaneously plays a vital role hence many of the websites using ordinary templates with contents which produce the information to
accomplish a well publishing productivity, but the major resource for extracting the information is WWW.Recently template detection approach
has attained a lot of consolidation of effort in order to reform in various conditions like clustering and classification of web documents,
performance of search engine as templates decrease the performance and the efficiency of web application for machines as a result of irrelevant
template terms. We want to present a novel algorithm in this paper for extracting templates from a excessive number of web documents that are
achieved from heterogeneous templates. By understanding the similarities of the basic template structure in the document we group the web
documents so that template for each group has been simultaneously extracted. Hence the algorithms proposed in this paper can be considered as
the best among all of the template detection algorithms.

Asst.Professor, Dept of CSE,
Avanthi Institute of Engineering & Technology, Narsipatnam, Andhra Pradesh, India

chvinod48@gmail.com

Keywords: Template, Extraction, Information, DOM, Cluster.

INTRODUCTION

An HTML document can be naturally represented with a
Document Object Model (DOM) tree as in Fig.1 , web
documents are considered as trees and many existing
similarity measures for trees have been investigated for
clustering[1]. However, clustering is very expensive with
tree-related distance measures. For instance, tree-edit
distance has at least O(n1 Log n2) time complexity, Where
n1 and n2 are the sizes of two DOM trees and the sizes of
the trees are usually more than a thousand. Thus, clustering
on sampled web documents is used to practically handle a
large number of web documents[3][9].

Figure.1 A simple Document Object Model (DOM)

The problem of extracting a template from the web
documents conforming to a common template has been
studied in[4][10]. Due to the assumption of all documents
being generated from a single common template, solutions
for this problem are applicable only when all documents are

guaranteed to conform to a common template. However, in
real applications, it is not trivial to classify massively
crawled documents into homogeneous partitions in order to
use these techniques [5].The other area is the page-level
template detection where the template is computed within a
single document. Lerman et al. proposed systems to identify
data records in a document and extract data items from them.
Zhai and Liu proposed an algorithm to extract a template
using not only structural information, but also visual layout
information [5]. Chakrabarti et al. solved this problem by
using an isotonic smoothing score assigned by a classifier
[1]. Since the problem formulation of this area is far from
ours, we do not discuss it in detail. Our algorithms to be
presented later represent web documents as a matrix and
find clusters with the matrix. Biclustering or coclustering is
another clustering technique to deal with a matrix.
Coclustering algorithms find simultaneous clustering of the
rows and columns of a matrix and require the numbers of
clusters of columns and rows as input parameters [9][8].
However, we cluster only documents not paths, and
moreover, the numbers of clusters of columns and rows are
unknown.

In this paper we propose to represent a web document and a
template as a set of paths in a DOM tree.As validated by the
most popular XML query language XPATH, paths are
sufficient to express tree structures and useful to be
queried[1]. By considering only paths, the overhead to
measure the similarity between documents becomes small
without significant loss of information.

BACKGROUND WORK

There has been a lot of recent work related to Information
Extraction. These can be classified along different
dimensions: sources of information targeted (human vs.

Vinod Kumar Raavi et al, Journal of Global Research in Computer Science, 3 (10), October 2012,32-38

© JGRCS 2010, All Rights Reserved 33

machine generated), degree of automation, complexity of
data extracted (flat vs. nested). Section 1 briefly mentioned
some of the closely related work. We refer the reader to a
recent survey and tutorial for more related work. Here we
focus on highlighting the differences between our work and,
ROADRUNNER and IEPAD. IEPAD uses repeating
patterns of closely occurring HTML tags to identify and
extract data[1][2]. The above technique is applicable to
extracting data of a limited type: set of flat tuples, from each
page. urther, since not all repeating patterns contain useful
data, IEPAD uses various heuristic techniques to
characterize those that do. Our work is most closely related
to the ROADRUNNER. It uses a model of page creation
using a template that is very similar to ours. It starts off with
the entire first input page as its initial template. Then, for
each subsequent page it checks if the page can be generated
by the current template. If it cannot be, it modifies its
current template so that the modified template can generate
all the pages seen so far.

