

 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st& 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2206

Abstract— De-duplication is an approach to avoid

storing data blocks with identical content. It has

effectively reduced the disk space for storing large content

files. However, it remains challenging to deploy de-

duplication in a real system, such as a cloud platform

setup. We proposed VDFS, a live de-duplication file

system that enables de-duplication storage in VM. VM is

an open-source cloud environment that is deployed under

low-cost commodity hardware settings with limited

memory footprints. We will deploy our VDFS prototype

as a storage layer in a cloud platform based on Open

Stack, and conduct extensive experiments. When

compared to an ordinary file system without de-

duplication, we show that VDFS can save at least 40% of

space for storage in cloud environment. We also achieve

reasonable performance in importing and retrieving files.

In existing process collision may occur due to dual

hashing algorithm and time latency while use of large

data. Our work justifies the feasibility of deploying

VDFS in an open-source cloud. This scheme not only

reduces the cloud storage capacity, but also improves the

speed of data de-duplication and concentrates on security

to data‟s. Furthermore, the signature is computed for

every file for verifying the integrity of files.

Keywords— De-duplication, virtual machine, open-

source cloud, file system, VDFS. Introduction.

I. INTRODUCTION

Modern society is a digital universe. Almost no

information or industry applications can survive without

this digital universe. The size of this digital universe in

2007 is 281 Hexabytes and in 2011 [10], it becomes 10

times larger than it was in 2007. The most critical issue is

that nearly half the digital universe cannot be stored

properly in time. This is caused by several reasons:

firstly, it is hard to find such a big data container;

secondly, even if a big container can be found, it is still

impossible to manage such a vast dataset; and finally, for

economic reasons, building and maintaining such a huge

storage system will cost a lot of money. This is

particularly

challenging for non-IT sectors, for example, engineering

and bio-chemistry industries. According to our

experiences, a typical information management center at

a city-level nuclear power generation factory needs to

process hundreds of gigabytes of new data each day.

Such data should also be easily accessible and used for

different purposes by other information centers located in

other cities in the power grid, as well as government

authorities at different levels. In the area of computer

aided engineering (CAE), some efforts are made to tackle

challenges in the management of large quantity

distributed data and knowledge. But the issue of

scalability remains.

Fortunately, with the rocket-like development of cloud

computing, the advantages of cloud storage have

amplified significantly, and the concept of cloud storage

has become vastly accepted by the community. Cloud

computing consists of both applications and hardware

delivered to users as a service via the Internet [13, 16].

Framing an Inviolable and De-Duplication

Storage System Over Cloud Computing
M.Kaliraja, Rajalavanya Chakaravarthy

Post Graduate, Dept of Information Technology, Velammal college of Engineering and Technology, Madurai,

Tamil Nadu, India.

Assistant Professor, Dept of Information Technology, Velammal college of Engineering and Technology, Madurai,

Tamil Nadu, India.

Framing an Inviolable and De-Duplication Storage System over Cloud Computing

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2207

With the rapid development of cloud computing, more

and more cloud services have emerged, such as SaaS

(software as a service), PaaS (platform as a service) and

IaaS (infrastructure as a service). The concept of cloud

storage is derived from cloud computing. It refers to a

storage device accessed over the Internet via Web service

application program interfaces (API). VDFS(namely

Virtual Distributed File System) is a distributed file

system that runs on commodity hardware; it was

developed by VMWare for managing massive data. The

advantage of VDFS is that it can be used in a high

throughput and large dataset environment. VBase is

Virtual database, which is an open-source, distributed,

versioned, column-oriented database [5]. It is good at real

time queries. VDFS has been used in numerous large

scale engineering applications. Based on these features, in

our work, we use VDFS as a storage system. We use

VBase as an indexing system.

Currently cloud computing is applied more in data

intensive areas such as e-commerce or scientific

computations. There is little research on engineering

oriented cloud system. There especially lack direct

applications or experiments for cooperative work in

design, where data sharing and duplication management

have always been challenges.

