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   ABSTRACT 

This article shows the extension of the closed Newton-Cotes numerical 

integration of Simpson’s and Boole’s rule by using the odd derivatives of the 

function at the boundaries of the integration interval. The derivatives can be 

used to efficiently increase the convergence order of numerical integration 

and a fast decrease of the error. Furthermore, due to its simplicity, it is very 

easy to write into program code, which is also shown. The error estimation 

is given and proven. Also, the method is confirmed with two different 

examples for numerical integration, of 𝜋 and of the integral of the Gaussian 

distribution. Here, the method is compared to some common numerical 

integration methods, showing comparably faster convergence. 

Keywords: Numerical integration; Numerical quadrature; Derivative-based 

quadrature; Closed newton-cotes integration; Quadrature error estimation 

MSC Classification: 65D30, 65D32 
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INTRODUCTION 

Given a function  𝑓 ∶  [𝑎, 𝑏]→ ℝ. Supposed one wants to calculate the integral 𝐼:= ∫  𝑓
𝑏

𝑎
(𝑥) 𝑑𝑥, and a primitive of 

𝑓 is not known, does not exist in closed form or is too difficult to be calculated. Then, numerical calculation methods 

are needed, one of which is presented here. A very good comprehension of the different methods is given by Davis 

and Rabinowitz [1]. For numerical integration as presented here, the interval [𝑎, 𝑏] is dissected into 𝑛 equidistant 

intervals of width ℎ: 

: .
b a

h
n




   
 (1) 

 There are 𝑛 + 1 𝑥-values, denominated  𝑎 = 𝑥0, 𝑥1, . . . . , 𝑥𝑛−1 , 𝑥𝑛  = 𝑏.  Within each interval, 𝑓 is approximated by 

an interpolation function which is then integrated instead of 𝑓. The results of each approximated intervals are 

summed over all intervals and give an approximate solution of the integral. When ℎ → 0, the numerical solution 

approaches the real value of the integral. One of the simplest numerical integration schemes is the Trapezoidal 

Quadrature. Here, the value 𝐼𝑇  of the numerical integration is calculated to: 

1

0

: ( ) ( ),
2

n

T i i

i

h
I f x f x h





  
                     

(2) 

with the error 𝐸𝑇   being of the order ℎ2(||𝑓′′||𝑚𝑎𝑥: = 𝑚𝑎𝑥
𝑥𝜖[𝑎,𝑏]

|𝑓′′(𝑥)|): 

𝐸𝑇 ∶= |𝐼 − 𝐼𝑇  | ≤
1

12
· ℎ2 ·  (𝑏 −  𝑎) · ||𝑓′′||𝑚𝑎𝑥· 

When one uses not only the function values, but also the values of its derivatives, the convergence order and speed 

strongly improves. It is already known that the use of the first derivative at the boundaries 𝑎 and 𝑏 lead to an increase 

of convergence order by ℎ2 [1]. The method is known as the Euler-MacLaurin summation formula [2]. This approach is 

also shown in different characteristics from Ujevic  and Catinas et al [3,4]. Davis, Rabinowitz and Stancu and Stroud 

have shown that the integral of the function 𝑓 can be approximated by the function values and the values of arbitrary 

derivatives of the function [5]. Here, the derivatives at all nodes are used for the calculation. This method has been 

detailed by Burg and Burg and Degny [6,7]. They give the error estimations for different Newton-Cotes quadrature rules 

in combination with the first, second and third derivative and they show that both the convergence order increases 

and the error decreases in these cases. 