There are several limitations to the ROADRUNNER
approach:
a. ROADRUNNER assumes that every HTML tag in the

input pages is generated by the template. This
assumption is crucial in ROADRUNNER to check if
an input page can be generated by the current template.
This assumption is clearly invalid for pages in many
web-sites since HTML tags can also occur within data
values. For example, a book review in Amazon could
contain tags — the review could be in several
paragraphs, in which case it contains _p_ tags, or some
words in the review could be highlighted using _i_ tags.
When the input pages contain such data values
ROADRUNNER will either fail to discover any
template, or produce a wrong template.

b. ROADRUNNER assumes that the “grammar” of the
template used to generate the pages is union-free. This
is equivalent to the assumption that there are no
disjunctions in the input schema. The authors of
ROADRUNNER themselves have pointed in that this
assumption does not hold for many collections of
pages. Moreover, as the experimental results in suggest,
ROADRUNNER might fail to produce any output if
there are disjunctions in the input schema.

c. When ROADRUNNER discovers that the current
template does not generate an input page, it performs a
complicated heuristic search involving “backtracking”
for a new template. This search is exponential in the
size of the schema of the pages. It is, therefore, not
clear how ROADRUNNER would scale to web page
collections with a large and complex schema.

This paper presented an algorithm, EXALG, for extracting
structured data from a collection of web pages generated
from a common template. EXALG first discovers the
unknown template that generated the pages and uses the
discovered template to extract the data from the input pages.
EXALG uses two novel concepts, equivalence classes and
differentiating roles, to discover the template. Our
experiments on several collections of web pages, drawn
from many well-known data rich sites, indicate that EXALG
is extremely good in extracting the data from the web pages
[4]. Another desirable feature of EXALG is that it does not

completely fail to extract any data even when some of the
assumptions made by EXALG are not met by the input
collection. In other words the impact of the failed
assumptions is limited to a few attributes. There are several
interesting directions for future work.

The first direction is to develop techniques for crawling,
indexing and providing querying support for the
“structured” pages in the web. Clearly, a lot of information
in these pages is lost when naive key word indexing, and
searching is used. We indicate two specific problems in this
direction. First, how do we automatically locate collections
of pages that are structured? Second, is it feasible to
generate some large “database” from these pages? Any
technique for solving the latter problem has to be much less
sophisticated than the one discussed here, possibly by
sacrificing accuracy for efficiency[2]. Also when we work at
the scale of the entire web we might be able to leverage the
redundancy of the data on the web as in Brin. The second
direction of work is to develop techniques for automatically
annotating the extracted data, possibly using the words that
appear in the template We presented a framework for
classifier based page-level template detection that constructs
the training data and learns the notion of “templateness”
automatically using the site-level template detection
approach [4]. We formulated the smoothing of classifier
assigned templateness scores as a regularized isotonic
regression problem on trees, and presented an efficient
algorithm to solve it exactly; this may be of independent
interest. Using human-labeled data we empirically validated
our system’s performance, and showed that template
detection at the page-level, when used as a preprocessing
step to web mining applications, such as duplicate detection
and webpage classification, can boost accuracy
significantly.

SYSTEM OVERVIEW

Modules Description:

Implemented Algorithms:
RTDM: We implemented RTDM since it is the\related
work having the most similar problem formulation with us.
It requires a training data set and the similarity threshold to
decide the number of templates.

TEXT-MDL: It is the naive agglomerative clustering
algorithm with the approximate entropy model It requires no
input parameter.

TEXT-HASH: It is the agglomerative clustering algorithm
with MinHash signatures discussed in it requires an input
parameter which is the length of MinHash signature.

TEXT-MAX: It is the clustering algorithm with both
MinHash signatures and Heuristic 1to reduce the search
space. It requires the length of the signature as an input
parameter.
A)

Real Life Data:
Data set 1 (D1): It is the data set used in EXALG. The
documents are from nine templates and the number of

Vinod Kumar Raavi et al, Journal of Global Research in Computer Science, 3 (10), October 2012,32-38

© JGRCS 2010, All Rights Reserved 34

documents from each template is from 10 to 50. The total
number of documents is 242.