This paper presents a deduplication cloud storage system,

named “DeDu”, which runs on commodity hardware.

Deduplication means that the number of the replicas of

data that were traditionally duplicated on the cloud should

be managed and controlled to decrease the real storage

space requested for such duplications. At the front end,

DeDu has a deduplication application. At the back end,

there are two main components, VDFS and VBase, used

respectively as a mass storage system and a fast indexing

system. Promising results were obtained from our

simulations using VMware to simulate a cloud

environment and execute the application on the cloud

environment.

Regarding contributions of this paper, there are two issues

to be addressed. Firstly, how does the system identify the

data duplications? Secondly, how does the system manage

and manipulate the data to reduce the duplications, in

other words, to deduplicate them? For the first issue, we

use hashing algorithm to make a unique hash code for

each file or data block, and set up a fast index to identify

the duplications. For the second problem, we set up a

distribution file system to store data and develop „link

files‟ to manage files in a distributed file system.

II LITERATURE SURVEY

The HDFS need streaming access to their data sets. They

are not general purpose applications that typically run on

general purpose file systems. HDFS is designed more for

batch processing rather than interactive use by users. The

emphasis is on high throughput of data access rather than

low latency of data access. POSIX imposes many hard

requirements that are not needed for applications that are

targeted for HDFS. POSIX semantics in a few key areas

has been traded to increase data throughput rates.

Applications that run on HDFS have large data sets. A

typical file in HDFS is gigabytes to terabytes in size.

Thus, HDFS is tuned to support large files. It should

provide high aggregate data bandwidth and scale to

hundreds of nodes in a single cluster. It should support

tens of millions of files in a single instance.

An HDFS cluster consists of a single NameNode, a

master server that manages the file system namespace

and regulates access to files by clients. In addition, there

are a number of DataNodes, usually one per node in the

cluster, which manage storage attached to the nodes that

they run on. HDFS exposes a file system namespace and

allows user data to be stored in files. Internally, a file is

split into one or more blocks and these blocks are stored

in a set of Data Nodes. The Name Node executes file

system namespace operations like opening, closing, and

renaming files and directories. It also determines the

mapping of blocks to Data Nodes. The Data Nodes are

responsible for serving read and write requests from the

file system‟s clients. The Data Nodes also perform block

creation, deletion, and replication upon instruction from

the Name Node.HDFS is designed to reliably store very

large files across machines in a large cluster. It stores

each file as a sequence of blocks; all blocks in a file

except the last block are the same size. The blocks of a

file are replicated for fault tolerance. The block size and

replication factor are configurable per file. An application

can specify the number of replicas of a file.

The replication factor can be specified at file

creation time and can be changed later. Files in HDFS are

writing-once and have strictly one writer at any time. The

Name Node makes all decisions regarding replication of

blocks. It periodically receives a Heartbeat and a Block

report from each of the Data Nodes in the cluster. Receipt

of a Heartbeat implies that the Data Node is functioning

properly. A Block report contains a list of all blocks on a

Data Node.

III. DE-DUPLICATEDVIRTUALCLOUDENVIRONMENT

The architecture of the proposed de-duplicated based

cloud system is illustrated in Fig. 1.

Fig.1. Architectural design for De-duplication

When a user uploads a file for the first time, the system

records this file as source data in Vbase, and the user will

receive a link file for this user himself, and the same for

other potential users, to access the source data. When the

source data has been stored in the VDFS, if the same data

Framing an Inviolable and De-Duplication Storage System over Cloud Computing

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2208

is uploaded by other users, the system will not accept the

same data as new, but rather, the new user, who is

uploading data, will receive a link file to the original

source data. Users are allowed to read the source data but

not to write. Once the initial user changes the original

data, the system will set the changed data as a new one,

and a new link file will be given to the user. The other

users who connect to the original file will not be

impacted. Under these conditions, the more users share

the same data, the more storage space will be saved.

