
Volume 4, No. 5, May 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 21

FORMAL METHODS: BENEFITS, CHALLENGES AND FUTURE DIRECTION
Mona Batra1, Amit Malik2, Dr. Meenu Dave3

1 M. Tech. Scholar
Department of Computer Science, Jagan Nath University, Jaipur, India

monabatra89@gmail.com
2Sr. Analyst, HCL Technologies Ltd. , Noida-201304, India

malikamit1@gmail.com
3Assistant Professor

Department of Computer Science, Jagan Nath University, Jaipur, India
meenu.dave@jagannathuniversity.org

Abstract: There is an increasing demand of current information systems to incorporate the use of a higher degree of formalism in the
development process. Formal Methods consist of a set of tools and techniques based on mathematical model and formal logic that are used to
specify and verify requirements and designs for hardware and software systems. This paper presents a detailed analysis of formal methods along
with their goals and benefits followed by limitations. This research work is aimed to help the software engineers to identify the use of formal
methods at different stages of software development, with special reference to the requirements phase.

Keywords- Formal Methods, Requirements Engineering, Formal Specification, Feasibility Analysis etc.

INTRODUCTION

In today’s commercial environment, the primary measure of
success of software projects is the extent to which a
software system fulfills the purpose, which it is intended for.
However, an increasingly competitive market usually
demands higher quality, shorter turnaround cycles, and
cheaper software. Many IT companies face the difficulty of
releasing products of quality on time and within the limits of
approved budget. The number of errors found during
development strongly affects the software metrics
mentioned above. If the problem is identified earlier during
program development, then it helps in reducing the project
budget [1].

When an error that was introduced in the requirements phase
is found during testing, software engineers must fix the
incorrect requirements, check all of the ramifications
through design and implementation and finally retest the
product. In order to build a secure software product and
overcome the problem of overrun of budget (which occurs
due to errors in requirement specifications), cost-effective
methods are required that address the major risks and that
provide tangible evidence of trustworthiness.

Formal methods are the solution to the above stated
problems. Formal methods are a particular kind of
mathematical techniques meant for the specification,
development and verification of software and hardware
systems. The representation used in formal methods is called
a formal specification language. [2].

Formal methods consist of writing formal descriptions,
analyzing those descriptions and in some cases producing
new descriptions. They can be applied in different phases of
development process. They are even becoming integral
components of standards. According to Rushby [3], the use

of mathematics in design and construction to ensure product
quality is common practice in established engineering
disciplines, such as bridge or aircraft building, and even
computer (hardware) construction, where one applies
mathematically expressed physical and other natural laws to
model a problem that deals with the behavior of concrete
systems in the physical world.

This paper describes various aspects of formal methods in
requirements engineering. Formal specification language,
different formal specification styles and types of formal
methods are described in Section 2. In Section 3, goals of
formal methods are explained whereas in Section 4 benefits
of formal methods are discussed in detail. In Section 5,
limitations are presented, and the issues in Section 6.
‘Conclusion and Future Work’ is reported in Section 7.

TYPES OF FORMAL METHODS

Formal methods are mathematics based languages,
techniques and tools that can be applied to any part of the
program life-cycle. By providing the feature of abstraction
and unambiguous description mechanisms, formal methods
facilitate the development of the critical systems. The
representation used in formal methods is called a formal
specification language. The formal specification languages
are based on set theory and first order predicate calculus.
The language has a formal semantics that can be used to
express specifications in a clear and unequivocal manner.
Formal methods can be classified using two ways. Firstly,
according to formal specification styles, and secondly,
according to software development life-cycle perspective
[4].

TYPES OF FORMAL SPECIFICATION STYLES

The Formal Specification Styles are specified as follows:

Mona Batra et al, Journal of Global Research in Computer Science, 4 (5), May 2013, 21-25

© JGRCS 2010, All Rights Reserved 22

Model Based Languages:

Model based languages are a way to write a specification.
To specify the behavior of the system, model based
languages construct a mathematical model of the system.
The model consists of an underlying state (data) and a
collection of operations on that state [5]. The state model is
constructed with the help of mathematical entities such as
relations, sets, sequences and functions. Operations of a
system are specified by defining how they affect the state of
the system model. Operations are also described by the
predicates given in terms of pre and post conditions. The
most widely used notations for developing model based
languages are Vienna Development Method (VDM), Zed
(Z) and B.

