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Abstract: In now a days the extraction of structured information from unstructured or semi- structured machine readable documents 
extemporaneously plays a vital role hence many of the websites using ordinary templates with contents which produce the information to 
accomplish a well publishing productivity, but the major resource for extracting the information is WWW.Recently  template detection approach 
has attained a lot of consolidation of effort in order to reform in various conditions like  clustering and classification of web documents, 
performance of search engine as templates decrease the performance and the efficiency of web application for machines as a result of irrelevant 
template terms. We want to present a novel algorithm in this paper for extracting templates from a excessive number of web documents that are 
achieved from heterogeneous templates. By understanding the similarities of the basic template structure in the document we group the web 
documents so that template for each group has been simultaneously extracted. Hence the algorithms proposed in this paper can be considered as 
the best among all of the template detection algorithms. 
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INTRODUCTION 

An HTML document can be naturally represented with a 
Document Object Model (DOM) tree as in Fig.1 , web 
documents are considered as trees and many existing 
similarity measures for trees have been investigated for 
clustering[1]. However, clustering is very expensive with 
tree-related distance measures. For instance, tree-edit 
distance has at least O(n1 Log n2) time complexity, Where 
n1 and n2 are the sizes of two DOM trees and the sizes of 
the trees are usually more than a thousand. Thus, clustering 
on sampled web documents is used to practically handle a 
large number of web documents[3][9]. 
 

 
Figure.1 A simple Document Object Model (DOM) 

The problem of extracting a template from the web 
documents conforming to a common template has been 
studied in[4][10]. Due to the assumption of all documents 
being generated from a single common template, solutions 
for this problem are applicable only when all documents are 

guaranteed to conform to a common template. However, in 
real applications, it is not trivial to classify massively 
crawled documents into homogeneous partitions in order to 
use these techniques [5].The other area is the page-level 
template detection where the template is computed within a 
single document. Lerman et al. proposed systems to identify 
data records in a document and extract data items from them. 
Zhai and Liu proposed an algorithm to extract a template 
using not only structural information, but also visual layout 
information [5]. Chakrabarti et al. solved this problem by 
using an isotonic smoothing score assigned by a classifier 
[1]. Since the problem formulation of this area is far from 
ours, we do not discuss it in detail. Our algorithms to be 
presented later represent web documents as a matrix and 
find clusters with the matrix. Biclustering or coclustering is 
another clustering technique to deal with a matrix. 
Coclustering algorithms find simultaneous clustering of the 
rows and columns of a matrix and require the numbers of 
clusters of columns and rows as input parameters [9][8]. 
However, we cluster only documents not paths, and 
moreover, the numbers of clusters of columns and rows are 
unknown. 
 
In this paper we propose to represent a web document and a 
template as a set of paths in a DOM tree.As validated by the 
most popular XML query language XPATH, paths are 
sufficient to express tree structures and useful to be 
queried[1]. By considering only paths, the overhead to 
measure the similarity between documents becomes small 
without significant loss of information.  

BACKGROUND WORK 

There has been a lot of recent work related to Information 
Extraction. These can be classified along different 
dimensions: sources of information targeted (human vs. 
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machine generated), degree of automation, complexity of 
data extracted (flat vs. nested). Section 1 briefly mentioned 
some of the closely related work. We refer the reader to a 
recent survey and tutorial for more related work. Here we 
focus on highlighting the differences between our work and, 
ROADRUNNER and IEPAD. IEPAD uses repeating 
patterns of closely occurring HTML tags to identify and 
extract data[1][2]. The above technique is applicable to 
extracting data of a limited type: set of flat tuples, from each 
page. urther, since not all repeating patterns contain useful 
data, IEPAD uses various heuristic techniques to 
characterize those that do. Our work is most closely related 
to the ROADRUNNER. It uses a model of page creation 
using a template that is very similar to ours. It starts off with 
the entire first input page as its initial template. Then, for 
each subsequent page it checks if the page can be generated 
by the current template. If it cannot be, it modifies its 
current template so that the modified template can generate 
all the pages seen so far.  
 