In this article, we show that when using Newton-Cotes Quadrature in combination with any odd derivative of 𝑓 at the 

boundaries, the convergence order vastly increases and the error decreases with each derivative being used. One 

great advantage of the odd derivatives is that only the derivatives at the boundaries are needed. We give the Simpson 

Quadrature formula extended with any odd derivative and its error estimation, showing that the error is of the order 

ℎ2𝑚+4, where 𝑚  is the highest number of the odd derivative being used (𝑚=1, first derivative, 𝑚=2, third derivative, 

and so on). Furthermore, the error coefficient decreases vastly with every higher derivative being used. The same 

holds for the extended Boole Quadrature formula, where the error is of the order ℎ2𝑚+6.  Both algorithms, which are 

very easy to implement, are given. 
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METHODOLOGY 

Simpson Quadrature with Odd Derivatives 

The Trapezoidal Quadrature can be extended by using not only two function values per interval, but by interpolating 

multiple intervals with values of different weights. These methods lead to the well-known Newton-Cotes formulas, 

e.g. Simpson’s rule and Boole’s rule. Details are shown in any textbook of basic numerical mathematics, e.g. 

Simpson’s rule is given by using two combined intervals and three values [2]: 

      

1
2

1 2 2 2 3 2

0

: ( ) ( ) ( 2 ),

n

S i i i

i

I h w f x w f x h w f x h





    
   

(3)  

with the weights  𝑤1 = 𝑤3 =
1

3
 and 𝑤2 =

4

3
 . The error of Simpson’s rule is converging by the order of ℎ4, two orders 

of magnitude faster than that of the Trapezoidal rule. The error coefficient is decreased by a factor of 15 (1/180 

compared to 1/12): 

𝐸𝑆: = |𝐼 − 𝐼𝑆| ≤
1

180
· ℎ4 · (𝑏 − 𝑎) · ||𝑓(4)||𝑚𝑎𝑥· 

Definition of Simpson Odd Derivative 

We will now extend the classical Simpson rule by the odd derivatives at the borders, giving the so-called "Simpson 

Odd Derivative Quadrature SOD” in Table 1. 

Table 1. Coefficients of the Simpson Odd Derivative Quadrature up to 𝑚=5 (9th derivative). 

m w1=w3 w2 α1 α2 α3 α4 α5 Error coef. γ 

1 
7

15
 

16

15
 

1

15
     

1

4725
 

2 
31

63
 

64

63
 

5

63
 −

1

945
    

1

198450
 

3 
127

255
 

256

255
 

7

85
 −

1

765
 

2

80325
   

1

7952175
 

4 
511

1023
 

1024

1023
 

85

1023
 −

7

5115
 

2

64449
 −

1

1611225
  

3

945294749
 

5 
2047

4095
 

4096

4095
 

341

4095
 −

17

12285
 

2

61425
 −

1

1289925
 

1

63851288
 

2

24902002331
 

 

Definition 1 (Simpson Odd Derivative Quadrature SOD): Given the integral 𝐼: = ∫ 𝑓
𝑏

𝑎
(𝑥) 𝑑𝑥 and the Simpson Rule  𝐼𝑆  

defined by Equation 3 with 𝑛 even and equidistant dissections of the interval of width ℎ (defined by Equation 1) of 

the function 𝑓 ∈ 𝐶2𝑚+4 [𝑎, 𝑏], with a natural number 𝑚 ≥ 1. Given also the odd derivatives of 𝑓 at the borders with 

| 𝑓(2𝑗−1)(𝑎)| < ∞ and | 𝑓(2𝑗−1)(𝑏)| < ∞ for 𝑗 = 1, . . , 𝑚 with at least one 𝑓(2𝑗−1)(𝑎) or 𝑓(2𝑗−1)(𝑏) ≠ 0. 

A fast converging formula for the numerical value of the integral is then calculated by: 

 (2 1) (2 1)

1

2· ·: ( ) ( ) .
m

j j

S S j

j

j

ODI I fh a f b  



  
                      

(4) 
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The weights 𝑤1 differ compared to Equation 3 with the number of derivatives 𝑚 being used. They are shown together 

with the 𝛼𝑗 in Table 1. We will now calculate the coefficients given in Table 1. For this, we will approximate 𝑓 by its 

Taylor series up to the degree 2𝑚 + 3 within the interval 𝑖 ranging from 𝑥𝑖 to  𝑥𝑖 + 2ℎ. Then follows: 

 
122

( )
3

0

(2 )
 

( 1
).