Algebraic Specification

Algebraic specification is a technique, used to specify the
system behavior by using methods derived from abstract
algebra. Algebraic approach was originally designed for the
definition of abstract data types and interface. The most
widely used notations for developing algebraic specification
languages are LARCH, ASL and OBJ.

Process Oriented:

Process oriented formal specification language is basically
used to describe concurrent system by building a specific
implicit model. In these languages processes are denoted by
expressions and are built up with the help of elementary
expressions. Elementary expressions describe simple
processes along with the operations, which combine
processes to yield more complex processes. The most
widely used process oriented language is Communicating
Sequential Processes (CSP).

FORMAL LANGUAGES IN SDLC

In SDLC, formal languages are used in two phases:
requirements and testing.

Specification (Requirements Analysis Phase):

Specification is the process of describing a system behavior
and its desired properties. Formal specification languages
describe system properties that might include functional
behavior, timing behavior, performance characteristics and
internal structure, etc. [6].

Z, VDM and Larch are used for specifying the behavior of
sequential systems while other formal methods such as CSP,
CCS, State charts, Temporal Logic, Lamport and I/O
automata, focus on specifying the behavior of concurrent
systems [7]. RAISE is used for handling rich state spaces
and LOTOS is one of the languages for handling complexity
due to concurrency.

Verification (Testing Phase):

Verification is the process to prove or disprove the
correctness of a system with respect to the formal
specification or property. For the verification of the code,
there are two important forms: Model Checking and
Theorem proving [8].
a. In model checking, a finite state model of the system is

build and its state space is mechanically investigated.
Two well-known and equivalent model checkers are
NuSMV and SPIN.

b. Theorem proving is another approach for verification of
a specification or checking the correctness of a
program. A model of the system is described in a
mathematical language and desired properties of the
model can be proven by a theorem prover. It is
mechanization of a logical proof. The specification to
be checked by a theorem prover is written in a
mathematical notation. Z (pronounced ‘Zed’) is its well-
known example.

GOALS OF FORMAL METHODS

Formal methods can be applied at different stages of
software development life cycle. On the basis of the details
of the formal methods, some goals may be listed as follows:
a. Formal methods support in the creation of specifications

that describe the true requirements of the user, which are
not usually identical to the stated requirements. This can
be achieved using formal methods because of the
unambiguity of the formal specifications and the
possibility to prove certain properties about it.

b. Formal methods ensure that the implementation of a
particular software as well as hardware product should
satisfy the requirements specification.

c. Formal methods are basically concerned for development
and maintenance of security critical reliable systems on
time and within budget. It increases trustworthiness of
the system in the sense that the system developed is not
just correct but known to be correct. Formal methods act
as evidence which ensures that the system indeed
satisfies the demand of security, reliability and
correctness.

BENEFITS OF FORMAL METHODS

The early activities in the software development lifecycle
i.e. requirements analysis and specification, is the most
important. According to one of the Standish Chaos report
[9], half of all project failures occur due to poor
requirements specification. The most effective use of formal
methods is at these early stages. It is effectual to write a
specification formally rather than writing an informal
specification and then translating it. To detect inconsistency
and incompleteness, it is efficient to analyze the formal
specification as early as possible [10]. Along with the
benefits discussed above, there are various other benefits
which are discussed as below:
a. Measure of correctness: The use of formal methods

provides a measure of the correctness of a system, as
opposed to the current process quality measures.

b. Early defect detection: Formal Methods can be applied
to the earliest design artifacts, thereby leading to
earlier detection and elimination of design defects.