There are several limitations to the ROADRUNNER 
approach: 
a. ROADRUNNER assumes that every HTML tag in the 

input pages is generated by the template. This 
assumption is crucial in ROADRUNNER to check if 
an input page can be generated by the current template. 
This assumption is clearly invalid for pages in many 
web-sites since HTML tags can also occur within data 
values. For example, a book review in Amazon could 
contain tags — the review could be in several 
paragraphs, in which case it contains _p_ tags, or some 
words in the review could be highlighted using _i_ tags. 
When the input pages contain such data values 
ROADRUNNER will either fail to discover any 
template, or produce a wrong template. 

b. ROADRUNNER assumes that the “grammar” of the 
template used to generate the pages is union-free. This 
is equivalent to the assumption that there are no 
disjunctions in the input schema. The authors of 
ROADRUNNER themselves have pointed in that this 
assumption does not hold for many collections of 
pages. Moreover, as the experimental results in suggest, 
ROADRUNNER might fail to produce any output if 
there are disjunctions in the input schema. 

c. When ROADRUNNER discovers that the current 
template does not generate an input page, it performs a 
complicated heuristic search involving “backtracking” 
for a new template. This search is exponential in the 
size of the schema of the pages. It is, therefore, not 
clear how ROADRUNNER would scale to web page 
collections with a large and complex schema. 

 
This paper presented an algorithm, EXALG, for extracting 
structured data from a collection of web pages generated 
from a common template. EXALG first discovers the 
unknown template that generated the pages and uses the 
discovered template to extract the data from the input pages. 
EXALG uses two novel concepts, equivalence classes and 
differentiating roles, to discover the template. Our 
experiments on several collections of web pages, drawn 
from many well-known data rich sites, indicate that EXALG 
is extremely good in extracting the data from the web pages 
[4]. Another desirable feature of EXALG is that it does not 

completely fail to extract any data even when some of the 
assumptions made by EXALG are not met by the input 
collection. In other words the impact of the failed 
assumptions is limited to a few attributes. There are several 
interesting directions for future work.  
 
The first direction is to develop techniques for crawling, 
indexing and providing querying support for the 
“structured” pages in the web. Clearly, a lot of information 
in these pages is lost when naive key word indexing, and 
searching is used. We indicate two specific problems in this 
direction. First, how do we automatically locate collections 
of pages that are structured? Second, is it feasible to 
generate some large “database” from these pages? Any 
technique for solving the latter problem has to be much less 
sophisticated than the one discussed here, possibly by 
sacrificing accuracy for efficiency[2]. Also when we work at 
the scale of the entire web we might be able to leverage the 
redundancy of the data on the web as in Brin. The second 
direction of work is to develop techniques for automatically 
annotating the extracted data, possibly using the words that 
appear in the template We presented a framework for 
classifier based page-level template detection that constructs 
the training data and learns the notion of “templateness” 
automatically using the site-level template detection 
approach [4]. We formulated the smoothing of classifier 
assigned templateness scores as a regularized isotonic 
regression problem on trees, and presented an efficient 
algorithm to solve it exactly; this may be of independent 
interest. Using human-labeled data we empirically validated 
our system’s performance, and showed that template 
detection at the page-level, when used as a preprocessing 
step to web mining applications, such as duplicate detection 
and webpage classification, can boost accuracy 
significantly. 

SYSTEM OVERVIEW 

Modules Description: 

Implemented Algorithms: 
RTDM: We implemented RTDM since it is the\related 
work having the most similar problem formulation with us. 
It requires a training data set and the similarity threshold to 
decide the number of templates. 
 
TEXT-MDL: It is the naive agglomerative clustering 
algorithm with the approximate entropy model It requires no 
input parameter. 
 
TEXT-HASH: It is the agglomerative clustering algorithm 
with MinHash signatures discussed in it requires an input 
parameter which is the length of MinHash signature. 
 
TEXT-MAX: It is the clustering algorithm with both 
MinHash signatures and Heuristic 1to reduce the search 
space. It requires the length of the signature as an input 
parameter. 
A)  

Real Life Data: 
Data set 1 (D1): It is the data set used in EXALG. The 
documents are from nine templates and the number of 
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documents from each template is from 10 to 50. The total 
number of documents is 242. 
 
Data set 2 (D2): It is the data set used in VINTS . The 
documents are from 100 templates and the number of 
documents from each template is 10. The total number of 
documents is 1,000. 
 
Data set 3 (D3): We had crawled real life web documents 
for a week using Rank Mass Crawler Rank Mass 
theoretically guarantees that important part of the Web will 
be downloaded after crawling a certain number of pages and 
gives a high priority to important pages during the crawling 
process. The total number of documents is 100,000 (about 
15 GB). 