IV. IMPLEMENTATION OF CLOUD COMPUTING

In this system, HDFS and HBase must collaborate to

guarantee that the system is working well. There are two

types of files saved in HDFS, one is source file, and the

other one is link file. We separate source files and link

files into different folders (see Fig. 2).

Fig.2. Data organization for De-duplication

After the combination hash value and saved in a folder

which is named by date. When the source file is over

64MB, it will be divided into 64MB chunks and saved in

the system, but these chunks will be distributed in

different data nodes. As for the link file, the filename is in

the form “***.lnk”, where “***” is the original

name/extension of the source file. Every link file records

one hash value for each source file and the logical path to

the source file, and it uses approximately 320 bytes to

store the essential information. Both link file and the

folder created by the user are saved in the distribution file

system. HBase records all the hash values for each file,

the number of links, and the logical path to the source file.

There is only one table in HBase, which is named “dedu”.

There are three columns in the table, which have the

headings: hash_value, count, and path. Hash_value is the

primary key. Count is used to calculate the number of

links for each source file. Path is used for recording the

logical path to the source file.

Procedures to store the files

 In DeDu, there are three main steps to save a file. Firstly,

it is necessary to make a hash value at the client;

secondly, the system identifies any duplication; thirdly,

the system saves the file.

Firstly, users select the files or folders which are going to

be uploaded and stored by using a DeDu application. The

application uses the MD5 and SHA- 1 hash functions to

calculate the file's hash value, and then pass the value

toHBase.

Secondly, the table „dedu‟ in HBase keeps all file hash

values. HBase is operated in the HDFS environment. It

will compare the new hash value with the existing values.

If it does not exist, a new hash value will be recorded in

the table, and then HDFS will ask clients to upload the

files and record the logical path; if it does exist, HDFS

will check the number of links, and if the number is not

zero, the counter will be incremented by one. In this case,

HDFS will tell the clients that the file has been saved

previously. If the number is zero, HDFS will ask the

client to upload the file and update the logical path.

Thirdly, HDFS will store source files, which are

uploaded by users, and corresponding link files, which

are automatically generated by DeDu. Link files record

the source file's hash value and the logical path of the

source file.

V.VIRTUAL CLOUD-BASED DE-DUPLICATED SYSTEM

MECHANISM

For setting up virtual cloud we need two mechanisms to

set up our storage system. One is used to store mass data,

and the other is used to keep the sparse index. On the one

hand, there are several secondary storage systems, like

Ceph [24], Petal [9], being used as mass data storage

systems. On the other hand, there are several database

systems such as SQL, Oracle, HBase, and BigTable [8]

that can be used as index systems. All these systems have

their own features, but we need two systems combined

together to achieve our data access requirements. With

regard to our requirements, in order to store masses of

information, the file system must be stable, scalable, and

fault-tolerant; for the sparse index, the system must

perform nicely on real time queries. Considering these

requirements, we employ HDFS and HBase to structure

our storage mechanisms.

A.Vbase and VDFS Conception.

In this process the cloud setup is created by using the

Virtual Machine Workstation. Workstation is desktop

software that allows you to run multiple x86‐compatible

desktop and server operating systems simultaneously on

a single PC, in fully networked, portable virtual machines

with no rebooting or hard drive partitioning required.

B.Hash Value generation and Verification

MD5 Hash code is a unique string of characters that can

be generated for a given character string. This Hash code

is very important when you compare string values. It is

not technically correct to compare two string directly.

When a file is selected the hash value generator, generate

the relevant hash value for the file in the basis of file

content. There it is required to read a file as byte stream

and generate Hash code for that stream.

To generate MD5 Hash for any object is convert that

object into a byte array. For this take MemoryStream and

BinaryFormatter objects.

Framing an Inviolable and De-Duplication Storage System over Cloud Computing

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2209

Fig.3. Database Evaluation on server side

MemoryStream fs = new MemoryStream();

BinaryFormatter formatter = new BinaryFormatter();

Serialize() method is used to directly convert object

into MemoryStream. Before this operation to be

thread-safe we should lock the object.