Data set 2 (D2): It is the data set used in VINTS . The
documents are from 100 templates and the number of
documents from each template is 10. The total number of
documents is 1,000.

Data set 3 (D3): We had crawled real life web documents
for a week using Rank Mass Crawler Rank Mass
theoretically guarantees that important part of the Web will
be downloaded after crawling a certain number of pages and
gives a high priority to important pages during the crawling
process. The total number of documents is 100,000 (about
15 GB).

Performance Evaluation:

Clustering and Template Accuracy:
The ground truth of clustering of data sets D1 and D2 is
known and we compare the clustering results of RDTM and
our proposed algorithms with the ground truth. In order to
quantify the accuracy of a cluster, we use the precision and
recall values between a cluster and the closest ground truth
cluster. The results are given in Table 2a, where # is the
number of clusters found by each algorithm, P and R are the
average precision and recall values of clusters

THE PROPOSED FRAMEWORK

Our template detection method is based on the repetition of
text segments which are text nodes in DOM trees of web
pages. We use a data structure called the text segment table
to maintain the repetition information, i.e. the contents and
DFs of text segments. We should note that when talking
about the DFs of text segments, we must first clarify when
two text segments are considered to be the same. In our
framework, two text segments are same only when their
contents are literally equal and they have the same DOM
path. Whenever a new page is available, it will be passed
through four steps:

Page Segmentation:
The segmentation process contains two steps:
a. A web page is divided into multiple blocks. Currently,

we choose some html tags that usually determine the
page layout as separators, these html tags are
<TABLE>, <DIV>, etc.

b. Then each block is further divided into text segments
by html tags, process instructions, and html comments.

Text Segment Table Expansion:
After page segmentation, text segments are used to
updatethe text segment table. If a text segment already exists
in the table, the DF of it will be increased by one. Otherwise,
the text segment will be inserted into the table and its DF is
initialized to one.

Template Detection:
Template detection occurs in block level. We search every
text segment of a block in the text segment table, checking
whether it is a template segment. We define template
segments as text segments whose DFs are larger than or
equal to 5. We can then calculate the template ratio of a
block: template ratio = _lengths of template segments

_lengths of all text segments If the template ratio of a block
is larger than 0.7, we label the block as a template block.

Text Segment Table Shrinkage:
The text segment table will consume more and more storage
if only the expansion step is applied. To control the storage
use, we need to delete some text segments. The cost of
deleting a text segment is defined as the times to classify a
template segment as non-template segment be- cause of the
deletion. For example, if a template segment appears after
its deletion, it will be recognized as non-template segment.
The cost of deleting a text segment is related to the DF and
the future occurring times of the text segment. To minimize
the cost of deletion, we allow text segments that have larger
DFs to live longer than those with smaller DFs, because the
former are more likely to occur in the future. We should
note that we don’t use the publish times or crawling times as
the timestamps of pages and blocks, but we assign every
page a page number and use it as the timestamp. The
maximum living time of a text segment is then modeled by
the logistic function: Tb is the maximum living time of a
text segment which appears only once. df is the past DF of
the text segment. Ten defines the upper bound of maximum
living time of a text segment before a new occurrence comes,
no matter what df is. When a text segment doesn’t appear
for t, it will be removed from the text segment table.

PROPOSED ALGORITHM

The TEXT-MDL algorithm:
We describe the implementation and performance of a
compression-based model inference engine, MDL compress.
Procedure GetHashMDLCost()
Begin

a. , :=(;
b. For each in П do {
c. =
d. If then
e.
f. Else is from the less one;
g. }
h. Calculate by Equation(5);
i. Compute n(,k) by Lemma 4;
j. Get and in and by Lemma 3;
k. MDL := Approximate MDL cost of by

Equation(1);
l. Return (MDL,);

end

The MDL-based compression produces a two part code of
the training data, with the model portion of the code being
used to compress and classify test data. We present pseudo-
code of the algorithms for model generation and explore the
conflicting requirements between minimizing grammar size
and minimizing descriptive cost. We show results of a MDL
model-based classification system for network traffic
anomaly detection.

