
Volume 3, No. 4, April 2012 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2010, All Rights Reserved   21 

FAULT TOLERANCE IN GRID COMPUTING USING WADE  

G.Veeranjaneyulu
1
, Srimathi.C

2
  

School of Electronics Engineering, VIT University, Vellore, Tamilnadu-632014 

Veeranji11@gmail.com1, srimathic@vit.ac.in2 

Abstract: Grid computing is a coordinated resource sharing and solving the problems in organizations which are dynamic and virtual in nature. 

Apart from the dynamic nature of grids which means that resources may enter and leave the grid at any time, in many cases outside of the 
applications, control grid resources are also heterogeneous in nature. Many grid applications will be running in environments  where interaction 
faults are more commonly occur between diverse grid nodes. As resources may also be used outside of organizational boundaries, it becomes 
iteratively difficult to guarantee that a resource being used is not malicious one. Because of the diverse faults and failure conditions developing, 
deploying, and executing long running applications over the grid remains a challenge. Hence fault tolerance is an primary factor for grid 
computing. The prototype system is designed using agents to provide service replication, reactivation and avoids the single point of fai lure. The 
agents and the workflows are provided by a common software platform called WADE. 

INTRODUCTION 

Computational grids become increasingly important to solve 

computationally intensive and time consuming problems in 

science, industry, and engineering. Since the failure 

probability increases with a rising number of components, 

fault tolerance is an essential characteristic of parallel 
systems. Such systems must provide redundancy and 

mechanisms to detect and localise errors as well as to 

reconfigure the system and to recover from error states[1]. 

 

This project proposes to provide an information 

management framework as a flexible and reliable distributed 

service system which are applied for specific data 

processing tasks. This design is based on a station server 

unit which host dynamic services. The station servers are 

dynamically interconnected and provide a distributed 

framework for hosting services. 

 
Unfortunately the task of building Grid applications remains 

extremely difficult because there are few tools available to 

support developers. To build reliable and re-usable Grid 

applications, programmers should be equipped with a set of 

tools that hides the details of most Grid services and 

provides developers with a consistent, non-complex model 

in which applications can be composed from well tested, 

reliable subunits. For some time, Grid workflows have been 

emerging as an important alternative to develop Grid 

applications. Grid workflow management systems are 

evolving towards a system that will offer both the definition 
of applications at a high level of abstraction (without dealing 

with implementation details) and their automatic 

deployment and execution on the basis of the available 

resources in the Grid. Moreover, the use of agents have been 

proved a good means for intelligent tasks distribution and 

for supporting users in both on-line and offline 

activities[2,4]. 

 

The system is designed using agents to provide service 

replication, reactivation and avoids the single point of 

failure. The agents and the workflows are provided by a 

common software platform called WADE (Workflows and 
Agents Development Environment).This helps in managing 

the complexity of the distribution both in terms of  

 

administration and fault tolerance. This fault tolerance can 
be increased using agent replication providing redundant 

copies of the agent, increasing rate of fault tolerance [2,5]. 

THE WADE PLATFORM 

WADE (Workflow and Agent Development Environment) 
represents the main evolution of Jade, a popular open source 

middleware conceived to facilitate the development of 

distributed applications based on the agent-oriented 

paradigm. JADE provides a distributed runtime 

environment, the “agent” and “behaviour” abstractions, peer 

to peer communication between agents and basic agent 

lifecycle management and discovery mechanisms. WADE 

adds to JADE the support for the execution of tasks defined 

according to the workflow metaphor and a number of 

mechanisms that help managing the complexity of the 

distribution both in terms of administration and fault 

tolerance[3].  
 

WADE comes with a development environment called 

“WOLF” that facilitates the creation of WADE-based 

application. WOLF is an Eclipse plug-in and as a 

consequence allows WADE developers to exploit both 

Eclipse IDE and WADE-specific features[3]. WOLF, the 

development environment for WADE-base applications. It 

has been implemented as a plug-in integrated in the Eclipse 

Platform. This choice allowed developing a complete 

environment to manage the whole life cycle of workflows. 

The integration with the Eclipse Platform allows also the 
exploitation of all features offered by the Eclipse Java IDE. 

