
ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

Copyright to IJIRSET www.ijirset.com 1089

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

Finite State Machine Based Reconfigurable

Architecture For Image Processor

-#1
J.Kanimozhi,

*2
Konda Abinaya Chandrasekaran,

#3
A B Abhinayapriya

 Department Of ECE Department , KLN College of Information Technology, Tamilnadu, India.

Department Of ECE Department , KLN College of Information Technology, Tamilnadu, India.

Department Of ECE Department , KLN College of Information Technology, Tamilnadu, India.

ABSTRACT—Adaptively evolvable systems require some

reconfigurable capabilities, habituated within the FPGA.

FPGA’s can be integrated with either Dynamic Partial

Reconfiguration (DPR) or Virtual Reconfiguration Circuits

(VRC). Since DPR allows lesser resource utilization on the

FPGA available logic, which has a positive repercussion in

power consumption compared to VRC’s, we are using FPGA’s

with native DPR as our reconfigurable hardware. Evolvable

hardware system has been employed to ease automation, in

which the reconfiguration is driven by an evolutionary

algorithm. Choosing evolutionary algorithm for DPR over the

optimization algorithms is because these algorithms are

incremental, and hence the processing circuit will be affected

only by small changes reducing the reconfiguration times. One

of the problems of the evolvable systems is that, they have to be

trained to the conditions in which the system will operate. The

generation of this training data is done offline, reducing the

system’s autonomy. We have proposed the enhancement of this

evolvable system by injecting the concept of Finite State

Machine which reduces its dependence. Considering that our

system concentrates on adaptive image processing, we have

utilized the Self Tuning Architecture (STA) based on FSM and

combined them with the evolutionary algorithm, to implement

the image processor.

KEYWORDS—Evolvable Hardware, FSM, Evolutionary

Algorithm, Dynamic Partial Reconfiguration.

I. INTRODUCTION

Evolvable Hardware is a very vast domain, which
requires complex circuit designs for specific applications.
To make a versatile device, these complicated circuits
have to change according to the need and the environment
in which they have to work. For this purpose, we require
an algorithm that is capable of finding an optimal solution

to the given problem. These systems, on being evolvable,
must be initially made adaptable by training them with a
set of data, giving the conditions in which our device is
going to work. But, this set of data is usually generated
offline, which reduces the systems autonomy. To make
the system automated, the algorithm used here is the
Finite State Machine based Evolutionary Algorithm (EA).

 An example of this Evolvable Hardware is a
Digital Image Processor, which removes the noise from
the image, and performs its processing. This task is quite
complicated requiring various modules, which may not be
known during the hardware design. Hence we have to
design a system that is capable of reconfiguring during
the run-time, so as to develop a self-evolvable
architecture. An optimization algorithm used to design
this reconfigurable hardware is the FSM based
Evolutionary algorithm. This work is a continuation of
[4] where a self-reconfigurable architecture was designed
using Evolutionary algorithm. Here we have enhanced the
same using the concept of Finite State Machine to
improve the Speed of processing.

Now since our processor has to be designed for
various purposes, we are using general purpose graphics
processing unit (GPGPU) which has parallel
computational capabilities. We can also design a
customized hardware that can create a more efficient
system for a particular purpose. This can be done by
employing application-specific integrated circuits
(ASICs). But, these ASICs can only be designed once, for
a static purpose which cannot be modified after
manufacturing. Hence we go on for Complex
Programmable Logic Devices (CPLDs) and Field
Programmable Gate Arrays (FPGAs), which contain logic

Finite State Machine Based Reconfigurable Architecture for Image Processor

Copyright to IJIRSET www.ijirset.com 1090

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

gates that can be arbitrarily configured and interconnected
to implement the digital circuits. FPGA provides higher
configuration capability, which allows embedding of a
complete system on it, providing a System on
Programmable Chip (SoPC). FPGA allows massively
parallel hardware to be implemented, along with a small
processor for controlling the overall process. This
accelerates the computational tasks and develops a
completely autonomous system.

Here we have used the Dynamic Partial
Reconfiguration technique to reconfigure our image
processor. The processors parameters are capable of being
modified in on-line mode (during runtime) only by
utilizing DPR.

We can use DPR for:

 reusability of resources for modifying the
processing functions

 a trade-off between resource consumption and
accuracy

 enhance the performance by increasing cores
[1].

 Moreover, DPR has been found to be better than the
Virtual Reconfiguration Circuits (VRC) by Sekanina [2].