c. Guarantees of correctness: Formal analysis tools such
as model checkers consider all possible execution
paths through the system. If there is any possibility of a
fault/error, a model checker will find it. In a multi-
threaded system where concurrency is an issue, formal
analysis can explore all possible interleaving and event
orderings. This level of coverage is impossible to
achieve through testing.

d. Error Prone: Formal description forces the writer to
ask all sorts of questions that would otherwise be
postponed until coding. This helps to reduce the errors

Mona Batra et al, Journal of Global Research in Computer Science, 4 (5), May 2013, 21-25

© JGRCS 2010, All Rights Reserved 23

that occur during or after coding. Formal methods have
the property of completeness, i.e. it covers all aspects
of the system.

e. Abstraction: If the working of software or hardware
product is simple, then one can write the code straight
away, but in the majority of systems the code is far too
big, which generally needed the detailed description of
the system. A formal specification, on the other hand,
is a description that is abstract, precise and in some
senses complete. The abstraction allows a human
reader to understand the big picture of the software
product easily.

f. Rigorous Analysis: The formality of the description
allows us to carry out rigorous analysis. Formal
descriptions are generally written from different points
of view, by which one can determine important
properties such as satisfaction of high level
requirements or correctness of a proposed design.

g. Trustworthy: Formal methods provide the kind of
evidence that is needed in heavily regulated industries
such as aviation. They demonstrate and provide
concrete reasons for the trust in the product.

h. Effective Test Cases: From formal specification, we
can systematically derive effective test cases directly
from the specification. It’s a cost effective way to
generate test cases.

LIMITATIONS OF FORMAL METHODS

Formal methods play an important role in software
development lifecycle. Yet, these methods have some
limitations. These shortcomings limit the effectiveness of
the formal methods for software products. Some of the
limitations of formal methods are listed below:
a. Correctness of Specifications: Generally, actual user

requirements might be different from what the user
states, and will usually vary with time. While using
formal methods, there is no way to guarantee
correctness and completeness of a specification with
respect to the user's informal requirements. However;
various approaches exist in literature to reduce the
probability of incorrect specifications, but the starting
point of all approaches is necessarily informal. One
can never be sure to have gathered all user
requirements correctly.

b. Correctness of Implementation: It is very difficult to
identify whether or not a given program satisfies the
given specifications. For example, when using one of
the verification checking approach such as Hoare
logic, one needs to identify the loop invariants, which
is not possible automatically. As a result, it is often
impossible to prove the correctness of an existing
program that has not been written with the
correctness proof in mind. Correctness proofs are
only feasible if programming and proof go
simultaneously.

c. Correctness of Proofs: Correctness proofs play an
important part in formal methods. Correctness proofs
increase the probabilities that the program is correct.
It is generally impossible to ensure about the
correctness of specification as well as
implementation. The main problem in the proofs lies
in the creation of the proofs. Sometimes, there is a
possibility that proof of correctness might fail. The

possible reasons why the proof of correctness of an
implementation with respect to its specification might
fail [11] are:
a) The program is incorrect and needs to be

modified.
b) The program is correct, but the correctness proof

has not been found yet.
c) The program is correct, but there is no

correctness proof.
a. Dealing with complex language features: Formal

definitions of semantics of most of the important
language constructs and software system components
are either not available or too complex to be useful.
For proving the properties of programs, these
constructs or components would actually be required.
Some of them are complex data structures, pointers,
human-computer interface (HCI) and error messages
etc. Generally, more than half the code of any real
production system consists of HCI and error
messages.

b. The Technical Environment: A formal description of
the program should contain a description that a
program is to work in coordination with hardware and
under the specification of operating system in order to
prove the correctness of the program. Generally such
a formal description is often not available for the kind
of technical environment used in industrial software
development. The problem is worsened by the fact
that such a formal description has to take a very
specific form depending on the formal method used
(for example as a theory to be used in a Theorem
Prover). This applies to both the development
environment and the production environment. As for
the development environment, a formal definition of
the programming language used and its semantics as
implemented in the compiler are needed.
Additional complications are introduced by the
following aspects of the environment:
a) Rounding errors in computations with floating

point numbers. These are the reason why formal
methods are not usually applied to numerical
algorithms.

b) Size limitations.