!
(

)

i

i

jmx h
j

i

j
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h
f x d

j
xx f
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




 

     
(5) 

Using the definition of 𝐼𝑆𝑂𝐷 , Equation 4, and considering only the interval from 𝑥𝑖 to 𝑥𝑖 + 2ℎ, the Taylor approximation 

up to the degree 2𝑚 + 3 gives:  

 , 1 2 3( ) ( ( 2 ))SOD i i i iI h w f x w f x h w f x h     
 

2 (2 1) (2 1)

1

( ( ) ( 2 ))
m

j j j

j i i

j

h f x f x h  



  
 

1 12 3 2 3
( ) ( )

1 2 3

0 0

2
( ) ( ) w ( )

! !

j j jm m
j j

i i i

j j

h h
w hf x w f x f x

j j

  

 

    
 

1 1 2 1 12 3 2 3
( ) ( )

1

2 2

2 2
( ) ( ).

( 1)! ( 2 1)!

j j j m jm m
j j

i m i

j j m

h h
f x f x

j j m
 

     

 

  
  

 
     

 (6) 

Adding all 𝑛/2 intervals 𝐼𝑆𝑂𝐷,𝑖  together gives the approximation of  𝐼𝑆𝑂𝐷 . Note that only the leftmost and rightmost 

derivatives remain, as the inner derivatives cancel each other out. This works only when the odd derivatives are used, 

when even derivatives are used, the inner derivative values remain and the method will become much less efficient. 

For the calculation of the optimal 𝑤1, 𝑤2, 𝑤3 and 𝛼𝑗, Equation 5 and Equation 6 have to be set equal, as only then 

the approximation SOD gives the integral approximation. Comparing the coefficients with the corresponding 

derivatives, the following LSE with 4 + 2𝑚 rows and 3 +𝑚 columns results:  

(

 
 
 
 
 
 
 
 

1 1 20 0 ⋯ 0
0 1 21 0 ⋯ 0

0 1 22 −
2!

1!
· 21 ⋯ 0

0 1 23 −
3!

2!
· 22 ⋯ 0

⋮

0 1 22𝑚 −
(2𝑚)!

(2𝑚−1)!
· 22𝑚−1 ⋯ −

(2𝑚)!

(1)!
· 21

⋮

0 1 22𝑚+3 −
(2𝑚+3)!

(2𝑚+2)!
· 22𝑚+2 ⋯ −

(2𝑚+3)!

(4)!
· 24)

 
 
 
 
 
 
 
 

·

(

  
 

𝑤1
𝑤2
𝑤3
𝛼1
⋮
𝛼𝑚)

  
 
= (

21

1

⋮
22𝑚+4

2𝑚+4

)                  (7) 

 

Although the LSE has more rows than variables, the solution is unique (without proof) and gives the coefficients 𝑤1, 

𝑤2, 𝑤3, and 𝛼𝑗,  for the Simpson-Odd-Derivative Quadrature formula, Equation 4. The values when using the first five 

odd derivates (𝑚 = 5) have been and are shown in Table 1. Higher derivatives can be calculated from Equation 7, 

but the calculation becomes more awkward due to the small numbers where one has to take care about rounding 

errors.  

Please note again, that only the odd derivatives at the borders of the interval are needed and with each odd order 

being added, the convergence is by order of 2 faster. Additionally, the error coefficient γ decreases strongly, as will 

be shown below. Please note that in the case of 𝑓(2𝑗−1) (𝑎)=𝑓(2𝑗−1) (𝑏) for 𝑗 ∈  1, ..., 𝑚, the method is still applicable 
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but not so effective. Overall, the method is applicable when |𝑓(𝑎)| and |𝑓(𝑏)| are < ∞ and it becomes more efficient 

when the higher derivatives of 𝑓 are not becoming too large with higher orders. 

The quadrature 𝐼𝑆𝑂𝐷 is “optimal” in the sense that the approximation is perfect for any polynomial 𝑝(𝑥) being of 

maximum degree 2𝑚 + 3. This means that |𝐼 − 𝐼SOD| = 0 for  𝐼 ∶= ∫ 𝑝
𝑏

𝑎
(𝑥)𝑑𝑥. This directly follows from the 

calculation formula given now, and needs thus not be proven. 

