
Volume 2, No. 7, July 2011

Journal of Global Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 119

FRONTAL FACE DETECTION METHODS –NEURAL NETWORKS AND

AGGRESSIVE LEARNING ALGORITHM

Sushma Jaiswal*1, Dr. Sarita Singh Bhadauria2, Dr.Rakesh Singh Jadon3
1Lecturer, S.O.S. in Computer Science, Pt.Ravishankar Shukla University,Raipur(C.G.)

Jaiswal1302@gmail.com
2Professor & Head, Department of Electornics Engineering, Madhav Institute of Technology & Science, Gwalior (M.P.)
3Professor & Head, Department of Computer Applications, Madhav Institute of Technology & Science, Gwalior (M.P.)

Abstract: In this Case Study & report, a face detection method is presented. Face detection is the first step of face Recognition methods. Face

detection is a difficult task in Pattern. There are different methods of face detection namely-Knowledge Based Face Detection Methods, Feature

Based Face Detection Methods, Template Based Face Detection Methods and Appearnce Based Face Detection Methods. But here we divided

basically in two methods for face detection (i) image based methods (ii) feature based methods. We have developed an intermediate system,

using a boosting algorithm to train a classifier which is capable of processing images rapidly while having high detection rates. AdaBoost is a

kind of large margin classifiers and is efficient for on-line learning. In order to adapt the AdaBoost algorithm to fast face recognition, the

original Adaboost which uses all given features is compared with the boosting along feature dimensions. The comparable results assure the use

of the latter, which is faster for classification. The main idea in the building of the detector is a learning algorithm based on boosting: AdaBoost.

AdaBoost is an aggressive learning algorithm which produces a strong classifier by choosing visual features in a family of simple classifiers and

combining them linearly. The family of simple classifiers contains simple rectangular wavelets which are reminiscent of the Haar basis. Their

simplicity and a new image representation called Integral Image allow a very quick computing of these Haarlike features. Then a structure in

cascade is introduced in order to reject quickly the easy to classify background regions and focus on the harder to classify windows. For this,

classifiers with an increasingly complexity are combined sequentially. This improves both, the detection speed and the detection efficiency. The

detection of faces in input images is proceeded using a scanning window at different scales which permits to detect faces of every size without

resampling the original image. On the other hand, the structure of the final classifier allows a realtime implementation of the detector. Due to

some limitation of neural network based methods we adopt the Adaboost algorithm for face detection. Here we present some results on real

world examples are presented. Our detector found good detection rates with frontal faces and the method can be easily adapted to other object

detection tasks by changing the contents of the training dataset.

Keywords: AdaBoost algorithm, Knowledge Based Face Detection Methods, Feature Based Face Detection Methods, Template Based Face

Detection Methods and Appearnce Based Face Detection Methods.

INTRODUCTION

In this Section, a face detection approach is presented. Face

detection is an essential application of pattern detection and

it is one of the main components of face modeling, analysis

and understanding with face localization and face

recognition. It becomes a used in a large number of

applications, among which we find security, new

communication interfaces, biometrics and many others. The

goal of face detection is to detect human faces in still images

or videos, in different situations. In the past 30 years, large

numbers of methods have been developed with different

goals and for different contexts. We will make a overview of

the main of them and then focus on a detector which

processes images very fast while achieving high detection

rates. This detection is based on a boosting algorithm called

AdaBoost and the response of simple Haarbased features

used by Viola and Jones [1].The motivation for using

Viola‘s face detection method is to achieve experience with

boosting and to explore issues and obstacles concerning the

application of image analysis to object detection.

Automatic face detection is a complex problem which

consists in detecting one or many faces in an image or video

sequence. The difficulty in the fact that faces are non rigid

objects. Face appearance may vary between two different

persons but also between two photographs of the same

person, depending on the lightning conditions, the emotional

state of the subject and pose avriations. That is why so many

methods have been developed during last years. Each

method is developed in a particular context and we can

cluster. these numerous methods into two main approaches:

image based methods and feature based methods. The first

one use classifiers trained statically with a given example

set. Then the classifier is scanned through the whole image.

The other approach consists in detecting particular face

features as eyes, nose.

The goal of this project is to detect very fast low resolution

faces in cluttered background. This situation can be found in

many applications as surveillance of public places. The

method used is both image based and feature based. It is

image based in the sense that it uses a learning algorithm to

train the classifier with some well chosen train positive and

negative examples. It is also feature based because the

features chosen by the learning algorithm are for lots of

them directly related to the particular features of faces (eyes

positions, contrast of the nose bridge). The boosting

techniques improve the performances of base classifiers by

re-weighting the training examples. The learning using

Boosting is the main contribution of this face detection. On

the other hand, the simple classifiers used for the boosting

are simples Haarlike features which permits a fast

computation while good detection rates.

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 120

CHALLENGES IN FACE DETECTION

Face detection is the problem of determining whether a sub-

window of an image contains a face. Looking from the point

of view of learning, any variations which increase the

complexity of decision boundary between face and non-face

classes, will also increase the difficulty of the problem. For

example, adding tilted faces into the training set increases

the variability of the set, and may increase the complexity of

the decision boundary. Such complexity may cause the

classification to be harder. There are many sources

introducing variability when dealing with the face. They can

be summarized as follows:

Image Plane Variations

 Is the first simple variation type one may encounter? Image

transformations, such as rotation, translation, scaling and

mirroring may introduce such kind of variations. Utilization

of image pyramids with a sliding detector window is one

common way to deal with such transformations for the input

image. Variations in the global brightness, contrast level can

also be expressed in the same category.

Pose Variations

Can also be listed under image plane variations aspects.

However, changes in the orientation of the face itself on the

image can have larger impacts on its appearance. Rotation in

depth and perspective transformation may also cause

distortion. The common way to deal pose variation is to

isolate pose types (i.e. frontal, profile, rotated). Some

Lighting variations may dramatically change face

appearance in the image. Such variations are the most

difficult type to cope with due to fact that pixel intensities

are directly affected in a nonlinear way by changing

illumination intensity or direction. For example, when using

skin color as a feature for face detection, varying color

temperature of the light source may cause skin color

filtering to fail. Some examples for lighting variations.

Background Variations

Is another challenging factor for face detection in cluttered

scenes. Discriminating windows including a face from non-

face is more difficult when no constraints exist on

background.

Size

A face detector should be able to detect faces in different

sizes. This we can achieve by scaling the input image. And

small faces are more difficult to detect than the large face.

Expressions

The appearance of a face changes considerably for different

facial expressions and, thus, makes the face detection more

difficult. The simplest type of variability of images of a face

can be expressed independently of the face itself, by

rotating, translating, scaling and mirroring its image. Also

changes in the overall brightness and contrast of the image

and occlusion by other objects.

Lighting and Texture Variation

Now we will describe how the variation caused by the

object and its environment, specifically the object‘s surface

properties and the light sources. Changes in the light source

in particular can change a face‘s appearance.

 Presence or absence of structural components:

Facial features such as beards, moustaches and glasses may

or may not be present. And also there may be variability

among these components including shape, color and size.

Shape Variation

Shape variation includes facial expressions, ether the mouth

and eyes are open or closed, and the shape of the

individual‘s face. The appearances of faces are directly

affected by person‘s facial expression.

Occlusion

Faces may be partially occluded by other objects. In an

image with a group of people some faces may partially

occlude other faces. Partial occlusions of faces can be

caused by objects within the environment (e.g, poles and

people), objects worn by the person (glasses, scarf, mask),

other body parts of person (hands) and shadows. Image

orientation: Faces can appear in different orientation the

image plane depending on the angle of the camera and the

face. Images directly vary for different rotations about the

camera‘s optical axis.

Imaging conditions

When the image is formed, factors such as lighting (spectra,

source distribution and intensity) and camera characteristics

(sensor response, lenses) affect the appearance of a face.

BASIC TERMS

 Detection rate

It is defined as the ratio between the number of faces

correctly detected and the number of faces determined by a

human.

 False negative

In which faces are missed resulting in low detection rates.

False positive

In which an image region is declared to be face but it is not.

OVERVIEW

Next section, an overview of the main existing approaches is

given. We first define precisely what the face detection task

is and then detail the image based and feature based

methods. Face Detection Section explains the developed

algorithm. The main theory of Boosting is given as well as

the use of the haarlike masks, a new image representation

and an implementation in cascade.