ISSUES NOT ADDRESSED BY FORMAL METHODS

There are some of the issues that are not addressed by
formal methods. These are discussed below:
a. Creativity: Formal methods are descriptive and

analytical in nature. They are not considered to be
creative. In reality, there are only formal ways of
describing and analyzing designs. There is no such
thing as a formal design process. In order to develop
a real system we must combine formal methods with
other approaches.

b. Software product quality: Formal methods deal with
the software itself and its documentation. Other
important components of software products such as
training, customer support, maintenance or
installation of the software, have to be dealt with
separately. These components and their quality
together form a quality product. Formal methods do
not contribute in software product quality. As a result,
most of the successful providers of software products

Mona Batra et al, Journal of Global Research in Computer Science, 4 (5), May 2013, 21-25

© JGRCS 2010, All Rights Reserved 24

have to put a lot of effort into addressing all the
relevant aspects of a software product.

c. Software systems and their social and ecological
environment: Software system normally takes inputs
from external environment. These inputs may not be
predictable. This obvious ignored issue usually creates
the problem of developing `correct' specifications and
deciding what behavior is correct. Formal methods can
contribute nothing towards this aspect of software
system.

FUTURE RESEARCH DIRECTIONS

FM (Formal Methods) is a very active research area
with a wide variety of methods and mathematical
models. In current scenario, there is not available any
one method that fulfills all the security related needs of
building a secure formal specification. Researchers and
practitioners are continuously working in this area and
thereby gaining the benefits of using formal methods.
Moreover, future work needs to be done in any of the
following research areas as represented in Figure 7.1).

a. Work may be initiated to develop a formal method that
combines various benefits of other methods that focus
in building secure formal specification.

b. Work may be done to reduce the cost of using formal
methods in different phases of SDLC.

c. Identifying and addressing various formal specification
verification tools.

d. Further research is required to make use of abstraction
in combining multiple mathematical theories.

e. It is needed to scale up the notations of formal methods
and the tool support to make it easy to use.

f. Work may be commenced on optimizing methods and
tools for finding errors so that correctness to the
system is identified.

g. Research may be carried out to amortize the cost of a
method or tool over many uses. It should be possible to
derive benefits from a single specification at several
points in a program’s life cycle: in design analysis,
code optimization and testing.

h. Work may be initiated on developing a tool that helps
in understanding how to compose methods,
specifications, models, theories, and proofs.

i. A new mathematical model may also be developed for
checking the completeness and logical consistency of
requirements specification

Figure 7.1 Future Research Direction

CONCLUSION

This paper has presented different aspects of formal
methods. The major defects arise in software development
due to poor requirements analysis. Furthermore, formal
methods are only part of the solution to the problem related
to requirement analysis and success depends crucially on
integrating them into a larger process. This paper helps the
researcher/s and developers to understand the potential
usefulness of formal methods along with challenges usually
faced in making formal methods practical. Significant need
in software development is needed to make all the methods
to be more specific for the requirements phase because
requirements are basic building block on which the entire
software can be built. This work motivates software

engineers to incorporate security in requirement phase so
that product quality can be achieved.

ACKNOWLEDGEMENT

The authors thank Mr. Manish Gupta, Chancellor, Jagan
Nath University, Mr. Deepak Gupta, Vice-Chairman, Jagan
Nath Gupta Memorial Education Society, Prof. V.K.
Agarwal, Vice Chancellor, Jagan Nath University, and Prof.
Y.S. Shishodia, Pro-Vice Chancellor, Jagan Nath
University, Jaipur, for providing encouragement and support
for this research work.

REFERENCES

[1]. Boehm B. W.: Software Engineering Economics. Prentice
Hall, 1981.

Mona Batra et al, Journal of Global Research in Computer Science, 4 (5), May 2013, 21-25

© JGRCS 2010, All Rights Reserved 25

[2]. Pressman Roger S: “Software Engineering”- A
Practitioner’s Approach”, McGraw Hill, 5th edition. 2000.