Error estimation 

Theorem 1 (Error estimation of Simpson Odd Derivative): The quadrature error of the Simpson Odd Derivative 

Integration is of the order  ℎ2𝑚+4: 

𝐸𝑆𝑂𝐷 ∶=  |𝐼 − 𝐼𝑆𝑂𝐷| ≤
𝛾

2
· ℎ2𝑚+4 · (𝑏 − 𝑎) · ||𝑓(2𝑚+4)||𝑚𝑎𝑥·            (8) 

With the error coefficient 𝛾 given in Table 1. 

Proof: Considering the quadrature error, one has to calculate the Taylor error. The Taylor remainder of order 2𝑚 + 4

 of Equation 5 is (𝑥𝑖 ≤  𝜉 ≤  𝑥𝑖 +  2ℎ): 

22𝑚+5

(2𝑚 + 5)!
· ℎ2𝑚+5 · 𝑓(2𝑚+4)(𝜉). 

The remainder of Equation 6 is: 

(
𝑤2 + 2

2𝑚+4𝑤3
(2𝑚 + 4)!

−∑𝛼𝑗

𝑚

𝑗=1

·
22𝑚−2𝑗+5

(2𝑚 − 2𝑗 + 5)!
) · ℎ2𝑚+5𝑓(2𝑚+4)(𝜉). 

 

The overall error 𝐸𝑆𝑂𝐷,𝑖  for one interval 𝑖 from 𝑥𝑖 to 𝑥𝑖 +2ℎ is then calculated by the difference of both Taylor 

remainders:  

𝐸𝑆𝑂𝐷,𝑖 ∶= |𝐼𝑖 − 𝐼𝑆𝑂𝐷,𝑖| 

=|(
22𝑚+5

(2𝑚+5)!
−
𝜔2+2

2𝑚+4𝜔3

(2𝑚+4)!
+∑ 𝛼𝑗 ·

𝑚

𝑗=1

22𝑚−2𝑗+5

(2𝑚−2𝑗+5)!
) · ℎ2𝑚+5 · 𝑓(2𝑚+4)(𝜉)| 

≤ |
22𝑚+5

(2𝑚 + 5)!
−
𝜔2 + 2

2𝑚+4𝜔3
(2𝑚 + 4)!

+∑𝛼𝑗

𝑚

𝑗=1

·
22𝑚−2j+5

(2𝑚 − 2𝑗 + 5)!
| · ℎ2𝑚+5 · |𝑓(2𝑚+4)(𝜉)| 

                                      =: 𝛾 · ℎ2𝑚+5 · |𝑓(2𝑚+4)(𝜉)|. 

 

This gives the calculation for the error coefficient 𝛾. Please note from Table 1, that the factor 𝛾 decreases about a 

factor of 40 for each higher odd derivative used (this factor seems to converge to 4𝜋2 ≈ 39, 48 for higher derivatives, 

likewise for the Euler- MacLaurin formula, but this is just an assumption) ! 

For the overall error then holds, using Equation 1: 

𝐸𝑆𝑂𝐷 =∑𝐸𝑆𝑂𝐷,𝑖

𝑛 2⁄

𝑖=1

≤
𝛾

2
· ℎ2𝑚+4 · (𝑏 − 𝑎) · ||𝑓(2𝑚+4)||𝑚𝑎𝑥· 
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Boole Quadrature with Odd Derivatives 

When one uses not two neighbouring intervals but four, the quadrature formula referred to Boole results. For this, 

the integral of 𝑓 can be calculated by: 

1
4

1 4 2 4 3 4 4 4 4 4

0

: ( ) ( ) ( 2 ) ( 3 ) ( 4 ),

n

B i i i i i

i

I h w f x w f x h w f x h w f x h w f x h





         (9) 

With the weights 𝑤1 = 𝑤5 =
14

45,
  𝑤2 = 𝑤4 =

64

45
  𝑎𝑛𝑑 𝑤3 =

24

45
 .The error of Boole’s rule is converging by the order of 

ℎ6, two orders of magnitude faster than Simpson’s rule: 

𝐸𝐵 ∶= |𝐼 − 𝐼𝐵| ≤
2

945
· ℎ6 · (𝑏 − 𝑎) · ||𝑓(6)||𝑚𝑎𝑥· 

Definition of Boole Odd Derivative 

Like for the Simpson rule, Boole’s rule can also be extended by the odd derivatives at the borders, leading to the so-

called “Boole Odd Derivative Quadrature BOD”. 