WOLF represents a key element in the challenge to bring the 

workflow approach from the business process level to the 

level of system logics[3,8]. 

a. The Boot Daemon process: a process running in 

each host of the platform that it is in charge of the 

Containers activation within its local host. 

b. The Configuration Agent (CFA): an Agent runnin 

in the Main Container and is responsible for 

interacting with the boot daemons and controlling 

the application life cycle 

c. The Controller Agents (CA): there is a controller 
agent for each container in the platform and they 

are responsible for supervising activities in the 



G.Veeranjaneyulu et al, Journal of Global Research in Computer Science, 3 (4), April 2012, 21-25 

© JGRCS 2010, All Rights Reserved   22 

local container and for all the fault tolerance 

mechanisms provided by WADE. 

d. The Workflow Engine Agents (WEA): They are 

the most distinguished components of a wade based 

application. In fact, instead of providing a single 

powerful workflow engine, WADE gives to each 

JADE agent the possibility of executing workflows 

and the Workflow Engine Agents are the agents 

enabled to the workflows executions, by means of 

an embedded micro workflow engine [5].  

 
As mentioned above, WADE makes available both the 

expressiveness of a visual representation of workflows and 

the power of usual programming languages. It provides a 

graphical representation of a workflow with a well defined 

structure. Wade adopts the meta model defined by the 

XPDL[4], standard specified by the Workflow Management 

Consortium. This meta-model XPDL language conceived as 

interchange formalism between different systems. WADE 

supports the import of XPDL files and the adoption of this 

meta-model facilitates these operations. In particular, 

WADE supports all the elements required by the version 1.0 
of the XPDL specification and some elements, related to the 

events, from the version 2.0. 

 

In the XPDL metamodel a process is represented as a 

workflow, consisting of one or more activities that can be 

thought as tasks to be executed. In a workflow, the 

execution entry point is defined, specifying the first activity 

to be performed; this activity is called Start Activity. A 

workflow must have one or more termination points, named 

Final Activities. 

 
The execution flow is defined by means of transitions. A 

transition is an oriented connection between two activities 

and may have a condition associated. Excluding the final 

ones, each activity may have one or more outgoing 

transitions. When the execution of an activity is terminated, 

the conditions associated to its outgoing transitions are 

evaluated. As soon as a condition is verified the 

corresponding transition is activated and the execution flow 

proceeds towards the destination activity. 

 

Normally, a process execution uses some internal data5, for 

instance, to pass intermediate results between activities 
and/or for evaluation of conditional expressions. In the 

XPDL meta-model internal data are modelled by the Data 

Fields. A process can have one or more inputs to be 

provided and one or more outputs expected at the end of its 

execution. Inputs and outputs of a process can be formalized 

in the XPDL meta-model by means of the workflow Formal 

Parameters. 

Fault Tolerance: 

Fault tolerance [4,7] is a very important issue especially 

when dealing with real-world application. Using a 

distributed approach (as typically happens when building an 

application on top of JADE/WADE) provides a mean to deal 

with unexpected HW faults. JADE already includes suitable 

fault tolerance mechanisms that allow the platform to 

survive to a fault of a container or host. Such mechanisms 

however work at the platform level and not at the 

application level. That is they ensure that the mechanisms 

provided by the platform, such as message delivery and 

agent creation/destruction, continue to work even after an 

unexpected fault of one of the hosts where a JADE-based 

application is running. Of course if an agent implementing a 

given application specific piece of functionality F was 

running on the crashed host, the application (even if its 

remaining agents will still be able to exchange messages and 
exploit other platform services) may not work anymore as 

functionality F is no longer available. 

 

In order to support fault tolerance at the application level, 

WADE provides an additional mechanism that enable 

automatically restarting all agents that suddenly disappear 

due to HW or SW faults. This mechanism is implemented 

by the Control Agents., each container (but the Main 

Container) holds a Control Agent that is responsible for 

supervising the resources in the local container. Furthermore 

Control Agents coordinate themselves so that a single leader 
is elected. 

The “autorestart[4]” mechanism works as follows. 

a. If an agent suddenly dies (this may happen if there is 

a software bug in the agent’s code that causes an 

uncaught exception), the Control Agent of the local 

container automatically restarts it. 

b. If an entire container suddenly dies (e.g. because the 

container process is killed), of course the local 

Control Agent dies too. The leader Control Agent 

then takes care of restarting the whole container (this 

operation is actually performed by the BootDaemon 
on the host where the container was active upon a 

request from the leader Control Agent) with all its 

agents. 

c. If the dead container included the leader Control 

Agent, other Control Agents elect a new leader that 

takes care of restarting the dead container. 

d. If the recreation of the whole container fails (this is 

always the case when a container disappeared due to 

a fault of the underlying HW) the leader Control 

Agent restarts all agents that where living in the dead 

container through the Runtime Allocator Agent. The 

latter will then recreate all dead agents according to 
its agent allocation policies. 