 Finally the last Section will focus on the experiments and

results of our face detector.

OVERVIEW OF FACE DETECTION

INTRODUCTION

Face Detection is the first step of face Recognition,

S.Jaiswal et.al.[56] given a comprehensive literature on

Image Based human and machine recognition of faces

during 1987 to 2010. Machine recognition of faces has

several applications. As one of the most successful

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 121

applications of image analysis and understanding, face

recognition has recently received significant attention,

especially during the past several years. In addition, relevant

topics such as Brief studies, system evaluation, and issues of

illumination and pose variation are covered. In this paper

numerous method which related to image based 3D face

recognition are discussed.

S.Jaiswal et.al. [57] described an efficient method and

algorithm to make individual faces for animation from

possible inputs. Proposed algorithm reconstruct 3D facial

model for animation from two projected pictures taken from

front and side views or from range data obtained from any

available resources. It is based on extracting features on a

face in automatic way and modifying a generic model with

detected feature points with conic section and pixalization.

Then the fine modifications follow if range data is available.

The reconstructed 3Dface can be animated immediately with

given parameters. Several faces by one methodology applied

to different input data to get a final Animatable face are

illustrated.

S.Jaiswal et.al.[58] the proposed study, 2D photographs

image divided into two parts; one part is front view (x, y)

and side view (y, z). Necessary condition of this method is

that position or coordinate of both images should be equal.

We combine both images according to the coordinate then

we will get 3D Models (x, y, z) but this 3D model is not

accurate in size or shape. In defining other words, we will

get 3D animatable face, refinement of 3D animatable face

through pixellization and smoothing process. Smoothing is

performed to get the more realistic 3D face model for the

person.

In the following we will present different aspects of the face

processing domain while reviewing the main existing

methods. First of all, we need to define what face detection

is, why it is an interesting objective and how it can be

approached with various methods. We can define the face

detection problem as a computer vision task which consists

in detecting one or several human faces in an image. It is

one of the first and the most important steps of Face

analysis. Usually, the methods for face recognition or

expression recognition assume that the human faces have

been extracted from the images, but while the human visual

system permit us to find instantaneously faces in our

purview indifferently of the external conditions, doing the

same automatically with a computer is a quite difficult task.

A Brief History

Along face detection, many other parts of Face analysis

present useful applications and the number of these

applications is increasing considerably nowadays with the

evolution of the automatic systems in the life of every one of

us. Face Recognition, Face localization, Face Tracking,

Facial expression, alignment, registration, recognition are

the main of these research domains.

Face Recognition

Consists in identifying the people present in images, in other

words, we want to assign one name to one detected face. It

is used in security systems for example.

Face Localization

Is the problem of finding precisely the position of one face,

whose presence is already known in a single image.

Face Tracking

Has for goal to follow a detected face in a sequence of

images in a real world context in most of the cases.

Facial Expression

Recognition will try to estimate the affective state of

detected people (happiness sadness etc...).

Face Registration

Is the task of aligning the faces such that di_erent faces are

transformed to a common coordinate system? This task is a

crucial preparation step for face recognition. Since most

recognition algorithms are quite sensitive to even small

changes in orientation or position correct registration is very

important. If registration fails recognition cannot be

performed successfully.

Alignment

After face and eye positions have been established

alignment is straight forward. The image is rotated and then

cropped according to the distance between the eyes. The

output of the aligner is a cropped and rotated face image of

given pixel size.

It is clear that the first step for all these problems is to find

faces in images. For that various approaches have been

developed and that is what will be detailed in this section.

The first face detection systems have been developed during

the 1970‘s but the computation limitations restricted the

approaches to anthropometric techniques which could be

efficient in only few applications as passport photograph

identification for instance. It is only since the beginning of

the 1990‘s that more elaborated techniques have been built

with the progress in video coding and the necessity of face

recognition. In the past years, lots of different techniques

have been developed, in such a proportion that today we can

count not less than 150 different methods. 2.1.2 Face

detection difficulties If automatic face detection has not

been developed before, it is because it is particularly hard to

build robust classifiers which are able to detect faces in

different image situations and face conditions even if it

seems really easy to do this with our human visual system.

In fact, the object ―face‖ is hard to define because of its

large variability, depending on the identity of the person, the

lightning conditions, the psychological context of the person

etc. The main challenge for detecting faces is to find a

classifier which can discriminate faces from all other

possible images. The first problem is to find a model which

can englobe all the possible states of faces. Let‘s define the

main variable points of the faces:

The face global attributes:

We can extract some common attributes from every face. A

face is globally an object which can be estimated by a kind

of ellipse but there are thin faces, rounder faces... The skin

color can also be really different from one person to one

another.

The pose of the face:

The position of the person in front of the camera which has

been used to acquire the image can totally change the view

of the face: the frontal view, the profile view and all the

intermediate positions, upside down..

The facial expression:

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 122

Face appearance depends highly on the affective state of the

people. The face features of a smiling face can be far from

those of an indifferent temperament or a sad one. Faces are

nonrigid objects and that will limit considerably the number

of detection methods.

Presence of added objects:

Face detection included objects that we can usually find on a

face: glasses which change one of the main characteristics of

the faces: the darkness of the eyes. Natural facial features

such as mustache beards or hair which can occult one part of

the face.

Image Condition:

The face appearance vary a lot in function of the lightning

conditions, the type of illumination and intensity and the

characteristics of the acquisition system need to be taken in

account. The next figure shows some typical face examples

extracted from the CMU test dataset [23].

Figure 1: Typical faces extracted from the CMU Database [23]. We can

notice the great variability of the nonrigid object ―Face‖.

The background composition is one of the main factors for

explaining the difficulties of face detection. even if it is

quite easy to build systems which can detect faces on

uniform backgrounds, most of the applications need to

detect faces in any background condition, meaning that the

background can be textured and with a great variability. So

our two class classification task is to assign an image to the

face class or the Non faces class. Given a set of we can

extract some properties of faces for representing the face but

it is impossible to find properties which can represent all the

non class.

FACE DETECTION

Face detection is the first stage of an automatic face

recognition system, since a face has to be located in the

input image before it is recognized. A definition of face

detection could be: given an image, detect all faces in it (if

any) and locate their exact positions and size. Usually, face

detection is a two-step procedure: first the whole image is

examined to find regions that are identified as ―face‖. After

the rough position and size of a face are estimated, a

localization procedure follows which provides a more

accurate estimation of the exact position and scale of the

face. So while face detection is most concerned with

roughly finding all the faces in large, complex images,

which include many faces and much clutter, localization

emphasizes spatial accuracy, usually achieved by accurate

detection of facial features.

Face detection algorithms can be divided into four

categories according to:

Knowledge-Based Methods

It is based on human knowledge of the typical human face

geometry and facial features arrangement. Taking advantage

of natural face symmetry and the natural top-to-bottom and

left-to-right order in which features appear in the human

face, these methods find rules to describe the shape, size,

texture and other characteristics of facial features (such as

eyes, nose, chin, eyebrows) and relationships between them

(relative positions and distances). A hierarchical approach

may be used, which examines the face at different resolution

levels. At higher levels, possible face candidates are found

using a rough description of face geometry. At lower levels,

facial features are extracted and an image region is

identified as face or non-face based on predefined rules

about facial characteristics and their arrangement. The main

issue in such techniques is to find a successful way to

translate human knowledge about face geometry into

meaningful and well-defined rules. Another problem of such

techniques is that they do not work very well under varying

pose or head orientations.

Feature Invariant Approaches

Aim to find structural features that exist even when the

viewpoint or lighting conditions vary and then use these to

locate faces. Different structural features are being used:

facial local features, texture, and shape and skin color. Local

features such as eyes, eyebrows, nose, and mouth are

extracted using multi-resolution or derivative filters, edge

detectors, morphological operations or thresholding.

Statistical models are then built to describe their

relationships and verify the existence of a face. Neural

networks, graph matching, and decision trees were also

proposed to verify face candidates. Skin color is another

powerful cue for detection, because color scene

segmentation is computationally fast, while being robust to

changes in viewpoint, scale, shading, to partial occlusion

and complex backgrounds. The color-based approach labels

each pixel according to its similarity to skin color, and

subsequently labels each sub-region as a face if it contains a

large blob of skin color pixels. It is sensitive to illumination,

existence of skin color regions, occlusion, and adjacent

faces. There are also techniques that combine several

features to improve the detection accuracy. Usually, they

use features such as texture, shape and skin color to find

face candidates and then use local facial features such as

eyes, nose and mouth to verify the existence of a face.