Definition 2 (Boole Odd Derivative Quadrature BOD): Given the integral 𝐼 ∶= ∫ 𝑓
𝑏

𝑎
(𝑥)𝑑𝑥 

and Boole’s Rule 𝐼𝐵 defined by Equation 9 with 𝑛 doubly even and equidistant dissections of the interval of width ℎ 

(defined by Equation 1) of the function 𝑓 ∈ 𝐶2𝑚+6[𝑎, 𝑏], with a natural number 𝑚 ≥ 1. Given also the odd derivatives 

of 𝑓 at the borders with |𝑓(2𝑗−1)(𝑎)|  < ∞ and |𝑓(2𝑗−1)(𝑏)|  < ∞ for j = 1, . . , m with at least one 𝑓(2j−1)(𝑎) or 

𝑓(2j−1)(𝑏) ≠ 0. 

A fast converging formula for the numerical value of the integral is then calculated by: 

   
 (2 1) (2 1)

1

2· ·: ( ) ( ) .
m

j j

B B j

j

j

ODI I fh a f b  



  
                     

(10) 

The weights 𝑤𝑖  differ compared to Equation 9 with the number of derivatives m being used. They are shown together 

with the αj in Table 2. The result for 𝑚 = 1 is also given by Burg in [6]. In this paper we give a general approach for 

any odd derivative used. 

Table 2. Coefficients of the Boole Odd Derivative Quadrature up to 𝑚 = 2 (third derivative); due to numerical 

instabilities, the calculation of the LSE for 𝑚 ≥ 3 is not practical). 

m w1=w5 w2=w4 w3 α1 α2 Error coef. 𝜸 

1 
434

945
 

1024

945
 

864

945
 

4

63
  

16

99225
 

2 
7874

16065
 

16384

16065
 

15744

16065
 

4

51
 −

16

16065
 

3

782792
 

 

The approach to calculate the 𝑤𝑖  and 𝛼𝑗 is identical to SOD, but the numbers slightly change. This time, 𝑓 is 

approximated by its Taylor series up to order 2𝑚 + 5. When using the same approach as in Equations 5 and 6 with 

the Taylor series up to order 2𝑚 + 5, the following LSE with 6 + 2𝑚 rows and 5 + 𝑚 columns results: 
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(

 
 
 
 
 
 
 
 

1 10 ⋯ 40 0 ⋯ 0
0 11 ⋯ 41 0 ⋯ 0

0 12 ⋯ 42 −
2!

1!
· 41 ⋯ 0

0 13 ⋯ 43 −
3!

2!
· 42 ⋯ 0

⋮

0 12𝑚 ⋯ 42𝑚 −
(2𝑚)!

(2𝑚−1)!
· 42𝑚−1 ⋯ −

(2𝑚)!

(1)!
· 41

⋮

0 12𝑚+5 ⋯ 42𝑚+5 −
(2𝑚+5)!

(2𝑚+4)!
· 42𝑚+4 ⋯ −

(2𝑚+5)!

(6)!
· 46)

 
 
 
 
 
 
 
 

·

(

  
 

𝑤1
⋮
𝑤5
𝛼1
⋮
𝛼𝑚)

  
 
= (

41

1

⋮
42𝑚+6

2𝑚+6

)  

 

The solution of the LSE gives the coefficients 𝑤𝑖  and 𝛼𝑗 of Table 2. The error of BOD is zero for all polynomials of 

degree smaller or equal to 2𝑚 + 5. 