II. RELATED WORKS

 In contrast to conventional hardware where the
structure is irreversibly fixed in the design process,
evolvable hardware (EHW) is designed to adapt to
changes in task requirements or changes in the
environment, through its ability to reconfigure its own
hardware structure dynamically and autonomously. This
paper introduces EHW chips and six applications
developed as a part of Ministry of International Trade and
Industries (MITI’s) Real – World computing project; an
analog EHW chip for cellular phones, a clock-timing
architecture for Gigahertz systems, a neural network
EHW chip capable of autonomous reconfiguration, a data
compression EHW chip for electro-photographic printers,
and gate level EHW chip used in robotic navigation and
prosthetic hands. This capacity for adaptation, achieved
by employing efficient search algorithms based on the
metaphor of evolution, has great potential for the
development of innovative industrial applications [3].

 Dynamic Partial Reconfiguration (DPR) is used for
the purpose of automation without any human
interruption. This feature makes it possible to use FPGA
with smaller configuration memory, so it will reduce the
power consumption. In DPR, while run-time, different
configurations were sent via the configuration access port
to the configuration memory DPR allows us to control
number of cores (NC), number of input (NI) bits and
number of output (NO) bits content [1]. Using DPR in
developing a test system such as this is definitely a viable
option; however, the following drawbacks need to be
understood prior to determining whether DPR is a good
fit for the target application [11].

Reconfigurable hardware is gaining a steadily
growing interest in the domain of space applications. This
hardware allows for changing or adapting payload
processing during the flight mission. Reconfiguration is
done while a new image arrives inside the image
processor [10]. The genetic operators of a genetic
algorithm in a VLSI layout design should be adapted to
the specific layout problem rather than selecting an
unnatural representation that would allow the use of
traditional genetic operators. Hence using of genetic
algorithm as the evolutionary algorithm gives the optimal
solution for selection of the processing core. Enhancing
this evolutionary algorithm with the introduction of Finite
State Machines would further reduce the logic required,
thereby reducing the area and time required.

An FSM is called self-reconfigurable if
reconfiguration of either output function or transition
function is initiated by the FSM itself and not based on
external reconfiguration events. Here our transition
function for the purpose of routing in the Mesh topology
uses the concept of FSM thereby supporting the
reconfiguration.

III. PROPOSED SYSTEM

A. Evolutionary Algorithm

 Evolutionary algorithms are optimization algorithms
based on trial and error and random incremental search.
These algorithms are inspired by the natural process of
evolution that allows different species of living beings to
appear and adapt to the different conditions of the
environment. Natural evolution achieves this with a
mechanism known as natural selection: each individual in
a species generates a certain number of copies of itself
during its lifespan. These are not exact copies; they have
slight alterations that make them behave differently, but
have similar characteristics. The longer an individual
lives, the more copies it can make. Although this is
affected by a huge number of random factors, the ability
of an individual to live longer and make more copies of
itself, which will also be able to live longer and make
more copies of themselves, creates an unbalance in this
random propagation that will result in more desirable
characteristics to be perpetuated while less desirable ones
will eventually disappear. This is often referred to as
survival of the fittest.

An interesting aspect of natural evolution is that it
does not require any control or explicit specification of
techniques required to survive: individuals in a population
will simply adapt to the conditions of their environment,
and new individuals with new characteristics will appear
naturally, without needing an intentional creation of these
characteristics. With the same philosophy, evolutionary
algorithms aim to find solutions to a certain problem
without the developer to explicitly indicate how these
solutions should be, only supplying a method to compare
solutions. The evolutionary algorithm will generate
random solutions to the problem, evaluate them, compare
them, and generate new solutions by picking the best
solutions and applying small random changes on them.

Finite State Machine Based Reconfigurable Architecture for Image Processor

Copyright to IJIRSET www.ijirset.com 1091

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

In order to compare different solutions, a method
known as fitness function is supplied. This is a function
that maps an individual to a numeric value known as
fitness based on its performance: individuals that perform
better will have a higher (or lower) fitness than those with
worse performance. For example, in the case of the
implementation of a discrete filter, the evaluation of the
fitness function could consist in filtering a known training
pattern and comparing the result sample by sample with a
golden reference, returning a numeric value such as the
sum of absolute errors (SAE) or the peak signal-to-noise
ratio (PSNR). In this case, the fitter individuals would be
those with lower SAE or higher PSNR.