Feature invariant approaches can be problematic if image

features are severely corrupted or deformed due to

illumination, noise, and occlusion.

Template-Based Methods

To detect a face in a new image, first the head outline,

which is fairly consistently roughly elliptical, is detected

using filters, edge detectors, or silhouettes. Then the

contours of local facial features are extracted in the same

way, exploiting knowledge of face and feature geometry.

Finally, the correlation between features extracted from the

input image and predefined stored templates of face and

facial features is computed to determine whether there is

face present in the image. Template matching methods

based on predefined templates are sensitive to scale, shape

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 123

and pose variations. To cope with such variations,

deformable template methods have been proposed, which

model face geometry using elastic models that are allowed

to translate, scale and rotate. Model parameters may include

not only shape, but intensity information of facial features as

well.

Appearance-Based Methods

While template-matching methods rely on a predefined

template or model, appearance-based methods use large

numbers of examples (images of faces and \ or facial

features) depicting different variations (face shape, skin

color, eye color, open\closed mouth, etc). Face detection can

be viewed as a pattern classification problem with two

classes: ―face‖ and ―non-face‖. The ―non-face‖ class

contains images that may depict anything that is not a face,

while the ―face‖ class contains all face images. Statistical

analysis and machine learning techniques are employed to

discover the statistical properties or probability distribution

function of the pixel brightness patterns of images belonging

in the two classes. To detect a face in an input image, the

whole image is scanned and image regions are identified as

―face‖ or ―non face‖ based on these probability functions.

Well-known appearance-based methods used for face

detection are eigenfaces, LDA, neural networks, support

vector machines and hidden Markov models.

Hjelmås and Low conducted a survey on face detection

techniques, and identified two broad categories that separate

the various approaches, namely Feature-based and Image-

based approaches. Each category will be explained,

providing a brief yet thorough overview of the various face

detection techniques. Figure 2 illustrates the different

approaches for face detection.

Figure 2 Different approaches for face detection.

FEATURE-BASED APPROACH

Hjelmås and Low divided the group of feature-based system

into three sub-categories: Low-level Analysis, Feature

Analysis and Active Shape Models.

Low-level Analysis

Low-level analysis deals with the segmentation of visual

features using various properties of pixels, predominantly

gray-scale or color.

Edge representation (detecting changes in pixel properties)

was first implemented by Sakai et al for detecting facial

features in line drawings. Craw et al developed this further

to trace a human head outline, allowing feature analysis to

be constrained to within the head outline. Various operators

are used to detect the presence of an edge, including the

Sobel operator, the Marr-Hildreth operator, and a variety of

first and second derivatives of Gaussians. All edge-based

techniques rely on labeled edges which are matched to a

face model for verification. Labeled edges as left side,

hairline, and right side, developing a system capable of

detecting 76% of faces in a set of 60 images with complex

backgrounds, with an average of two false alarms per image.

Gray information can be used to identify various facial

features. Generally eyebrows, pupils and lips appear darker

than surrounding regions, and this extraction algorithm can

search for local minima. In contrast, local maxima can be

used to indicate the bright facial sports such as nose tips.

Detection is then performed using low-level gray-scale

thresholding.

Color contains extra dimensions which can help

differentiate two regions which may contain similar gray

information but appear very different in color space. It was

found that different skin color gives rise to a tight cluster in

color space, thus color composition of human skin differs

little across individuals, regardless of race. The most widely

used color model is RGB, although there are many others

that exist and have been used.

Motion information (where available) can be used to assist

in the detection of human faces, using the principle that, if

using a fixed-camera, the "background clutter" will remain

somewhat static, relative any "moving object". A

straightforward way to achieve motion segmentation is by

frame difference analysis. Thresholding accumulated frame

differences is used to detect faces or facial features. Another

way to measure motion is thought the estimation of moving

image contours, a technique that has proven to be more

reliable, particularly when motion is insignificant.

Feature Analysis

Low-level analysis introduces ambiguity which can be

solved by high-level feature analysis, often through the use

of some additional knowledge about the face. There are two

approaches for the application of this additional knowledge

(commonly face geometry).

The first involves sequential feature searching strategies

based on the relative positioning of individual facial

features. Initially prominent facial features are determined

which allow less prominent features to be hypothesized (for

example a pair of dark regions found in the face area

increases the confidence of facial existence). The facial

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 124

feature extraction algorithm is a good example of feature

searching, achieving 82% accuracy with invariance to gray

and color information, failing to detect faces with glasses

and hair covering the forehead.

The second technique, constellation analysis, is less rigid

and is more capable of locating faces of various poses in

complex backgrounds. It groups facial features in face-like

constellations, using robust modeling methods such as

statistical analysis. Burl et al used statistical shape theory on

features detected from a multi-scale Gaussian derivative

filter, capable of detecting 84% of faces, with some

invariance to missing features, translation, rotation and

scale.

Active Shape Model

Active shape model represents the actual physical and hence

higher-level appearance of features. These models are

released near to a feature, such that they interact with the

local image, deforming to take the shape of the feature.

There are three types of active shape models that have been

used through the literature: snakes, deformable templates

and smart snakes.

Snakes or active contours are commonly used to create a

head boundary. Created nearby, they lock on to nearby

edges, eventually assuming the shape of the head. The

evolution of a snake is achieved by minimizing an energy

function, which consists of the sum of an internal energy

function, defining its natural evolution (typically shrinking

or expanding), and an external energy function, which

counteracts the internal energy enabling the contours to

deviate from the natural evolution. Energy minimization can

be obtained by optimization techniques such as the steepest

gradient descent although the additional computational

demands have encourages others to use faster iteration

methods.

Deformable temples can be used as an extension to the

snake models. Smart snakes or Point Distributed Models

(PDMs) are compact parameterized descriptions of a shape

based upon statistics. They use Principle Component

Analysis (PCA) to construct a linear flexible model from

variations of the features in a training set. Face PDM was

first developed by Lantis et al as a flexible model with

promising results (95% detection rate). Multiple faces can

be detected tests have shown that partial occlusion is not a

problem as other features are still available to contribute to a

global optimal solution.

Image-based Approach

Face detection by explicit modeling of facial features is a

very rigid approach which has been shown to be troubled by

the unpredictability of faces and environmental conditions.

There is a need for more robust techniques, capable of

performing in hostile environments, such as detecting

multiple faces with clutter-intensive backgrounds. This has

inspired a new research area in which face detection is

treated as a general pattern recognition problem. Whereas

face recognition deals with recognizing the face, face

detectors must recognize an object as a face, from examples.

This eliminates the problem of potentially inaccurate models

based on the erroneous or incomplete face knowledge and

instead places the emphasis on the training examples from

which the system leans to distinguish a face. Most image-

based approaches apply a window scanning technique for

detecting faces, which due to its exhaustive nature, increases

computational demand.

Hjelmås and Low divided the group of image-based system

into three sub-categories:

Linear Subspace Methods, Neural Networks and

Statistical Approaches.

Linear Subspace Methods

Images of human faces lie in a subspace of overall image

space which can be represented by methods closely related

to standard multivariate statistical analysis, including

Principal Component Analysis (PCA), Linear Discriminant

Analysis (LDA), and Factory Analysis (FA).

Neural Networks

Early approaches based on the simple Multiple Layer

Perceptrons (MLP) gave encouraging results on fairly

simple datasets. The first advanced neural approach which

reported performance statistics on a large, visually complex

dataset was by Rowley et al. Their system incorporates face

knowledge in the retinally connected neural network

architecture, with specialized window sizes designed to best

capture facial information (e.g. horizontal strips to identify

the mouth).

Statistical Approaches

Systems based on information theory, support vector

machines and Bayes' decision rule are examples of image-

based approaches that do not fit into either of the other

categories.

In this context, various approaches have been taken to detect

faces in images. But as the face detection task is quite

complex, each method is build in a precise context and we

will now review the main existing methods. The next

sections detail the two main face detection approaches:

Image Based Methods: Which are built given a set of

examples and uses a sliding window to perform the

detection?