Error estimation 

Theorem 2 (Error estimation of Boole Odd Derivative): The quadrature error of the Boole Odd Derivative Integration 

is of the order ℎ2𝑚+6: 

𝐸𝐵𝑂𝐷: = |𝐼 − 𝐼𝐵𝑂𝐷| ≤
𝛾

4
· ℎ2𝑚+6 · (𝑏 − 𝑎) · ||𝑓(2𝑚+6)||𝑚𝑎𝑥· 

With the error coefficient γ given in Table 2. 

Proof: The proof is analogous to the proof for SOD. In this case, the Taylor remainder of order 2𝑚 + 6 has to be 

considered. The remainder for the integral 𝐼 from 𝑥𝑖  to 𝑥𝑖 + 4ℎ is (𝑥𝑖 ≤ 𝜉 ≤  𝑥𝑖 +  4ℎ): 

42𝑚+7

(2𝑚 + 7)!
· ℎ2𝑚+7 · 𝑓(2𝑚+6)(𝜉). 

 The remainder of Equation 10 is: 

(
𝑤2 + 2

2𝑚+6𝑤3 + 3
2𝑚+6𝑤4 +4

2𝑚+6𝑤5
(2𝑚 + 6)!

−∑𝛼𝑗

𝑚

𝑗=1

·  
42𝑚−2𝑗+7

(2𝑚 − 2𝑗 + 7)!
)· ℎ2𝑚+7𝑓(2𝑚+6)(𝜉). 

The overall error 𝐸𝐵𝑂𝐷,𝑖  for one interval 𝑖 from 𝑥𝑖 to  𝑥𝑖 + 4ℎ  is calculated by the difference of both Taylor remainders: 

𝐸𝐵𝑂𝐷,𝑖: = |𝐼𝑖 − 𝐼𝐵𝑂𝐷,𝑖| ≤  𝛾 · ℎ
2𝑚+7 · |𝑓(2𝑚+6)(𝜉)|. 

The error coefficient γ then calculates to: 

𝛾 = |
42𝑚+7

(2𝑚 + 7)!
−
𝑤2 + 2

2𝑚+6𝑤3 + 3
2𝑚+6𝑤4 + 4

2𝑚+6𝑤5
(2𝑚 + 6)!

+∑𝛼𝑗

𝑚

𝑗=1

·
42𝑚−2𝑗+7

(2𝑚 − 2𝑗 + 7)!
|. 

Here, also, the error coefficient decreases by a factor of about 40 with each odd derivative being used. 

The overall error then is, using Equation 1: 

𝐸𝐵𝑂𝐷 =∑𝐸𝐵𝑂𝐷,𝑖

𝑛 4⁄

𝑖=1

≤
𝛾

4
· ℎ2𝑚+6 · (𝑏 − 𝑎) · ||𝑓(2𝑚+6)||𝑚𝑎𝑥· 

Applications 

Algorithm: In the following we give the algorithm. It has to be noticed that the algorithm is practical, when the 

derivatives of 𝑓 at the borders are easy to calculate, which is usually provided in common programming languages 

like Python, Mathematica or Matlab. Then, the derivatives at the borders have to be calculated only once and the 

integral is easily calculated to any accuracy needed. The main advantages are its simple calculation and its very fast 
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convergence. However, when the derivatives of 𝑓 are not easy to be determined or its values at the borders become 

excessively large, the algorithm may not be suited. 

Algorithm 1 calculate 𝐼: = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥   

Require:  

 ℎ =
𝑏−𝑎

𝑛
 

 𝑛 ≥ 2 even natural number for SOD   

 𝑛 ≥ 4 doubly even natural number for BOD  

 𝑚 ≥ 1 natural number 

 Vector 𝑤
→
= (𝑤1, 𝑤2, 𝑤3 + 𝑤1, 𝑤2, . . . , 𝑤3 + 𝑤1, 𝑤2, 𝑤1)

𝑇of length 𝑛 + 1 for SOD, see Table 1 

 Vector 𝑤
→
= (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 + 𝑤1, 𝑤2, . . . , 𝑤4, 𝑤5 + 𝑤1, 𝑤2, 𝑤3, 𝑤2, 𝑤1)