The general form of an evolutionary algorithm is:

 Generate a certain number of random solutions
(the initial population)

 Evaluate those solutions in order to calculate
their fitness

 Until a certain condition is met (e.g. a number of
iterations has been reached, or a good enough
result has been achieved)

 Choose some of the solutions according to their
fitness (and possibly some other factors such as a
random selection)

 Generate new solutions by applying certain
operations to the selected ones

 Evaluate the new solutions

 Remove some of the solutions according to their
fitness (and possibly some other factors such as
age or a random selection)

 Once the condition is met, return the best
solution that has been obtained during the
evolution.

A common type of evolutionary algorithm is the
genetic algorithm. In a genetic algorithm, each solution
(phenotype) is unambiguously represented by a genotype,
which is a representation of the variable characteristics of
a solution in the form of a sequence of values known as
genes (usually bits, but sometimes other data types are
used, such as integers or reals). The set of all possible
genotypes is known as the genotype space.

In a genetic algorithm, the evolution is performed on
the genotypes, which are then implemented in order to
evaluate the fitness of the corresponding phenotypes. The
process to generate new genotypes involves two
operations known as genetic operators: (1) Crossover:
Recombination of the genes of two (or more) genotypes,
usually by cutting both genotypes at the same random
point (the crossover point), and generating a genotype
formed by the first part of the first genotype and the
second part of the second genotype. This is known as one-
point crossover. (2) Mutation: Modification of a genotype
by randomly choosing a certain number of genes and
changing them, either by flipping them (in the case of
bits), adding or subtracting a random value (in the case of
reals), or replacing them with a random value. The

number of genes that is changed is known as mutation
rate.

Genetic algorithms usually perform a crossover over
two genotypes and then apply a mutation to the result,
although the crossover step can be omitted for simplified
genetic algorithms.

B. Dynamic Partial Reconfiguration

The Reconfigurable hardware is a design approach
based on a digital circuit whose functionality can be
changed. One of the ways to achieve this is using FPGAs
which are often used for digital circuit prototyping and
testing, but due to their versatility, they are starting to be
used for some applications as part of a final product. This
way, the product will not only be able to update or change
its internal software or firmware, but also improve or
modify its hardware capabilities.

Some FPGAs go one step further, and are able to set
the configuration of part of the FPGA from the FPGA
itself while the rest of it continues working, which allows
the development of autonomous reconfigurable systems
that do not rely on an external device to change their
functionality. This is known as autonomous dynamic
partial reconfiguration of hardware (DPR). Circuits with
such capability are said to be self-reconfigurable, which is
a desirable condition or prerequisite for evolvable
hardware.

The main advantage of being able to reconfigure
hardware and not only software is that, whereas a
software program can be made very big and complex, it is
usually limited by the fact that its execution is sequential,
and thus a big program will take a long time to execute. In
addition, executing a program on a processor has an
overhead due to the time spent decoding the instructions,
fetching the variables, and storing the results. Hardware,
on the other hand, can be parallelized, which means that
several operations can be performed at the same time,
with digital circuits tailored for a specific application
rather than a general purpose one, potentially resulting on
very shorter execution times, especially when a huge
amount of operations has to be performed.

The problem with hardware is that it is often a static
design with a fixed functionality. Reconfigurable
hardware addresses this problem by letting the system
change its functionality by implementing several circuits
and allowing it to choose the output of one of these
circuits. This can be achieved by implementing all the
circuits and selecting one of the outputs through a
multiplexor. This is done in the arithmetic logic units
(ALUs) that can be found on microprocessors, and some
implementations of evolvable hardware such as the virtual
reconfigurable circuits (VRCs). Rather than this, using
DPR to implement reconfigurable hardware has several
advantages. First, implementing a circuit for a single
functionality and replace it with another circuit using
DPR rather than having all possible circuits synthesized at
once implies less resource usage on the FPGA available
logic, which may also have a positive repercussion in
power consumption. Second, including a multiplexor in
the circuit involves increasing the latency, which means

Finite State Machine Based Reconfigurable Architecture for Image Processor

Copyright to IJIRSET www.ijirset.com 1092

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

that the circuit will have to be more segmented or work at
a lower frequency, so it is an advantage to get rid of it.

It has to be noted, however, that DPR has a time
overhead when the reconfiguration is performed, but this
is not a problem if said reconfiguration is not often
performed, and allows the final circuit to be faster once
the reconfiguration process has finished.