Geometrical Based Methods: Which take in account

geometric particularity of face structures?

Definition of Some General Notions Needed to Understand

Face Detection Problem

First of all, we have to define some basic criteria that will

determine the performances of the detectors. The first notion

that we need to introduce is the detection rate. The detection

rate d is the percentage of faces in the image that have been

correctly detected by the detector. In lots of applications, it

is the rate that we want to maximize. On the other hand, we

have to define the false rates. The false negative fn rate is

the opposite of the detection rate in the sense that it is the

rate of faces that have been forgotten by the detector: fn =1 -

 d. The false positive rate is the second essential rate

considered in face detection: let fp be the rate of non faces

windows that are classified as faces by the detector. Due to

the large number of windows evaluated in a usual image,

this false positive rate is usually 10
−

5

or 10
−

6

but this low

value is not really significant.

Once these definitions are given, it is easy to understand that

the objective of the face detection is to maximize the

detection rate while minimizing the false positive rate fp.

However, as in lots of applications in the real life, it is hard

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 125

to have both low false positive rate and high detection rate,

and that is why we have to look for a trade off between the

two parameters. All the methods described in the following

sections will try with different approaches to find the better

compromise between false positive rate and detection rate.

Finally, we will see that it is hard to compare the methods

because of the problem of detection evaluations and of the

different contexts. How can we measure the goodness of a

detector?

IMAGE BASED DETECTION

INTRODUCTION

Face is the collection of pixels. Each pixels gives the

identical information about the images. We qualify them of

―Image Based‖ because they are built using example images

in opposition to some ―template methods‖ which need an

apriori knowledge about faces. In order to extract the

features from some training examples, we will need to

follow a statistical learning approach or other machine

learning algorithms. The principle is to learn a face and a

non-face distribution, given a set of positive and negative

examples. For this, we will naturally be placed in a

probabilistic context : An image or any input data is

considered as an random variable x and the two classes face

and Non face are characterized by their conditional density

functions: p(x /face) and p(x/non ace) (see [22]). It is

obvious that these density functions are unknown and one of

the main goals is to approximate them in order to

discriminate faces and non faces. Then there are several

methods to find discriminant functions with permit to

classify a given example in the face class or the non face

class. In this probabilistic approach, many different methods

exist, among which Eigenfaces, Fisher‘s Linear

Discriminant and Neural network or support vector

machines etc...

The main difficulty in this approach is that the example

dimension, i.e. the dimension of x is often high so an

important step will be to reduce this example space in order

to find a discriminant function which separates positive and

negative examples.

Eigenfaces

Definition

The first ImageBased method that we will describ e in this

section is called Eigenfaces. The principle of face detection

using Eigenfaces is to extract these features from a set of

images by Principal Components Analysis (PCA) and

estimate if the extracted Eigenfaces correspond to typical

face pattern. In fact all input images can be represented by a

weighted vector of Eigenfaces in the eigen space and the

challenge is to determine if this linear combination is closer

to one class or to the other. A global overview of face

recognition using Eigenfaces can be found in [25] .

Principal Components Analysis

The first step for this Eigenfaces classification is to extract

the Eigenfaces from the original images. For this, the

Principal Components Analysis (PCA) is used. PCA which

is also known as the KarhunenLo eve method reduces the

input space dimensionality by applying a linear projection

that maximizes the scatter of all projected samples. This

subsection presents the main steps of such an analysis.

Let },{
,........,21 n

xxx be a set of N images which are values

from a ndimensional feature space. The orthonormal matrix

W define a linear transformation from the n-dimensional

space to a m-dimensional feature space where m < n

(dimensionality reduction). Noticing that

mn
RW the new feature vectors

m

k
Ry are

defined by the linear transformation:

,xk
T

k
wy Nk ,....,2,1 (2.1)

Then the total scatter matrix ST is defined as

T

kk

N

K

T
xxS))((

1

 (2.2)

where is the mean of all the examples : ,
1

N

x

N

k

k

By applying the linear transformation, the new scatter

matrix in the dimensional subspace is given by WTSW: The

PCA theory shows that the optimal linear projection Wopt is

the one which minimizes the determinant of the projected

scatter matrix (for the samples },......,,{
21 N

yyy i.e.

].,.....,[||maxarg
2,1 mT

T

w

T

opt
WSWW (2.3)

The set },.....,1|{ mi
i are the n-dimensional

eigenvectors of ST , corresponding

to the },.....,1|{ miy
i eigenvalues ordered

decreasingly.

This projection in the feature space using
T

opt
W permits to

decompose the distance between an example and the face

space into two components: the distance in feature space

DIFS (projection on the m dimensional space) and the

distance from feature space DFFS. For more details about

PCA, see [26], [27] and [28].

One serious point is that the main variance cause in an

object class is the lightning variations as shown in [29] . The

optimal linear transformation Wopt given by PCA has the

drawback to focus on components representing the

illumination changes. One of the correction methods is to let

out the first principal Eigenfaces considering that they

contain almost all the variations due to lightning.

Here we present some advantages and disadvantages:

Advantages

Robust against noise and occlusion, Robust against

illumination, scaling,orientation and translation when face is

correctly normalized, Robust against facial

expressions,glasses, facial hair, makeup etc., Can handle

high resolution images efficiently, Can handle small training

sets, Can handle very low resolution images, Fast

recognition/Low computational cost.

Disadvantages

Removes neighborhood relationships between pixels,

Sensitive to faulty normalization, Sensitive to perspective,

viewing angle and head rotation (can be improved using

eigen light-fields or other view-based methods), Sensitive to

large variation in illumination and strong facial expression,

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 126

Slow training/High computational cost (with large

databases).

Fisher’s Linear Discriminant

Even if the Eigenfaces method seems to be quite efficient on

non noisy images, one of the drawbacks is that it does not

minimize the intraclass variance. A good classifier is a

classifier in which the model of each class has a small

variance while a large variance between different classes.

Fisher‘s Linear Discriminant (FLD) is one method to find

the optimal projection. The projection determined by

xWZ
T

FLD
 minimize the quantity

WC

BC

S

S which is the

ratio between the between class variance
BC

S and the

within class
WC

S , see [24]. If we consider the general case

of a class problem, then we can define the between class

covariance matrix by:

\

c

i

T

iiiBC
NS

1

))(((2.4)

and the within class covariance matrix by :

c

i x

T

ikikiWC

iXk

xxNS

1

))(((2.5)

Where is the mean of all the samples,
i
 is the mean of

the class Xi and Ni the number of samples in the class

i
X .The optimal projection is obtained if we choose the

projection matrix
T

FLD
W as follow:

],,......,,[
||

||
maxarg

21 m

WC

T

BC

T

w

T

FLD

WSW

WSW
W (2.6)

Where },.....,1|{ mi
i is the set of generalized

eigenvectors of SBC and SW, which are associated to the

eigenvalues },.....,1|{ miy
i

. In [24] is it shown

that the upper bound for the projection space dimension is

c¡1where c is the number of classes. In our binary class

case, the projected space is a line. An example in the next

figure shows the comparison between the two methods:

PCA and FLD.

Figure 3: A comparison of principal component analysis (PCA) and

Fisher‘s linear discriminant (FDL) for a two class problem where data for

each class lies a linear subspace. (taken from [24]).

Here we present some advantages and disadvantages:

Advantages

Robust against noise and occlusion, Robust against

illumination, scaling,orientation and translation when face is

correctly normalized, Robust against facial expressions,

glasses, facial hair, makeup etc., Can handle high resolution

images efficiently, Can handle very low resolution images,

Fast recognition/Low computational cost.

Disadvantages

Removes neighbourhood relationships between pixels,

Sensitive to faulty normalization,Sensitive to perspective,

viewing angle and head rotation (can be improved using

fisher light-fields), Does not handle small training sets well,

Slow training/High computational cost (with large

databases).

Other methods in Eigenspace

Others methods which use dimensionality reduction in the

image space have been developed. One of the most efficient

is the distribution based model developed by Sung and

Poggio (see [4]). The method consists in modeling both the

distribution of face patterns and non face patterns. The face

distribution is modeled using 6 face pattern prototypes

clustered bya modified version of the kmeans clustering

algorithm. This algorithm computes the 6 centroids and

covariance matrix of the 6 multidimensional Gaussian. In

order to decrease the number of misclassified examples, 6

other Gaussian clusters representing the non face class are

built using some critical non face pattern which are facelike

patterns in the sense that their prototypes are close to the

face models. These facelike non faces are chosen using a

Bootstrap method which mean collecting the false positive

patterns detected on a large set of images. Given these 12

clusters, a candidate window pattern has to be classified as

face or non face. For this, each the distance between the

tested pattern and the 12 clusters centroids are computed

using 2 metrics.