[3]. Rushby John: Formal Methods and the Certi_cation of
Critical Systems. Tech. Rep. SRI-CSL-93-7, Computer
Science Laboratory, SRI International, Menlo Park, CA,
Dec. 1993. Also issued under the title "Formal Methods
and Digital Systems Validation for Airborne Systems" as
NASA Contractor Report 4551, December 1993.

[4]. Mona Batra, S.K Pandey: Formal methods in requirement
engineering. International Journal of Computer
Applications , pp- 7-14, Volume 70–No.13

http://research.ijcaonline.org/volume70/number13/pxc3888
017.pdf

[5]. McGibbon Thomas: An Analysis of Two Formal Methods:
VDM and Z. ITT Industries - Systems Division.

[6]. Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and
Fitzgerald John: Formal Methods: Practice and
Experience, ACM Computing Surveys (CSUR), Volume
41 Issue 4, October 2009 Article No. 19. Retrieved on:
March 17, 2013.

http://deployeprints.ecs.soton.ac.uk/161/2/fmsurvey%5B1
%5D.pdf

[7]. Paul Ogilvie: Formal Methods in Requirements
Engineering. Retrieved on: March, 17,2013

http://www.google.co.in/url?sa=t&rct=j&q=paul%20ogilvi
e%20formal%20methods%20in%20requirement%20engin
eering&source=web&cd=1&cad=rja&ved=0CC4QFjAA&
url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2
Fdownload%3Fdoi%3D10.1.1.93.8000%26rep%3Drep1%
26type%3Dpdf&ei=ispFUeXGBNCzrAfP6oHgDQ&usg=
AFQjCNHuCyMppgBZ5cxA0QAOhfOIYZL8Lw&bvm=b
v.43828540,d.bmk

[8]. Kneuper Ralf: Limits of Formal Methods, Formal Aspects
of Computing (1997). Retrieved on : April, 20, 2013.

http://link.springer.com/content/pdf/10.1007%2FBF012112
97.pdf#page-1

[9]. Standish Group, 1995, The Standish Group Chaos Report.

http://www.projectsmart.co.uk/docs/chaos_report pdf.

[10]. Hall Anthony: Realising the Benefits of Formal Methods.
Retrieved on : April, 22, 2013.

http://www.anthonyhall.org/csi.pdf

[11]. Fuxman Ariel Damian: Formal Analysis of Early
Requirements Specifications.

Short Bio Data for the Authors

Mona Batra is an Assistant professor in
the Department of Computer Science,
International Institute of Management,
Engineering & Technology, Jaipur,
India. She has completed her B. Tech
from Rajasthan Technical University in
2011 and currently pursuing M. Tech
(Computer Science) from Jagan Nath

University, Jaipur. She has published various national and
international papers on requirements engineering and
security. Some of her representative published papers list is
as follows: "Security in requirements phase of SDLC"
published in IJCA, “Formal Methods in requirements phase
of SDLC" published in IJCA, “Proposed model for
requirements engineering and risk analysis" published in the
national conference (AICC). Her research area includes:
Vulnerability Assessment, Formal Methods and
Requirements Engineering etc. Currently, she is working in
the area of Formal Methods in Requirements Engineering.

Amit Malik is Senior Analyst in HCL
Technologies Ltd, Noida, India. He has
completed his MCA from Rajasthan
Technical University in 2009. He has
extensive experience in analysis, design
and development of applications. He has
worked in product based and client based
software applications in various domains.

Dr. Meenu Dave, M.Tech., Ph.D.
(Computer Science) has taught
Computer Science in different capacities
at a number of Engineering Colleges and
Institutes. At present, she is an Assistant
Professor in the Department of
Computer Science, Jagan Nath

University, Jaipur. She has extensive experience in teaching
Artificial Intelligence, Knowledge Management and Data
Mining at the postgraduate level. She has also authored
several research papers in the specified areas which have
been published in leading journals.