C.File Uploading

In DeDu, there are three main steps to save a file. Firstly,

users select the files or folders which are going to be

uploaded and stored by using a DeDu application. The

application uses the MD5 hash functions to calculate the

file's hash value, and then pass the value to VBase.

Fig.4. Upload Screen for Virtual cloud

 Secondly, the table „dedu‟ in VBase keeps all file hash

values. VBase is operated in the VDFS environment. It

will compare the new hash value with the existing values.

If it does not exist, a new hash value will be recorded in

the table, and then VDFS will ask clients to upload the

files and record the logical path; if it does exist, VDFS

will check the number of links, and if the number is not

zero, the counter will be incremented by one. If the

number is zero, VDFS will ask the client to upload the file

and update the logical path. Thirdly, VDFS will store

source files, which are uploaded by users, and

corresponding link files, which are automatically

generated by DeDu. Link files record the source file's

hash value and the logical path of the source file.

VI. RESULTS AND DISCUSSION

In our experiment, our cloud storage platform was set up

on a VM ware workstation. The configuration of the host

machine is that the CPU is 2.32 GHz; RAM is 2 GB;

Hard disk is 320GB.

We uploaded some massive amount of files,

amounting to 15 to 20 MB, into DeDu. In a traditional

storage system, they should occupy approximately 50

MB, both the physical storage space and the number of

files should be three times larger than actual size. In a

perfect de-duplication distribution file system, the results

should take up and shown that the storage capacity are

minimized effectively. The extra consumption of storage

is occupied by link files and the 'dedu' table, which is

saved in VBase. By using the distribution hashing, an

exact de-duplication result is achieved. In DeDu storage

system , each file could only be kept in 3 copies at

different data nodes, as backup in case some data nodes

are dead. This means that if a file is saved into this

system less than three times, the efficiency of de-

duplication is low. When a file is put into the system

more than three times, the efficiency of de-duplication

will become high. Thus, the exact de-duplication

efficiency depends on both the original data duplication

ratio and how many times the original data has been

saved. The higher the duplication ratio the original data

has, the greater the de-duplication efficiency. It is also

true that the greater the number of times that the original

data is saved, the greater the de-duplication efficiency

that can be achieved.

Fig.5. Result analysis

On resulting the writing efficiency the fewer the data

nodes it has, the higher the writing efficiency , but the

lower the reading efficiency. The more data nodes there

are, the lower the writing efficiency it will be, but the

higher the reading efficiency. When a single file is big,

the time to calculate hash values becomes higher, but the

time of transmission cost is low. When a single file is

small, the time to calculate hash values becomes lower,

but the transmission cost is high in real cloud

environment.

VII. CONCLUSIONS

In conclusion, we have introduced an inviolable approach

to data de-duplication over the engineering oriented

cloud systems, which we have named as DeDu. DeDu is

not only useful for IT enterprises or engineering industry

to backup data, but also for common users who want to

store data. This project approach exploits a file‟s hash

Framing an Inviolable and De-Duplication Storage System over Cloud Computing

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2210

value as an index saved in VBase to attain high lookup

performance, and it exploits „link files‟ to manage mass

data in a Virtual distributed file system. In DeDu, the

higher configuration of a single node will not impact the

performance of the whole system too much. To get better

performance from such a cloud-type system, we need to

consider how to tune up critical nodes‟ configurations.

Furthermore, data compression is another potential hurdle

in DeDu. It sacrifices too much overall data transmission

efficiency to save the storage space in a de-duplication

application. We will look into these issues in future work,

to circumvent the design objective of DeDu.

ACKNOWLEDGEMENT

I would like to thank our head of the department

Mr.S.RajPandian and my guide Mrs.Rajalavanya

Chakaravarthyfor motivating me in doing this projects

and thanks to all my friends and the web sources.

REFERENCES

[1] Zhe Sun, Jun Shen, Jianming Young , A novel approach to data de-

duplication over the engineering-oriented cloud systems, Faculty of
Engineering and Information Sciences,University of Wollongong,

2013,14.