 

It should be noticed that the auto restart mechanism 

provided by WADE is only responsible for restarting the 

dead agents passing them the same arguments they were 

launched with. Application developers are responsible for 

implementing application specific mechanisms to restore the 

internal state of the agents after a fault/restart. In order to 

facilitate that, the WadeAgentImpl class provides the 

getRestarted() method that can be used in the 

agentSpecificSetup() method to distinguish between a 
normal startup and a restart after a crash. 

 

 

 

 
 



G. Veeranjaneyuly et al, Journal of Global Research in Computer Science, 21-25 

© JGRCS 2010, All Rights Reserved   23 

 

  

 
 

Figure 1. WADE architecture 

SYSTEM DESIGN AND IMPLEMENTATION 

Station server is a network service that can host dynamic 

services. These are interconnected providing a distributed 

framework for services. Each station server registers in a set 

of lookup servers by themselves and they acts as a remote 

listener in other station servers for any state modifications. 

Each station server gets a proxy for all other station servers 

and updates dynamic list of active station servers. The 

mechanism which is provided by the WADE  platform 
automatically inform the other servers if any changes occur 

in other services and if any problems occur in the 

network[2]. 

 

The dynamic services which are hosted by the station 

servers made available to the interested clients. It allows the 

client services to access the information they require from 

the entire system. The remote event notification supports the 

communication between the dynamic services hosted by 

station servers and management. The remote event 

subscription of the services to register for transition events 
at the time of registration. 

 

Agents are the dynamic services which can move between 

station servers to perform a certain task requested by the 

clients. Agents can interact in both synchronously or 

asynchronously using station servers. The station server 

does the service management and facilitates the inter-service 

communication. 

 

A Wade based application consists of Main Container 
hosting the JADE, AMS and DF must be activated first with 

other containers registering to it at bootstrap time. WADE 

specific components are the boot daemon processes (one per 

host) responsible for activating containers in the local host. 

The Configuration Agent always running in the main 

container to interact with the boot daemons and controlling 

the application life cycle. Controller Agents (one per 

container)responsible for supervising activities in the local 

container and fault tolerant mechanisms. The workflow 

Engine Agents are able to execute the tasks in order to 

provide domain specific features. 
 

The services which are provided by the server must be 

registered in the lookup server. The interested clients wants 

to access any service from the server, the request must check 

up in the lookup server whether the service is providing by 

the server or not, if the service is present in the lookup 

server then the request is transferred to the station server and 

the service can be accessed by the client through remote 

event notification and agents between them[4]. 

 

 



G.Veeranjaneyulu et al, Journal of Global Research in Computer Science, 3 (4), April 2012, 21-25 

© JGRCS 2010, All Rights Reserved   24 

  

 

Figure 2. System Design 

The services can be registered in the WADE by using DF 

registration. Agent identity is contained within an Agent 

Identifier (AID), composed of a set of slots that comply with 

The structure and semantics defined by FIPA. The name of 

an agent is a globally unique identifier that JADE constructs 

by concatenating a local name to the platform name. The 

agent addresses are transport addresses inherited by the 

platform, where each platform address corresponds to an 

MTP end point where FIPA-compliant messages can be sent 

and received. Agent programmers are also allowed to add 

their own transport addresses to the AID. AMS is the 
contact point for all agents that need to interact in order to 

access the white pages of the platform as well as to manage 

their life cycle. DF is the agent that implements the yellow 

pages service, used by any agent wishing to register its 

services or search for other available services. It also accepts 

subscriptions from agents that wish to be notified whenever 

a service registration or modification is made that match 

some specified criteria. 

METHODOLOGY 

Considering 4,8,16,32 server system designs, holding 20 

services. In four server system design each server can hold 

five services in them. In eight server system design each 

server can hold four services. In sixteen server system 

design each server can hold three services. In thirty two 

server system design each server can hold two services.   
The Services are registered in the lookup server using Agent 

Identifier (AID), when a client requested for a service it 

verifies whether the service is available or not in the main 

server. If the service is available the request sent to the main 

server and the response for the request sent to the client 

through the control agents. Here system is designed for 4, 8, 

16, 32 servers separately, to know how many replications 

are made in the local servers. The main server is hosting in 

main Container and all other local servers are working on 

different containers. Due to some server crashing or any 

failure occur in the main server, the request should not 

struck there itself, the request should send to the local 

servers managed by Configuration Agent, where the request 

is send to all servers in which  replications for the services. 

After finding the requested service, response sent to the 

client. From this replication times are calculated and plotted 

the graphs for time taken searching the replications from 

client request and time taken from replications to reach 

client response. 