Performance Evaluation: 

Clustering and Template Accuracy: 
The ground truth of clustering of data sets D1 and D2 is 
known and we compare the clustering results of RDTM and 
our proposed algorithms with the ground truth. In order to 
quantify the accuracy of a cluster, we use the precision and 
recall values between a cluster and the closest ground truth 
cluster. The results are given in Table 2a, where # is the 
number of clusters found by each algorithm, P and R are the 
average precision and recall values of clusters 

THE PROPOSED FRAMEWORK 

Our template detection method is based on the repetition of 
text segments which are text nodes in DOM trees of web 
pages. We use a data structure called the text segment table 
to maintain the repetition information, i.e. the contents and 
DFs of text segments. We should note that when talking 
about the DFs of text segments, we must first clarify when 
two text segments are considered to be the same. In our 
framework, two text segments are same only when their 
contents are literally equal and they have the same DOM 
path. Whenever a new page is available, it will be passed 
through four steps:  

Page Segmentation: 
The segmentation process contains two steps:  
a. A web page is divided into multiple blocks. Currently, 

we choose some html tags that usually determine the 
page layout as separators, these html tags are 
<TABLE>, <DIV>, etc.  

b. Then each block is further divided into text segments 
by html tags, process instructions, and html comments. 

Text Segment Table Expansion: 
After page segmentation, text segments are used to 
updatethe text segment table. If a text segment already exists 
in the table, the DF of it will be increased by one. Otherwise, 
the text segment will be inserted into the table and its DF is 
initialized to one. 

Template Detection: 
Template detection occurs in block level. We search every 
text segment of a block in the text segment table, checking 
whether it is a template segment. We define template 
segments as text segments whose DFs are larger than or 
equal to 5. We can then calculate the template ratio of a 
block: template ratio = _lengths of template segments 

_lengths of all text segments If the template ratio of a block 
is larger than 0.7, we label the block as a template block. 

Text Segment Table Shrinkage: 
The text segment table will consume more and more storage 
if only the expansion step is applied. To control the storage 
use, we need to delete some text segments. The cost of 
deleting a text segment is defined as the times to classify a 
template segment as non-template segment be- cause of the 
deletion. For example, if a template segment appears after 
its deletion, it will be recognized as non-template segment. 
The cost of deleting a text segment is related to the DF and 
the future occurring times of the text segment. To minimize 
the cost of deletion, we allow text segments that have larger 
DFs to live longer than those with smaller DFs, because the 
former are more likely to occur in the future. We should 
note that we don’t use the publish times or crawling times as 
the timestamps of pages and blocks, but we assign every 
page a page number and use it as the timestamp. The 
maximum living time of a text segment is then modeled by 
the logistic function: Tb is the maximum living time of a 
text segment which appears only once. df is the past DF of 
the text segment. Ten defines the upper bound of maximum 
living time of a text segment before a new occurrence comes, 
no matter what df is. When a text segment doesn’t appear 
for t, it will be removed from the text segment table. 

PROPOSED ALGORITHM 

The TEXT-MDL algorithm: 
We describe the implementation and performance of a 
compression-based model inference engine, MDL compress.  
Procedure GetHashMDLCost( ) 
Begin     

a. , :=( ; 
b. For each  in П do { 
c. =  
d. If  then 
e.  
f. Else  is from the less one; 
g. } 
h. Calculate  by Equation(5); 
i. Compute n( ,k) by Lemma 4; 
j. Get  and  in  and  by Lemma 3; 
k. MDL := Approximate MDL cost of  by 

Equation(1); 
l. Return (MDL,  ); 

end 
 

The MDL-based compression produces a two part code of 
the training data, with the model portion of the code being 
used to compress and classify test data. We present pseudo-
code of the algorithms for model generation and explore the 
conflicting requirements between minimizing grammar size 
and minimizing descriptive cost. We show results of a MDL 
model-based classification system for network traffic 
anomaly detection. 

Agglomerative Clustering Algorithm: 
The algorithm forms clusters in a bottom-up manner, as 
follows:  
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a. Initially, put each article in its own cluster. 
b. Among all current clusters, pick the two clusters 

with the smallest distance. 
c. Replace these two clusters with a new cluster, 

formed by merging the two original ones. 
d. Repeat the above two steps until there is only one 

remaining cluster in the pool.  
 
Thus, the agglomerative clustering algorithm will result in a 
binary cluster tree with single article clusters as its leaf 
nodes and a root node containing all the articles.  
 