The first component is normalized Mahalanobis distance

between the tested pattern‘s projection and the cluster

centroid in a subspace spanned by the cluster‘s 75 largest

eigenvectors. The second is the Euclidean distance between

the test pattern and its projection in the subspace. So the

entire set of 12 distance measurements is a vector of 24

values. Then a multilayer perceptron (MLP) is used to

separate the positive and negative examples. This approach

is quite powerful but the limit is that the choice of all the

parameters is not clear: what is the optimal number of

clusters, how many examples do we have to use to train the

classifier?

One other interesting method is a Bayesian based model.

Neural Network, SVM, HMM, Winnow

Other machine learning tools can be used to train good

classifiers. Among these learning approaches, we can find

neural network oriented systems and support vector ones.

These are the more popular tools in machine learning and

the most common used nowadays. The next two subsections

expose them and make an overview of the different existing

systems using them.

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 127

NEURAL NETWORK

One of the best face detection system in term of false

positive rate and detection rate is a Neural NetworkBased

face detection developed by Rowley [11]. It uses a retinally

connected neural network which decides if a scanned

window is a face or not. The face detection system can be

divided in two main steps:

A neural networkbased filter

The input of this first stage is a preprocessed square image

(20x20 pixels in [11]) and the output of the neural network

is an real value between 1 and +1. The preprocessing and

neural network steps are presented in the next figure.

Figure 4: Neural Networkbased face detection proposed by [11]

The original image is decomposed in a pyramid of images

(by simple subsampling) in order to detect faces larger than

the basic detector size. The Receptive fields and Hidden

units are shown in figure. There are three types of hidden

units to represent local features that represent well faces.

This first stage yields good detection rates (if the training set

is particularly well chosen) but it remains still an insufficient

false positive rate.

Arbitration and merging overlapping detections. In order to

improve this high false positive rate, two neural networks

are trained with various initializations (in term of non face

training set, weight initialization and order presentation).

These two networks are built by the methods of the first

step. Even if the two networks have individually bad false

positive rates, the false alarms may differ from one network

to the other. Hence, an integration of the result using a

simple arbitration strategy improves significantly the

detection results. The most common of this strategy is called

ANDing. A window if definitively classified as face only if

the two neural networks have detected it. This method using

neural networks have good results in term of false positive

rate and detection rate, but one limitation is that the quality

of the detection depends highly on the coherence of the

training sets and on the tuning of the neural networks which

has lots of parameters.

Neural Network-Based Face Detection

As discussed in the Literature Survey, there are many

different approaches to face detection, each with their own

relative merits and limitations. One such approach is that of

Neural Networks. This section gives a brief introduction to

the theory of neural networks and presents a neural network-

based face detector developed by Sanner (REF), with the

aim of implementing and analysing the Rowley et al [11]

detector with enhancements proposed by Sung and Poggio

[52]. An explanation of Sanner‘s detector is given, and

details of the experimental work carried out are also

included.

Neural Network Theory

Neural Nets are essentially networks of simple neural

processors, arranged and interconnected in parallel. Neural

Networks are based on our current level of knowledge of the

human brain, and attract interest from both engineers, who

can use Neural Nets to solve a wide range of problems, and

scientists who can use them to help further our

understanding of the human brain. Since the early stages of

development in the 1970‘s, interest in neural networks has

spread through many fields, due to the speed of processing

and ability to solve complex problems. As with all

techniques though, there are limitations. They can be slow

for complex problems, are often susceptible to noise, and

can be too dependent on the training set used, but these

effects can be minimised through careful design. Neural

Nets can be used to construct systems that are able to

classify data into a given set or class, in the case of face

detection, a set of images containing one or more face, and a

set of images that contains no faces. Neural Networks

consist of parallel interconnections of simple neural

processors. Figure 2 shows an example of a single neural

processor, or neuron. Neurons have many weighted inputs,

that is to say each input (p1, p2, p3… pm) has a related

weighting (w1, w2, w3… wm) according to its importance.

Each of these inputs is a scalar, representing the data. In the

case of face detection, the shade of GRAY of each pixel

could be presented to the neuron in parallel (thus for a

10x10 pixel image, there would be 100 input lines p1 to

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 128

p100, with respective weightings w1 to w100,

corresponding to the 100 pixels in the input image).

Figure 5 – a single neuron example neural network

The weighted inputs are combined together, and if present, a

bias (b) is added. This is then passed as the argument to a

transfer function (typically a pure linear, hardlimit, or log-

sigmoid function), which outputs a value (a) representing

the chosen classification.

Problems that are more complex can be realised by adding

more neurons, forming multiple layers of several neurons,

interconnected via a weighted matrix (as shown in figure

2.4.2). Additional layers of neurons not connected directly

to the inputs or the outputs are called hidden layers (layers 1

and 2 in figure 3).

Figure 6– An example of a three layer network with multiple neurons per

layer taken from Matlab documentation

Once the architecture is established, the network must be

trained. A labeled representative set of examples from each

class is presented to the network, which attempts to classify

each example. The weights and biases are initialised with

small random values and updated incrementally, such that

the performance of the detector improves producing a more

accurate decision boundary for the problem. Once trained,

the network can be used to classify previously unseen

images, indicating whether they contain faces or not, based-

on the ‗location‘ of the input relative to the decision

boundary formed during training.

SYSTEM OVERVIEW

The operation of the face detection system can be broken

down into three main areas:

1. Initialisation (design and creation of a neural network)

2. Training (choice of training data, parameters, and

training)

3. Classification (scanning images to locate faces)

A feedforward neural network is created which is trained

using back propagation. The training set used contains

examples of both face and non-face images, and the

classifier is trained to output a value between 0.9 and -0.9

(0.9 firmly indicating the presence of a face, -0.9 firmly

indicating the absence of a face). When a new image is

presented to the network, the image is rescaled and divided

into windows which are individually presented to the

network for classification. Windows thought to contain a

face are outlined with a black bounding box and on

completion a copy of the image is displayed, indicating the

locations of any faces detected. In the next section a more

thorough description of the system is included detailing the

operation of the detector.

SYSTEM DESCRIPTION

There are two main functions: ‗facetrain‘ to create and train

a neural network and ‗facescan‘ to scan new images for

faces. A

Facetrain

A set of 25x20images from a training set is loaded and

stored as an image vector. There are two vectors, one which

contains numerous face examples, the other for non-face

examples. Each image vector is then augmented, adding

mirror-images of the original training examples, to create a

larger training set. A mask is applied to the face examples,

removing pixels outside of the oval mask to focus the

attention of the classifier on the true face region. Pixels in

the unmasked area are then normalised: a rough

approximation of the shading plane is subtracted from the

image to correct for single light source effects and the

histogram is rescaled to ensure all images have the same

gray level range (0-1). Once the training data has been pre-

processed, the neural network is created. The network has

‗NI‘ inputs, 23 hidden nodes, and just one output which

indicates the presence, or absence of face. Each node‘s

transfer function is of type ‗tansig‘ – hyperbolic tangent

sigmoid transfer function.

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 129

Figure 7 – A representation of the network architecture

Matlab‘s training algorithm ‗traindm‘ is used which

implements gradient decent back propagation with

momentum. The network‘s weights and biases are updated

according to gradient descent in order to improve the

networks performance function. The Neural network is

trained with all of the training data until convergence is

achieved, or a decrease in performance is registered on the

arbitrarily chosen validation set. Once the system has been

created and trained, it is possible to classify new unseen

images. The second function, ―facescan‖, conducts the final

task, scanning previously unseen images for faces. Images

are processed prior to classification, which involves the

construction of an image resolution pyramid, and scanning

25x20 window regions, normalising each window before

passing it to the network for classification. The image

resolution pyramid is used to allow faces of differing scales

(sizes) to be detected. When calling the ‗facescan‘ function,

a number of parameters can be specified which control the

number of levels in the pyramid and the scale factor for

resizing between levels, as well as other parameters

specifying the network and mask to be used, and a threshold

value, above which images are classified as faces.