𝑇  of length 𝑛 + 1 for BOD, see Table 2 

 Vector 𝑓
→

= (𝑓(𝑎), 𝑓(𝑥1), … , 𝑓(𝑥𝑛−1), 𝑓(𝑏))
𝑇  of length 𝑛 + 1, function values at x-values 𝑥𝑖 

 Vector 𝛼
→
= (𝛼1 · ℎ

2, . . . , 𝛼𝑚 · ℎ
2𝑚)𝑇 of length 𝑚, see Table 1 (SOD) or 2 (BOD) 

 Vector 𝑓𝐷
→ 
= (𝑓′(𝑎) − 𝑓′(𝑏), … , 𝑓(2𝑚−1)(𝑎) − 𝑓(2𝑚−1)(𝑏))𝑇 of length 𝑚 

Ensure: 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 

   𝐼 = ℎ ·𝜔
→
· 𝑓
→

+ 𝛼
→
· 𝑓𝐷⃗⃗  ⃗ (scalar products) 

Please note that only SOD or BOD needs to be chosen. The algorithm (both SOD and BOD) uses in sum 3𝑛 +𝑚2 +

8𝑚 + 5 operations, out of which are 𝑛 + 1 + 2𝑚 function calls. 

Example 1: Calculation of the Integral of the Gaussian distribution: Now we discuss the approximation of the integral 

of the Gaussian distribution with 𝑓(𝑥):= 𝑒𝑥𝑝(−𝑥2) by Simpson and Boole Odd Derivative Quadrature and compare 

it with several common quadrature methods. In special, we calculate the integral by using Algorithm 1. 

𝐼: = ∫ 𝑒−𝑥
2

2

0

𝑑𝑥 

Results for the absolute error of Simpson Odd Derivative Quadrature over step size and number of operations are 

 

 The much faster convergence of SOD compared to the normal Simpson Quadrature without derivatives,  

 The much more efficient convergence of SOD, especially when using higher derivatives; machine precision 

accuracy is given within about 100 operations or only 16 steps (ℎ = 0.125),  

 The overall very small errors especially for decreasing interval size ℎ. 

 

 

 

 

 

 

 

 

 

given in Figure 1. One clearly sees three effects: 

1

2:   

:   



 
Research & Reviews: Journal of Statistics and Mathematical Sciences 

JSMS| Volume 9| Issue 4| December, 2023  9 
 

Figure 1. Absolute error of 𝐼: = ∫ 𝑒−𝑥
22

0
𝑑𝑥 over step width ℎ (left image) and the number of operations (right figure) 

using Simpson Odd Derivative (Equation 4). 

 

When comparing SOD with BOD as given in Figure 2, one sees that Boole Odd Derivative is even more efficient than 

Simpson Odd Derivative, but the effect is not as strong as expected, showing about a one order of magnitude smaller 

error with the same number of intervals or operations. However, the effect of the derivatives is evident, as each 

derivative decreases the error by about a factor of 100, two orders of magnitude.  

To further classify the method, we compare it with usual Newton Cotes Quadratures. For this, we calculate 𝐼:=

∫ 𝑒−𝑥
22

0
𝑑𝑥 up to an accuracy <1e-12. We show how many operations and function calls are necessary to reach this 

accuracy. As methods we use the Trapezoidal, Simpson and Boole Quadrature without derivatives and SOD and BOD 

up to 𝑚 = 3. Table 3 shows the results. The efficiency of the use of odd derivatives can clearly be seen. Take e.g. 

SOD with 𝑚 = 3. According to Table 1 and Equation 4, the error estimation for 𝑚 = 3 (5th derivative) depending on 

the step width ℎ is: 

𝐸𝑆𝑂𝐷,𝑚=3 ≤
ℎ10

7952175
· ||𝑓(10)||

𝑚𝑎𝑥
≈ 1.26 · 10−7 · ℎ10 · ||𝑓(10)||

𝑚𝑎𝑥
 

which leads to a very small error even at a relatively large step width (or small numbers of 𝑛). Additionally, very little 

numbers of operations and function calls are necessary, resulting in a very fast calculation. 