[2] S. A. Weil. S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, "Ceph: a scalable, high-performance distributed file system,"

in Proceedings of the 7th symposium on Operating systems design and

implementation, Seattle, Washington. 2006, pp. 307-320.
[3] A. Atul, J.B. William, C. Miguel, C. Gerald, C. Ronnie, R.D. John,

H. Jon, R.L. Jacob, T. Marvin and P.W. Roger, Farsite: Federated,

available, and reliable storage for an incompletely trusted environment,
SIGOPS Oper. Syst. Rev., 2002, 36, pp. 1-14

[4] K. L. Edward and A. T. Chandramohan, "PetaJ: distributed virtuaJ

disks," in Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems,

Cambridge, Massachusetts, US, 1996, pp. 84-92.

[5] A.-E.-M. Michael, William V. Courtright, C. Chuck, R. G. Gregory,
H. James, J. K. Andrew, M. Michael, P. Manish, S. Brandon, R. S. Raja,

et al., "Ursa minor: versatile cluster-based storage," in Proceedings of

the 4th conference on USENfX Conference on File and Storage
Technologies, San Francisco, CA, 2005, pp. 59-72.

[6] T. C. Austin, A. Irfan, V. MuraJi, and L. Jinyuan, "Decentralized de-
duplication in SAN cluster file systems," in Proceedings of the 2009

conference on USENIX Annual technical conference, San Diego,

CaJifornia, 2009, pp. 101-114.
[7] A. W. Sage, W. L. Andrew, A. B. Scott, and M. Carlos, "RADOS: a

scaJable, reliable storage service for petabyte-scaJe storage clusters," in

Proceedings of the 2nd international workshop on Petascale data 355
storage: held in conjunction with Supercomputing, Reno, Nevada, 2007,

pp. 35-44.

[8] J.F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W.
Schlichting and A. Toncheva, The Diverse and Exploding Digital

Universe,March2008.URL:http://www.emc.com/collateral/analystreport

s/diverseexplodin g-digital-universe.pdf, accessed in Oct 2011.
[9] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,

and P. Camble, "Sparse Indexing: Large Scale, Inline De-duplication

Using Sampling and LocaJity," in 7th USENIX Conference on File and
Storage Technologies, San Francisco, California 2009, pp. 111-123

[10] B. Zhu, K. Li, and H. Patterson, "Avoiding the disk bottleneck in

the data domain de-duplication file system," in Proceedings of the 6th
Usenix Conference on File and Storage Technologies (Fast '08), 2008,

pp. 269-282

[11] D. Bhagwat, K. Eshghi, D.D.E. Long and M. Lillibridge, Extreme
Binning: Scalable, Parallel De-duplication for Chunkbased File Backup,

in 2009 IEEE International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems Mascots,
2009, pp. 237-245.

[12] B. Hong and D.D.E. Long, Duplicate data elimination in a san file

system, In Proceedings of the 21st IEEE/12th NASA Goddard

Conference on Mass Storage Systems and Technologies (MSST), 2004,
pp. 301-314.

[13] J.O. Gutierrez-Garcia and K.M. Sim, Agent-based cloud workflow

execution, Integrated Computer-Aided Engineering, 2012, 19:1, pp. 39-
56.

[14] F. Zhang, Z.M. Ma and L. Yan, Construction of Ontology from

Object-oriented Database Model, Integrated Computer- Aided
Engineering, 2011, 18:4, in press.

[15] J. Wei, H. Jiang, K. Zhou and D. Feng, MAD2: A scalable high-

throughput exact de-duplication approach for network backup services,
in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on Incline Village, NV, USA 2010 pp. 1-14

[16] Z. Sun, J. Shen and G. Beydoun, P2CP: A New Cloud Storage
Model to Enhance Performance of Cloud Services, in Proceedings of

International Conference on Information Resources Management, Conf-

IRM, 2011, on CD-ROM

Framing an Inviolable and De-Duplication Storage System over Cloud Computing

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2211

	page2