This focuses on Sanner‘s reported findings, predominantly

performance statistics and the limitations of the detector.

Sanner completed several tests to investigate the choice of

parameters, although a comprehensive analysis of true

performance was not provided in the documentation, just a

few examples of images classified by the system. Several

strengths and limitations were identified. The image

normalisation routine was identified as a strength, as it eases

the collecting of examples and the submitting of faces for

scanning, due to the degree of invariance to lighting

conditions that it provides. It can also lead to improvements

in computational efficiency, given the small size of the

matrices used during normalisation. The detector was also

able to correctly process a fairly wide range of poses,

emotions, and lighting conditions, despite a relatively small

and limited example training set. However, the detector was

unable to detect rotated faces as there were no rotated face

examples in the training set and the number of false

positives (areas of background or scenery that the detector

incorrectly identifies as faces), was unacceptable in some

images. The implementation of a retinally connected

network [11], was suggested to help reduce the effect of

noise. The addition of a more comprehensive set of non-face

examples in the training set was also suggested as a

potential improvement, a task which is extremely difficult,

although improved greatly through using a bootstrapping

technique to construct the non-face example set (see section

6 for more details). The remainder of this report will analyse

the Sanner [51] detector, evaluate its performance, and look

at some possible improvements.

EXPERIMENS

This section details work carried out to measure the

performance of the discussed Sanner face detector, and to

analyse the improvements made.

Performance Analysis - Original Detector

The performance of the original face detector developed by

Sanner will be discussed, and a set of optimal values for the

various tuning parameters will be investigated. All the

experimental work is to be carried out in Matlab using the

existing code written by Scott Sanner. Some additional

scripts will be written to implement any improvements, and

to automate some of the performance testing experiments

which would otherwise be a tedious repetitive procedure.

Classification Performance

At the very heart of the system lies the classifier, the object

that actually makes the decision as to whether an image is

receives contains a face or not. Initially tests were carried

out to investigate how well the classifier could classify the

data set on which it was trained. Although this is not

indicative of true performance, it serves as a guide to how

well the network is learning from the training data. The

classify function written by Sanner, classifies 25x20 pixel

images as either face or non-face images, producing a

numerical value between -0.9 and 0.9 (0.9 strongly

indicating the presence of a face, -0.9 indicating the absence

of a face). The addition of a threshold value allows the

classifier to be tuned somewhat, such that an image is

marked as when the numerical output value exceeds the

threshold. A script entitled ―massclassify‖ makes use of the

classify function by repeatedly classifying each example

from the training data. For these experiments a virtual

threshold of ‗0‘ is assumed such that anything classified

positive is defined as a face image, and negative values are

defined as scenery images. This additional code is included

in the appendices for reference. Face and non-face examples

are classified separately. Whilst processing the face

examples, correct classification values (exceeding the virtual

threshold) are used to increment a ‗face counter‘. Likewise a

‗non-face counter‘ tallies the number of times non-face

examples that are below the threshold value (again correct

classification). Upon completion the classification rate and

number of incorrect classifications for both the face and

non-face examples are displayed. Figure 6 shows the results

of ‗massclassify‘ when used to classify the original training

data set using Sanner‘s original detector.

Number of Faces 30

Correcr Classification on Rates 93.3%

Number of Incorrect Classification 2

Number of Scenery Examples 40

Correct Classification Rate 97%

Number of Incorrect Classifications 1

Figure 8– Original Face Detector Learning Performance Statistics

Several parameters in the system can be set to adjust various

properties of the detector and tune its performance. Each of

the parameters will be taken in turn, and experiments carried

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 130

out to determine an optimal value for each one.The mask is

used to remove pixels towards the edge of the 25x20

images, thus focussing the attention of the network on the

unmasked oval region, most likely to contain a face. The

chosen mask is shown in the appendices and closely mirrors

masks chosen by many others in the Literature survey. The

unanimous acceptance of this mask throughout various

approaches infers that the mask is somewhat optimal

already, and thus no experiments will be done with other

alternatives masks for the purposes of this project.

Various characteristics of the network can be changed or

varied including the network type, number of hidden nodes,

training algorithm used and the training duration. Each

parameter will be taken in turn and analysed.

Changing the type of network used could potentially

improve the performance of the detector, although the

chosen feed-forward type is an excellent choice for this type

of application, a choice which is mirrored by other neural

network based face detection systems including Rowley et

al [11]. Therefore due to the widespread acceptance of this

network type, making changes at this stage is deemed

unnecessary.

Number of Hidden Neurons

It is thought that any complexity of problem can be solved

with just a single layer of hidden neurons. With a greater

number of hidden neurons, there are more weights to tune

during training, and thus a more complex a decision

boundary can be formed (although too many neurons can

lead to over fitting of the boundary to the training set, thus

poor generalisation). The number of hidden neurons will be

varied from 1 through to 1000 (25 being the default number

in the original design), and the ‗massclassify‘ function will

be used to see how well the system learns the training set.

Figure 2.4.5 shows the results of these experiments:

Figure 9 – The effect on performance of varying the number of hidden

neurons

LIMITATIONS

Sanner [51] identified some limitations with his face

detector, mainly the number of false positives (windows the

classifier incorrectly believes are faces). This infers a

weakness in the training set. The detector was also stated to

provide translational invariance, although rotation in faces

was not catered for, with the failure to detect several rotated

faces in the test sets.

The system developed by Sanner [51] is a good example of

a neural network based system, indicative of some of the

more complex detectors in the field. It mirrors the strengths

of the technology providing impressive classification results

from a relatively small image training set, and also reflects

the major limitations, mainly computational expense, and

reliance on the training data. It illustrates well some of the

key problems that developers of intelligent artificial face

detection systems are faced with, not only in the field of

neural networks but across the board.

Here we present some advantages and disadvantages of

these methods:

Advantages

Stores neighbourhood relationships,Robust against noise

and occlusion,Robust against scaling, orientation and

translation when face is correctly normalized,Fast

recognition/Low computational cost (depending only on the

network and not the number of images).

Disadvantages

Sensitive to faulty normalization, Sensitive to illumination

and face expressions, Sensitive to perspective, viewing

angle and head rotation (can be improved using ensambles

of networks), Can be slow and difficult to train (especially

for large databases).

Support Vector Machine

Modeling of imperial data is essential in many disciplines,

to build a representation of an object or a task that can

deduce the results for an unseen input only by observing a

set of training samples or by using predefined rules, to

assign units from a target space into classes by using a

representative model obtained only by using a subspace of

the entire space, the choice of this subspace is essential and

should contain enough information to represent the entire

space or the approximation error will be high due the poor

choice of the representative data, after using a representative

subspace an optimal model should be selected to minimize

the estimated error, both these errors (approximation error

results from poor subspace and estimation resulting from

poor model) are called the generalization error, which is the

error resulting from the attempt of modeling a space using s

subspace, most classification techniques tried to minimize

this error to obtain a better model Vapnik(1998)[53].

SVM were founded by Vapnik (1995) [54]and gained

popularity due their promising results in classification of

complex problems ad their performance, it has the ability to

generalize only by using a finite set of training samples,

SVMs have been applied successfully in the field of pattern

recognition, as in Cortes and Vapnik(1995)[53] for

handwriting recognition and in[55] for face detection.

In the case of face detection the classification problem is

narrowed down to a two-class case, a face and none-face,

the goal of using SVM in this case is to deduce a function

which can separate the two classes by using a training set to

deduce a classifier that can classify unseen examples as

well, one that generalizes properly, in most classification

problems there exists many functions that can separate the

data but there exist only one that maximizes the margin

between the function and the nearest data sample of each

class, this classifier can be called as the: optima hyperplane,

this hayperpane could be linear in some cases and in many

other cases it is not, presenting an addition supporting

function could be necessary to be associated with the

misclassified set, how even another alternative is the

introduction of a non-linear function that can do the same

thing and separate the classes appropriately. Support Vector

Machine is a learning technique introduced by Vapnik [19].

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 131

It seems to be efficient when the data sets become larger

than few thousands. It the case of face detection if we want

to describe precisely all the faces (because of the variability

of faces.) The principle is to find the decision surfaces by

solving a linearly constrained quadratic programming

problem. The hyperplan decision is the one that maximize

the margin between the face and the non faces classes. One

of the simple margins that can be used is the distance

between the closest points of the two classes. The points that

are kept in the hyperplan are not numerous.