Table 3. Approximation of ∫ 𝑒−𝑥
22

0
𝑑𝑥 = 0.882081390762422 to an accuracy <1e-12 

Rule Degree m Intervals n Abs. error #op Function calls 

Trapezoidal Rule (Eq. 2) 0 155700 9.84e-13 311400 155700 

Simpson’s Rule (Eq. 3) 0 506 9.93e-13 1520 507 

Boole’s Rule (Eq. 9) 0 60 7.54e-13 185 61 

SOD (Eq. 4) 1 36 8.43e-13 122 39 

SOD (Eq. 4) 2 24 3.34e-13 97 29 

SOD (Eq. 4) 3 12 8.83e-13 74 19 

BOD (Eq. 10) 1 32 5.50e-13 106 33 

BOD (Eq. 10) 2 16 7.50e-13 73 21 
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Figure 2. Absolute error of 𝐼: = ∫ 𝑒−𝑥
22

0
𝑑𝑥 over step width ℎ (left image) and the number of operations (right figure) 

using Simpson and Boole Odd Derivative up to  𝑚 = 2. 

 

Example 2: Calculation of 𝝅 : As indicated above, the strength of the method shows especially when both the number 

of derivatives 𝑚 and the number of intervals 𝑛 is increased, which means that the width ℎ is decreased. For the 

second illustration, we take the function 𝑓(𝑥) = 4/(1 + 𝑥2).  The primitive of the function is 4 arctan 𝑥, so for the 

integral from 0 to 1 follows:  

∫
4

1 + 𝑥2

1

0

𝑑𝑥 = 𝜋 

This function fulfills all drawbacks concerning the method given above: the higher derivatives are hard to calculate 

by hand, 𝑓(2𝑗−1) (𝑎) = 𝑓(2𝑗−1) (𝑏) = 0 for 𝑗 = 2,4, 6 , . . ., so the prerequisites are not optimal. Furthermore, the higher 

derivatives at 𝑏 increase extremely fast (𝑓′(𝑏) = −2, 𝑓(5)(𝑏) = 60, 𝑓(9)(𝑏) = −45360, 𝑓(13)(𝑏) =

194594400, . . ). However; these drawbacks are highly compensated when one uses more intervals. Results are 

shown in Figure 3, which clearly show the very fast convergence towards 𝜋, even when using only the first and third 

derivative. Surprisingly, Boole Odd Derivative performs even less than Simpson Odd Derivative, probably coming from 

the ill conditions of the higher derivatives used for BOD. 
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Figure 3. Absolute error of   𝐼: = ∫
4

1+𝑥2

1

0

𝑑𝑥 = 𝜋 over step width ℎ (left image) and the number of operations (right 

figure) using Simpson and Boole Odd Derivative up to 𝑚 = 2. 

 

CONCLUSION 

In this paper, a very efficient and fast converging Quadrature formula for numerical integration has been shown, 

which is also very easy to implement. Besides of the function value, it also uses the odd derivatives of the function 

at the borders only. A general method for the calculation of several Newton-Cotes formulas with odd derivatives has 

been given, which is applicable to all Newton-Cotes Quadratures and shown here only for Simpson’s and Boole’s rule. 

With each odd derivative additionally used, the convergence increases with the square of the step size ℎ2 and the 

absolute error coefficients decrease by about a factor of 40. The error formulas and a method to calculate the errors 

have also been given, with the error formula being proven. 

The algorithm of the method has been given with all its prerequisites. It is very easy to write into program code. The 

efficiency of the algorithm has been shown using two common examples. Comparing it with usual Newton-Cotes 

formulas, a much faster convergence is shown, making the method very feasible. However, the method is not suitable 

in occasions when the derivatives of the function to be integrated are difficult or intricate to calculate. In any other 

cases, a very practical method is provided. 

AVAILABLILITY OF SUPPORTING DATA 

The code for the algorithm written in Python is available from the author.  
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