C. FPGA for Reconfigurable Hardware

The problem Modern Xilinx FPGAs provide an
internal port that can be used to access and modify the
FPGA configuration. This port is called the Internal
Configuration Access Port (ICAP). This port is used to
send and read configuration commands and settings, and
to read and write configuration data. The reconfiguration
process of a Xilinx FPGA is carried out by sending a
sequence of commands and data through the ICAP port.
Without going into detail, the steps that take place when
performing a reconfiguration, either total or partial, are:
(1) Configuration setup, in which several configuration
options are set and checked by sending commands
through the ICAP port. One of these options is the address
from where data will start being written; (2)
Configuration data loading, in which data for the FPGA
configuration memory is written to the ICAP. (3)
Configuration end, in which a checksum of the written
data is optionally checked, and the FPGA is set to start
working.

All these instructions and data are contained in the
bitstream files used to configure the FPGA. In particular,
the configuration data segment found in these files can be
used for extracting configuration data for a partial circuit
(a partial bitstream).

In order to perform autonomous dynamic partial
reconfiguration, Xilinx provides a peripheral, the
Hardware ICAP (HWICAP), which allows
communication with the ICAP port directly through the
processor (usually a MicroBlaze soft-core processor).
However, this is only a low level interface, requiring the
developer to implement all the configuration options
manually. Moreover, it requires the configuration words
to be sent one by one by the processor, which can take a
long time for sending large amounts of configuration data.

D. Finite State Machine

A finite-state machine, or FSM for short, is a model of
computation based on a hypothetical machine made of
one or more states. Only a single state can be active at the
same time, so the machine must transition from one state
to another in order to perform different actions. FSMs are
commonly used to organize and represent an execution
flow.

Fig 1: Finite State Machine Flow

In our Finite State Machine, we will define all the
states our hardware can occupy and at any one time, our
data will be in any one state. Our state machine is
designed by these steps: (1) initially our system hardware
implementing the state machine is designed; (2) the
digital logic to implement the finite state machine; (3)
assigning a unique binary value to each of the state that
the machine can be in; (4) Designing our hardware so that
its logic converts from current state and current input
values to the correct next state values and stores that
value; (5) Generating the outputs of the state machine by
using combinational logic.

IV. ARCHITECTURE USED

The Architecture used by us is shown below:

 Fig 2: Block diagram of Image Processor

Initially the image is sent in as a 256*256 file into the
matlab code. This converts our given image into a text file
which has all the pixels as a hexadecimals. This is shown
as

Finite State Machine Based Reconfigurable Architecture for Image Processor

Copyright to IJIRSET www.ijirset.com 1093

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

 Fig 3: Image to Pixel conversion – coding

The output that is obtained can be seen as a text file,
which is sent as the input to the image processor.

Fig 4: Generated text file which is the input to the image processor

This processor has the FSM based Evolutionary
Algorithm which first checks in the pixel density of the
input image and adapts the processor to the required
environment. Depending upon the pixel density of the
image, image processor(IP) will select the number of
core. This allows Dynamic Partial Reconfiguration of the
processor whenever necessary. Each unit of the multi-core
processor is made of 3 units: Receiver which fetches the
data in, a memory that stores each bit of data, and a
transmitter which allows the transmission of data. The
memory consists of 16 bits as it has to store in a
hexadecimal value. L1 L2 Cache memory is used for
initializing the image processor, it has the programs for
every other module used. The Virtual Channel Controller
is used for creating signals and paths within the core
while the switch allocation unit is used to give direction to
the paths and allocate pins for the processor dynamically
during reconfiguration.

The Network Interface Bus is used to connect all the
devices together. A SRAM memory is used externally in
the processor which stores all the input data before
processing.

The flow of the data from input to output is shown as

 Fig 5: Flow of the Process

V. OBSERVED RESULTS

The output of our completed module has been
observed. It is seen that there is an increase in speed of
processing as the simplified logic for reconfiguration
reduces the time consumption. This further reduces the
area and power consumed by the hardware. This can be
seen in core module as the time consumed is 4.881ns and
the total memory used is 247.33Megabytes. The power
consumed is 0.039W.

The simulated output of the existing and proposed
system is shown in Fig.6 and Fig.7.The functionalities of
both the systems are the same, but its processing
parameters vary.