 They are called supper vectors but they are the most

important because they define the boundary between the two

classes. Osuna and al. have developed such a face detection

system using Support Vector Machine in.

Hidden Markov Model

These Hidden Markov Models have been used by Samaria

and Young (see [41] and [42]) for face localization and

recognition. The principle is to divide a face pattern into

several regions such as forehead, eyes, nose, mouth and

chin. A face pattern is then recognize if these features are

recognize in an appropriate order. In other words, a face

pattern is a sequence of observation vectors where

eachvector is a strip of pixels.A image is scanned in a

precise order and an observation is taken by block of pixels.

The boundaries between strips of pixels are represented by

probabilistic transitions between states and the image data

within a region is modeled by a multivariate Gaussian

distribution.

The output states correspond to the class to which the

observation belong. Other methods using HMM have been

developed by Rajagopolan [44], and Sung [43].

Here we present some advantages and disadvantages of

these methods:

Advantages

Robust against scaling, orientation and translation when face

is correctly normalized, Robust against illumination if

training data has different lighting conditions, Robust

against facial expressions,glasses, facial hair, makeup etc.

and Easy to update.

Disadvatages

Sensitive to faulty normalization, Sensitive to occlusion,

Sensitive to perspective, viewing angle and head rotation

(can be improved training models for different views), Slow

training and recognition/High computational cost (can be

improved using DCT or KLT feature vectors).

Sparse Network of Winnows (SNoW)

SNoW is a sparse network of linear functions that uses the

Winnow update rule defined in [45]. We define two linear

units called target nodes: one as representation for the face

pattern and another one for the nonface

 pattern. Given a set of relations that may be of interest in

the input image, each input image is mapped into a set of

features which are present in it. This representation is given

to the SNoW procedure and propagates to the target nodes.

Let },.....,{
1 mt

iiA be the set of features that are present

in an

example and are linked to the target node t. Then the linear

unit is active tif and only if ,,
t

t

it
Ai where

t

i is the weight on the edge connecting the i− th feature

to the target node t and
t

 is its threshold. The Winnow

update consists in a threshold
t

 at the target t, two update

parameters: a promotion parameter α>1 and a demotion

parameter 0 <β<1.

Geometrical Based Detection

Introduction

The previous statistical methods are based on a learning to

obtain a face model from one positive and one negative data

set. They are not directly correlated to the particular

geometrical features of a typical face. Some other methods

are in such a point of view. They are called

Geometricalbased or Featurebased.

 Many approaches have been taken is this large area of

featurebased

 detection and we can distinguish:

 The top-down approach: One model is computed for

one scale. This was used by Yang and Huang [30], and

Lanitis [31] .

 The bottom-up approach: The faces are searched in an

image by the presence of facial features. See Leung [32] and

Sumi [33]. The main advantage of this geometric approach

is that the face detection is not restricted to frontal faces. In

fact the main face features (eyes nose, skin color etc...) are

present independently of the pose and the lighting

conditions.

Top-down Methods

This category includes all the methods that used a multi

scale approach. The great majority of them use the skin

color to find faces in images. The existing system use

several segmentation algorithms to extract faces from the

images. The more classical ones are region growing, Gibbs

Random Field Filtering and more... The skin color is maybe

one of the features the first noticed by the human visual

system. Many methods use different color spaces. The main

advantage of this approach is that the face detection is very

fast. However, there is one important issue: lots of problems

appears if the background contains faces of the skin color.

Yang and Ahuja [36] have build their system in this sense.

Although the human skin color seems to change from one

example to one other, the effective variation is more

luminance than the color itself. The distribution is modeled

by a Gaussian distribution. All the pixel are tested and we

attribute them the skin color if their corresponding

probability is greater than a given threshold. Finally, a

region is declared as face if more than 70 percents of its

pixels have the skin color. Another method proposed by

Saber and Tekalp [47] uses Gibbs Random Field filtering as

segmentation algorithm.After the segmentation, each region

is approximated by an ellipse. the distance between the

ellipse and the region shape is computed using the

Hausdorff distance measure. If this last measure is greater

than a predefined threshold, the region is rejected. Then a

procedure of finding the facial features is applied. Wei and

Sethi uses a quite different approach in [?, ?]. They use a

partitioning of the human skin region to detect faces. The

binary image of the segmented skin is obtained by

performing skin color classification at each pixel location.

The a morphological closing is performed followed by an

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 132

opening to remove small regions. Then the remaining

regions are another time approximated by ellipses

Bottom-up Methods

The principle is to find invariant features of faces. By

invariant, we mean invariant by scaling, poses, lighting

conditions and other variations. The common and natural

features that are usually extracted are the eyes, the nose the

mouth and the hair line. Any edge detector might be used to

extract them.A bottom up method try to find this features in

an original image and then they are grouped according to

their geometrical relationships.

The difference between the methods in this bottomup

approach resides in the way to choose the features and how

to establish the links between them.

One of the early methods was proposed by Govindara ju in

[46]. In this method, the facial features arecharacterizedby

curves and structural relationships which link them. Two

successive stages are applied: First, curves of the faces are

extracted from an input image to find the face candidates.

The features detected are then grouped using a matching

process (a cost function and one threshold).

Leung [32] uses a random graph matching by apply a set of

Gaussian filters which is compared to a template graph

representing a face. (The comparison between the computed

graph and the template is usually a simple threshold).

In another method used by Yow and Cipolla [34], a set of

derivative filter is apply in order to select edge features like

the corner of the eyes for example. Then only the points that

have particular properties are kept: those which have

parallel edges for example. The remaining points are then

linked together and they are used to build a face model. Cai

and Goshtasby [35] used the color information but in a

different approach than [36]. A face is recognized by the

presence of particular feature.

Evaluation Difficulties

As the definition of detecting faces in images is really

simple: determine whether or not there are any faces in

images and, if present, return the image location and extend

for each face, we can think that it is easy to evaluate the

performances of a face detector. However many parameters

have to be taken in account to do this. How can we measure

the goodness of a detection? How do we have to integrate

the false alarms (how do we have to consider the false

positive rate?) What about the detection speed? Several such

questions make hard the face detection evaluation.

It would be interesting to compare the existing methods in

face detection but the major problem is that every method is

made in a particular context and today there are still no

standards for face detection evaluation that will make easier

the future research work about face detection.

The first step in detection evaluation is to use a common

testing set which contains a large variety of situations. The

most common used set is probably the CMU testing set

which contains many faces manually labeled. Then we

usually use the detection rate over false positive rate ratio to

characterize the performances even if the number of false

alarms is directly related to the way how the images are

scanned (more precisely the number of subwindows

scanned). A summary of the main results and method

comparison canbe found in [22] and [37]. Nevertheless, we

can give general observations about the different

approaches. The image based techniques are quite efficient

regarding the frontal face detection. The detection rate

reaches more than 90% with at most several tens of false

alarms in a typical sized image but the main limitation of the

image based methods is that the faces detected will slightly

match with the training examples. Thus it is difficult for

example to include in the training set faces at many different

poses, with both rotations in and out of plane. The

geometrical approaches are more robust in term of face

pose, i.e. the face orientation in front of the acquisition

system but they generally give worse detection results. Both

the segmentation part and the feature extraction are critical

points. The use of the color information needs is not really

representative of faces because lots of objects in the

background may have the human skin color. The speed of

the detector is without any doubt the parameter the most

difficult to take into account.

Each method has its own speed and it is difficult to

determine the speed performances: it depends on the

scanning method and on the way it is implemented. So it has

been shown that a lot of different approaches are available

but face detection is still an open task. Many solutions are

possible taking into account the results of the existing

methods. The main promising approach seems to be

combined approaches of image based and feature based

methods. We will see one of them which uses a Boosting

learning algorithm in the next chapters.

FACE DETECTION: AGGRESSIVE LEARNING

ALGORITHM

Introduction

Choice of the Method

Due to some limitations of the neural network based system,

indicative of some of the more complex detectors in the

field. It mirrors the strengths of the technology providing

impressive classification results from a relatively small

image training set, and also reflects the major limitations,

mainly computational expense, and reliance on the training

data. It illustrates well some of the key problems that

developers of intelligent artificial face detection systems are

faced with, not only in the field of neural networks but

across the board.

here, we discuss about a face detection based on a boosting

algorithm which yields good detection rates.