RESULTS AND ANALYSIS 

The replications of services for 32 server system design are 

more where more number of servers crashed also, the 

system can sustain the failure and the response for a request 
can sent to the client. For the 16 server system design the 

replication of services are reduced it is not that much 

efficient compared to 32 server system. For 8 server and 4 

server system design replication of services are majorly 

reduced, here the probability of system failure is high if any 

failures occur in the system. 

 

The Fig3shows the replications for 4, 8, 16, 32 server 

system designs. The blue colour indicates the first 

replication, the red colour indicates second replication and 

green colour indicates third replication in all server system 
designs. When a failure occurs in the system, time taken to 

find the replications   increases when the number of servers 

are increasing in the system. The access to service is  very 

fast while main server is failed, in the four server system 

design compared to other system designs, But the system is 

not reliable and efficient compared to other system designs 

because only single replication is available and is not 

tolerant to faults and there is no proper load handling. To 



G. Veeranjaneyuly et al, Journal of Global Research in Computer Science, 21-25 

© JGRCS 2010, All Rights Reserved   25 

overcome this problem, eight server systems is designed, 

here two levels of replication of services is considered. This 

improves fault tolerance and load balancing between 

replications compared to four system designs. To handle 

more number of requests a sixteen server system design and 

thirty two server system can be used where fault tolerance is 

very high in both the systems and also load balancing is 

good compared to eight server system design. The 

disadvantage of thirty two server system design is taking 

more time to find replications and to give response to the 

client. 
 

 

Figure 3. No of servers’ vs. time taken to reach replications from client 

 

 

Figure 4. No of servers’ vs. time taken to reach client from replications 

From fig4 says that as number of replications increases time 
taken to respond to a client decreases i.e.; for an eight server 

system time taken to respond are less when compared to a 

four server system. It can also be inferred from the fig4 that 

as number of server’s increases from sixteen to thirty two is 

more as number of replications increases and most of the 

time is wasted on finding the replicate.  

CONCLUSION 

This implementation is based on a multi-agent society built 

on WADE a software framework to aid the creation of agent 

applications in compliance with the FIPA specifications for 

interoperable intelligent multi-agent systems. Agent 

technology enables our platform to ensure high flexibility in 

defining and modifying operational processes, high control 
and maintainability of the logics used in and high 

performance, fault tolerant and scalability. From the  

analysis which is made on a WADE tool to implement a 

fault tolerant system in grid computing, it can be said that 

among all the system designs available a  sixteen server 

system design is more preferable for handling the requests, 

load balancing and fault tolerance. 

REFERENCES 

[1] S.Siva Sathya,K.SyamBabu “Survey of FaultTolerant 

Techniques For Grid”. 

[2] Harvey B. Newman, Iosif  C. Legrand , and Julian J. Bunn , 

“A Distributed Agent Based Architecture for Dynamic 

Services,” California Institute of Technology, Pasadena, CA 

91125, USA . 

[3] FabioBelly Famine, Giovanni Caire, Dominic Greenwood, 

“Developing Multi-Agent Systems With Jade”.  

[4] Alessandro Negri, Agostino Poggi and Michele Tomaiuolo,” 

Intelligent Task Composition and Allocation Through 

Agents,” Proceedings of the 14th IEEE International 

Workshops on Enabling Technologies: Infrastructure for 

Collaborative Enterprise (WETICE’05) ,2005 

[5] Kaizar Amin, Gregor von Laszewski, Mihael Hategan, 

Nestor J. Zaluzec, Shawn Hampton, and Albert Rossi, 

“GridAnt: a Client-Controllable Grid Workfow System”, in 

Proc.Hawaii International Conference on System Science 

(HICSS-37), Island of Hawaii, HI, 2004. 

[6] Elankovan Sundararajan, Aaron Harwood and 

Ramamohanarao Kotagiri “Incorporating Fault Tolerance 

with Replication on Very Large Scale Grids”, in Eighth IEEE 

International Conference on Parallel and Distributed 

Computing, Applications and Technologies, 2007, pp. 319-

328. 

[7] Perakath C. Benjamin Charles Marshall Richard J. Mayer,” 

A WORKFLOW ANALYSIS AND DESIGN 

ENVIRONMENT (WADE)” Proceedings of the 1995 Winter 

Simulation Conference,pp. 597-603 

[8] JADE  :http:jade.//tilab.com/wade/. 

 

 

0
5000
10000
15000
20000
25000
30000
35000

4 8 16 32

T
im

e 
in

 m
s

No. of Servers

0

5000

10000

15000

20000

25000

4 8 16 32

T
im

e 
in

 m
s

No. of Servers