 Fig 6: Simulated output of the existing system

 Fig 7: Simulated output of the proposed system

Finite State Machine Based Reconfigurable Architecture for Image Processor

Copyright to IJIRSET www.ijirset.com 1094

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

The observed memory and power of our proposed
system is shown in Fig.8 and Fig.9, the obtained values
are 147600kb and 0.039kW respectively.

 Fig 8: Memory used by the FSM based image processor

Fig 9: Power used by the FSM based image processor

We compared the various parameters between the
existing system and our proposed system. It has been
tabulated as follows.

Version

Slic

e

Reg

Slice

LUT’

s

LUT

FF

pair

s

Total

Memory

used

Time

used

EA-IP 193 56 215
249.86M

B

5.603n

s

FSM+E

A -IP
20 14 21

247.55M

B

4.881n

s

 Table 1: Comparison between existing and proposed
system

 It is seen the area for memory usage and time used
for the processing of FSM based image processor has
been reduced by 2.31MB and 0.722ns.

VI. APPLICATION AND ADVANTAGES

The advantages of using this system can be listed as

follows:

 Area and Power consumption has been reduced,
while speed of processing has been increased.

 Can be used for remote sensing, military,
medical imaging, weather forecasting
applications and other multimedia applications.

 Fully automated system for multimedia
applications.

 Since it uses the concept of FSM, it
computational complexity has been reduces,
and resource utilization reduces.

REFERENCES

[1] “A Dynamically Reconfigurable Pixel Processor System Based on

Power/Energy-Performance-Accuracy Optimization” Daniel
Llamocca, Member, IEEE, and Marios Pattichis, Senior Member,
IEEE, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 23, No. 3, March 2013.

[2] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and
L.Sekanina, “Implementation Techniques for Evolvable Hw
Systems: Virtual vs. Dynamic Reconfiguration,” Proc. Int’l Conf.
Field Programmable Logic and Applications (FPL), pp. 547-550,
2012.

[3] "Real-World Applications of Analog and Digital Evolvable
Hardware", Tetsuya Higuchi, Masaya Iwata, Didier Keymeulen,
Hidenori Sakanashi, Masahiro Murakawa, Isamu Kajitani, Eiichi
Takahashi, Member, IEEE, Kenji Toda, Mehrad Salami, Nobuki
Kajihara, and Nobuyuki Otsu, IEEE Transactions on Evolutionary
Computation,Vol. 3, No. 3, Sept 1999.

[4] B Rube´n Salvador, Andre´s Otero, Javier Mora, Eduardo de la
Torre, Teresa Riesgo, and Lukas Sekanina, “Self-Reconfigurable
Evolvable Hardware System for Adaptive Image Processing”
IEEE Transactions on Computers,Vol. 62, No. 8, Aug 2013.

[5] Yibin Li, Zhiping Jia, Shuai Xie, and Fucai Liu, “Dynamically
Reconfigurable Hardware With a Novel Scheduling Strategy in
Energy-Harvesting Sensor Networks” IEEE Sensors Journal, Vol.
13, No. 5, May 2013.

[6] Karel Jezernik, Robert Horvat, and Jože Harnik, “Finite State
Machine Motor Controller” IEEE Industrail electronics
magazine, pp. 13-23, Sept 2012.

[7] S. Bayar, A. Yurdakul, M. Tukel “A Self-reconfigurable platform
for general purpose image processing systems on low-cost
spartan-6 FPGA’s”,IEEE Transactions on Evolutionary
Computation, Vol. 5, No. 1, June 2011.

[8] Rahul Kalra and Roman Lysecky, “Configuration Locking and
Schedulability Estimation for Reduced Reconfiguration
Overheads of Reconfigurable Systems” IEEE Transactions on
VLSI Systems, Vol. 23, No. 7, April 2010.

[9] Luca Sterpone, Member, IEEE, Mario Porrmann, Member, IEEE
and Jens Hagmeyer, Student Member, IEEE “A Novel Fault
Tolerent and Runtime Reconfigurable platform for satellite
payload processing” IEEE Transactions on Computers,Vol. 62,
No. 8, Aug 2013.

[10] “Supporting a Wide Variety of Communication Protocols using
Dynamic Partial Reconfiguration” Richard Dunkley, IEEE
Instrumentation and Measurement Magazine, pp.26-32, Aug
2013.

[11] “A genetic algorithm for Channel Routing in VLSI Circuits” Jens
Lienig and K. Thulasiraman,IEEE Transactions in Evolutionary
Computation, 1994.