In the clustering algorithm, we use a distance measure based 
on log likelihood. For articles A and B, the distance is 
defined as  
 

 
 
The log likelihood LL(X) of an article or cluster X is given 
by a unigram model:  
 

 

 
 
Here, X(w)  and are the count and probability, 
respectively, of word w in cluster X, and is the total 
number of words occurring in cluster X. Notice that this 
definition is equivalent to the weighted information loss 
after merging two articles:  
  

 
where  

 
To avoid expensive log likelihood recomputation after each 
cluster merging step, we define the distance between two 
clusters with multiple articles as the maximum pairwise 
distance of the articles from the two clusters:  
 

 
 
Where and are two clusters, and A, B are articles from 

and , respectively. Once a cluster tree is created, we 
must decide where to slice the tree to obtain disjoint 
partitions for building cluster-specific LMs. This is 
equivalent to choosing the total number of clusters. There is 
a tradeoff involved in this choice. Clusters close to the 
leaves can maintain more specifics of the word distributions. 
However, clusters close to the root of the tree yield LMs 
with more reliable estimates, because of the larger amount 
of data. We roughly optimized the number of clusters by 
evaluating the perplexity of the Hub4 development test set. 
We created sets of 1, 5, 10, 15, and 20 article clusters, by 
slicing the cluster tree at different points. A backoff trigram 
model was built for each cluster, and interpolated with a 
trigram model derived from all articles for smoothing, to 
compensate for the different amounts of training data per 
cluster. Then, the set of LMs that maximizes the log 
likelihood of the Hub4 development data was selected. 

Given a cluster model set , the test set log 
likelihood was obtained as an approximation to the mixture-
of-clusters model:  

 
                                                                                         

 
 

                                 
 

 
        where                                        

 
and   and  are the prior and posterior 
cluster probabilities, respectively. In training, A is the 
reference transcript for one story from the Hub4 
development data. During testing, A is the 1-best hypothesis 
for the story, as determined using the standard LM. Note 
that  depends on the smoothing weights used to 
compute , which in turn determine which cluster a 
story is assigned to, which in turn determines the best 
smoothing weights.  

 
 

a. 
 

b.  
c.  
d. 

/*If the maximal Jaccard’s coefficient is 0,N is */ 
e.  
f.  
g. if   <  
h.  
i.  
a. } 
j. } 
k. } 
l. return  

End 
 
Procedure GetHashBestPair(  
begin 

a. (  
b.  

c. 
 

d. 
 
/*If the maximal Jaccard’s coefficient is 0,N is */ 

e. for each  
f.  
g. if   <  
h.  
i.  
j.          } 
k. } 
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l.  return  

end;        
 
Therefore, we jointly optimize smoothing and cluster 
assignment in an iterative procedure. First, the posterior 
probabilities of the smoothed cluster LMs given reference 
transcripts for a story were calculated. Then, stories with the 
highest posterior probability of a same cluster LM were 
merged. The interpolation weight for the cluster LM and the 
general LM was tuned by maximizing the likelihood of the 
segments in the story cluster corresponding to the cluster 
LM. These steps were iterated until all cluster assignments 
became stable and the interpolation weights converged. 

SYSTEM ANALYSIS & DESIGN 

The diagram shows a general view of how desktop and 
workstation computers are organized. Different systems 
have different details, but in general all computers consist of 
components (processor, memory, controllers, video) 
connected together with a bus

Admin

Login

Validation

InvalidLogin

HomeValied

WebpageInfo

UploadWebpage

UserInfo

ViewUsers

Security

ChangePassword

Logout

.  

 
Figure. 2: The interoperaility Admin Activity diagram 

User

Login

Validation

InvalidLogin

HomeValied

ContentInfo

SearchData

PathInfo

GetHomogeniousPath

Security

ChangePassword

Logout

Profile

ViewProfile

 
Figure .3: The interoperaility user Activity diagram 

RESULTS 

 
Figure .5: User Sign in Page 
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Figure.6 :User Search engine Page 

 
Figure.7: TagCountInformation of search result 

 
Figure .8:Heterogenious path for different templates 

 
Figure .9:Performance Reults for the cluster 
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CONCLUSION 

In this paper we had introduced a novel approach of the 
template detection from different web documents. We 
applied the MDL principle for maintaining the anonymous  
number of clusters and also to select a good partitioning 
from all possible partitions of documents, later on we have 
extended MinHash approach just to fasten the clustering 
process. The effectiveness of our proposed algorithms can 
be confirmed by the experimental results with real life data 
sets. 
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