Agglomerative Clustering Algorithm:
The algorithm forms clusters in a bottom-up manner, as
follows:

Vinod Kumar Raavi et al, Journal of Global Research in Computer Science, 3 (10), October 2012,32-38

© JGRCS 2010, All Rights Reserved 35

a. Initially, put each article in its own cluster.
b. Among all current clusters, pick the two clusters

with the smallest distance.
c. Replace these two clusters with a new cluster,

formed by merging the two original ones.
d. Repeat the above two steps until there is only one

remaining cluster in the pool.

Thus, the agglomerative clustering algorithm will result in a
binary cluster tree with single article clusters as its leaf
nodes and a root node containing all the articles.

In the clustering algorithm, we use a distance measure based
on log likelihood. For articles A and B, the distance is
defined as

The log likelihood LL(X) of an article or cluster X is given
by a unigram model:

Here, X(w) and are the count and probability,
respectively, of word w in cluster X, and is the total
number of words occurring in cluster X. Notice that this
definition is equivalent to the weighted information loss
after merging two articles:

where

To avoid expensive log likelihood recomputation after each
cluster merging step, we define the distance between two
clusters with multiple articles as the maximum pairwise
distance of the articles from the two clusters:

Where and are two clusters, and A, B are articles from

and , respectively. Once a cluster tree is created, we
must decide where to slice the tree to obtain disjoint
partitions for building cluster-specific LMs. This is
equivalent to choosing the total number of clusters. There is
a tradeoff involved in this choice. Clusters close to the
leaves can maintain more specifics of the word distributions.
However, clusters close to the root of the tree yield LMs
with more reliable estimates, because of the larger amount
of data. We roughly optimized the number of clusters by
evaluating the perplexity of the Hub4 development test set.
We created sets of 1, 5, 10, 15, and 20 article clusters, by
slicing the cluster tree at different points. A backoff trigram
model was built for each cluster, and interpolated with a
trigram model derived from all articles for smoothing, to
compensate for the different amounts of training data per
cluster. Then, the set of LMs that maximizes the log
likelihood of the Hub4 development data was selected.

Given a cluster model set , the test set log
likelihood was obtained as an approximation to the mixture-
of-clusters model:

 where

and and are the prior and posterior
cluster probabilities, respectively. In training, A is the
reference transcript for one story from the Hub4
development data. During testing, A is the 1-best hypothesis
for the story, as determined using the standard LM. Note
that depends on the smoothing weights used to
compute , which in turn determine which cluster a
story is assigned to, which in turn determines the best
smoothing weights.

a.

b.
c.
d.

/*If the maximal Jaccard’s coefficient is 0,N is */
e.
f.
g. if <
h.
i.
a. }
j. }
k. }
l. return

End

Procedure GetHashBestPair(
begin

a. (
b.

c.

d.

/*If the maximal Jaccard’s coefficient is 0,N is */

e. for each
f.
g. if <
h.
i.
j. }
k. }

Vinod Kumar Raavi et al, Journal of Global Research in Computer Science, 3 (10), October 2012,32-38

© JGRCS 2010, All Rights Reserved 36

l. return

end;

Therefore, we jointly optimize smoothing and cluster
assignment in an iterative procedure. First, the posterior
probabilities of the smoothed cluster LMs given reference
transcripts for a story were calculated. Then, stories with the
highest posterior probability of a same cluster LM were
merged. The interpolation weight for the cluster LM and the
general LM was tuned by maximizing the likelihood of the
segments in the story cluster corresponding to the cluster
LM. These steps were iterated until all cluster assignments
became stable and the interpolation weights converged.

SYSTEM ANALYSIS & DESIGN

The diagram shows a general view of how desktop and
workstation computers are organized. Different systems
have different details, but in general all computers consist of
components (processor, memory, controllers, video)
connected together with a bus

Admin

Login

Validation

InvalidLogin

HomeValied

WebpageInfo

UploadWebpage

UserInfo

ViewUsers

Security

ChangePassword

Logout

.

Figure. 2: The interoperaility Admin Activity diagram

User

Login

Validation

InvalidLogin

HomeValied

ContentInfo

SearchData

PathInfo

GetHomogeniousPath

Security

ChangePassword

Logout

Profile

ViewProfile

Figure .3: The interoperaility user Activity diagram

RESULTS

Figure .5: User Sign in Page

Vinod Kumar Raavi et al, Journal of Global Research in Computer Science, 3 (10), October 2012,32-38

© JGRCS 2010, All Rights Reserved 37

Figure.6 :User Search engine Page

Figure.7: TagCountInformation of search result

Figure .8:Heterogenious path for different templates

Figure .9:Performance Reults for the cluster

Vinod Kumar Raavi et al, Journal of Global Research in Computer Science, 3 (10), October 2012,32-38

© JGRCS 2010, All Rights Reserved 38

CONCLUSION

In this paper we had introduced a novel approach of the
template detection from different web documents. We
applied the MDL principle for maintaining the anonymous
number of clusters and also to select a good partitioning
from all possible partitions of documents, later on we have
extended MinHash approach just to fasten the clustering
process. The effectiveness of our proposed algorithms can
be confirmed by the experimental results with real life data
sets.

REFERENCES

[1]. D. Chakrabarti, R. Kumar, and K. Punera, “Page-Level
Template Detection via Isotonic Smoothing,” Proc. 16th
Int’l Conf. World Wide Web (WWW), 2007.

[2]. T.M. Cover and J.A. Thomas, Elements of Information
Theory. Wiley Interscience, 1991.

[3]. B. Long, Z. Zhang, and P.S. Yu, “Co-Clustering by Block
Value Decomposition,” Proc. ACM SIGKDD, 2005.

[4]. K. Vieira, A.S. da Silva, N. Pinto, E.S. de Moura, J.M.B.
Cavalcanti,and J. Freire, “A Fast and Robust Method for
Web Page Template Detection and Removal,” Proc. 15th
ACM Int’l Conf. Information and Knowledge Management
(CIKM), 2006.

[5]. H. Zhao, W. Meng, and C. Yu, “Automatic Extraction of
Dynamic Record Sections from Search Engine Result
Pages,” Proc. 32nd Int’l Conf. Very Large Data Bases
(VLDB), 2006.

[6]. Document Object Model (dom) Level 1 Specification
Version 1.0, http://www.w3.org/TR/REC-DOM-Level-1,
2010.

[7]. M. de Castro Reis, P.B. Golgher, A.S. da Silva, and A.H.F.
Laender, “Automatic Web News Extraction Using Tree

Edit Distance,” Proc. 13th Int’l Conf. World Wide Web
(WWW), 2004.

[8]. H. Zhao, W. Meng, and C. Yu, “Automatic Extraction of
Dynamic Record Sections from Search Engine Result
Pages,” Proc. 32nd Int’l Conf. Very Large Data Bases
(VLDB), 2006.

[9]. M.D. Plumbley, “Clustering of Sparse Binary Data Using a
Minimum Description Length Approach,” http://www.elec.
qmul.ac.uk/staffinfo/markp/, 2002.

[10]. A. Arasu and H. Garcia-Molina, “Extracting Structured
Data from Web Pages,” Proc. ACM SIGMOD, 2003.

Short Bio Data for the Author

Mr. VINOD KUMAR.RAAVI received the B.Tech
degree from Vignan's Engineering College, Vadlamudi in
2009 and He is currently pursuing M.Tech in the
Department Of Information Technology, Avanthi Institute
of Engineering and Technology, Vishakhapatnam, JNTUK
university. His research interests include Knowledge and
Data Engineering, Web Technologies.

Mr. Satya P Kumar Somayajula is working as an
Asst.Professor, in CSE Department, Avanthi Institue of
Engg & Tech, Tamaram, Visakhapatnam,A.P., India. He has
received his M.Sc(Physics) from Andhra University,
Visakhapatnam and M.Tech (CST) from Gandhi Institute of
Technology And Management University (GITAM
University), Visakhapatnam, A.P., INDIA. He published
many National and International Journals. His research
interests include Image Processing, Networks security, Web
security, Information security, Data Mining and Software
Engineering.