Boosting is a general strategy for learning classifiers by

combining simpler ones. The idea of boosting is to take a

―weak classifier‖ — that is, any classifier that will do at

least slightly better than chance—and use it to build a much

better classifier, thereby boosting the performance of the

weak classification algorithm. This boosting is done by

averaging the outputs of a collection of weak classifiers. The

most popular boosting algorithm is AdaBoost, so-called

because it is ―adaptive.‖ AdaBoost is extremely simple to

use and implement (far simpler than SVMs), and often gives

very effective results. There is tremendous flexibility in the

choice of weak classifier as well. Boosting is a specific

example of a general class of learning algorithms called

ensemble methods, which attempt to build better learning

algorithms by combining multiple simpler algorithms.

This detector is highly inspired by the Robust Real-time

Object Detection of Viola and Jones [1]. We have chosen to

build a model using a statistical learning given some

positive and negative examples. A learning algorithm trains

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 133

a classifier by selecting visual features, so we will discuss

why this chosen algorithm is appropriate for face detection

and explain how it works. We will also emphasis on some

other essentials key contributions like a new image

representation, the choice of these visual features and finally

the introduction of detection in cascade.

Context of the Frontal face Detection

Before going into details, we just remark that every face

detection method is designed in a particular context that is

why it is not always easy to compare the results between

them. Some detectors have for only goal to have a detection

rate as near as possible from 100% but our project is a little

bit in a different context: even if we naturally want reach

good detection rates, we want to build a realtime oriented

detector. So the goal is to detect all the faces (or almost all

of them) even if this means we have to accept a higher false

positive rate (nonface images labeled as face by the

detector). This choice is only in order to respect most of

applications which need for example to detect all the people

in front of a video camera. (Video surveillance for instance).

On the other hand, if for example, a camera is placed in a

airport hall, the faces are often low resolution faces, at

different scales and the background seems to be quite

textured and complicated. In this way, we have to built a

robust detector with respect to illumination, face variation

and face size. On the other side, if we keep in mind that we

want to detect faces for a further face recognition or

comprehension, it would be good to select only faces which

can be considered as frontal faces, this will explain the

choice of the training set used to learn the final classifier

(see 4.1). To summarize, even if we could choose other face

detection contexts, this one seems to be the most used in the

realworld applications. We will particularly pay attention to

the fact that it will be interesting to build a simple and

unbiased representation that can represent faces. (And

objects by generalization).

Why We Choose Boosting and Haar Features?

Previous Section presented the main approaches available to

build a face detection system. Now the context of our face

detection is given, we can explain why we choose this

approach using a boosting learning algorithm and simple

Haar features. As we want to detect faces in various

background and principally low resolution faces, it would be

improper to use purely geometrical methods. In fact the

main advantage to these geometrical methods is the

geometric invariant properties. We are not interested by

them because we have chosen to stay in a frontal face

detection context. So it is quite naturally that we have

oriented our choice towards learning algorithms. Boosting is

a powerful iterative procedure that builds efficient classifiers

by selecting and combining very simple classifiers. Good

theoretical results have been demonstrated, so we have some

theoretical guarantees for achieving good detection rates.

This idea is interesting in the sense that a combination of

simple classifiers may intuitively give a rapid detection

without deteriorating the detection rates. So it seems to be

one of the best compromises between efficiency in term of

detection and speed.

Overview of the Detection

This new method given by Viola [1] is a combined method

of more traditional ones like geometrical and image based

detection. It is a geometrical in the sense that it uses general

features of human faces: position of particular features

among which the eyes the nose and the mouth. We will not

try to extract particular face features: It is only an a

posteriori observation in the sense that the selected Haarlike

masks are effectively representing particular facial features

but it is not our decision. See section 4.2 for details about

the selected features. On the other hand, it is also image

based because we use a statistical learning with the use of a

consequent data set needed to build the face model. Viola

has developed this face detector in July 2001 and he was

inspired by the work of Papageorgiou[2]. It seemed to be the

fastest and the most robust and it is still today. The speed of

the detection is notably given by the simplicity of the

features chosen and the good detection rates are obtained by

the use of the fundamental boosting algorithm AdaBoost

which selects the most representative feature in a large set.

To have a concrete idea of the performances of the

detection, imagine that Viola‘s detector can process 15

frames of 350x260 pixel images per second on a

conventional 700 MHz Intel Pentium. Let us look at the

main steps of the fast face detector that will be explored in

the next sections. The detector consists in scanning an image

by a shifting window at different scales. Each subwindow is

tested by a classifier made of several stages (notion of

cascade). If the subwindow is clearly not a face, it will be

rejected by one of the first steps in the cascade while more

specific classifier (later in the cascade) will classify it if it is

more difficult to discriminate. The first contribution is the

choice of the features that describ e the faces. The principle

of the detection is to apply successively simple classifiers to

combine them in a final strong classifier. The choice of

these features is fundamental for the performances of the

detection. The difficulty is to find masks simple enough to

permit a fast classification but characteristic enough to

discriminate faces and non faces.

A good compromise for that is obtained by the use of

reminiscent of Haar Basis functions. In fact the feature

response is nothing more than the difference of two, three or

four rectangular regions at different scales and shapes.To

improve the computation time of these features, we

introduce a new image representation called Integral Image

which permits to compute a rectangle area with only 4

elementary operations, i.e additions and subtractions. Then,

as we have a large set of features at disposition, AdaBoost is

used to select a small set of them to construct a strong final

classifier. We want to keep only the feature which separates

the best positive and negative examples. At each selection

step, a weak classifier (one feature) is selected so AdaBoost

provides an effective learning algorithm and strong bounds

on generalization performance. Finally, the third important

contribution is the cascade implementation which focuses

the detection on critical regions of interest. Thus, it first

eliminates quickly regions where there are no positive

examples and then, the more we go down in the cascade

process, the more specific the classifiers are and so almost

only faces are detected.

For example, the first stage of Viola‘s detector is a

combination of only two features which rejects 60% of

negative examples and it provides a false negative rate of

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 134

1% with only 20 simple operations. Sections 2 will describ e

the particularity of the features and the computation with the

integral image. Then, section 3 will focus on the learning

algorithm and the method in which the weak classifiers are

combined to ensure a strong final classifier. Finally, section

4 will expose the cascade structure.

Features and Integral Image

This section presents the features used in our statistical face

detection. Human faces are objects particularly hard to

model because of there significant variety in color and

texture and there are no constraints on the background. In

fact, if we want to build a model which is able to take in

account this face variability without identifying cluttered

backgrounds, it will not work to use such as maximum

likelihood methods for example. The next few subsections

expose different methods used to model the faces. 3.2.1

Overview of the existing face models. Due to the context of

our face detection, methods like maximum likelihood are

particularly not efficient. Will will thus focus on example

based face models to train a significant classifier.Many

descriptive features could be used to train a classifier by

Boosting. The next subsections explain some of them that

have been used recently. We can distinguish to main

methods that seems to be the more efficient:

 Pixel based models

 Haar Like features models

A Pixelbased Method

A possibleway of modeling faces is to use a pixel

representation as presented in Pavlovic‘s detection [5]. In

order to train a boosted classifier as we will discuss later,

Pavlovic uses a combination of weak classifiers based on the

pixel values to boost the model. Let

)}(),|({
)(l

k
XsignlXth (3.1)

A weak classifier where Xdenotes a vectorized image

of grayscale pixel values and X
(l)

is its lth pixel. The

weak classifier has an image as input and a decision

face or non face as output, in comparison with a

threshold θ. The used learning algorithm is AdaBoost

which selects from the training dataset the pixels

which represent the best a face structure. As you can

see on the following figure, the geometrical basic

features of faces are recognized: the eye region, the

nose and the mouth.

Figure 9 (a) shows an example of an average face obtained from the

training dataset. Figure 3.1(b) shows a typical ―face‖ image sampled from a

function learned using boosting. Each non white location corresponds to a

pixel selected by the boosting algorithms.

This method seems to be quite efficient because the boosting

learning theoretically gives good training results but imagine

that in a 19 x19 pixel image, there are some 361 pixels, we

have to apply at each scanning window 361 weak

classifications and combine them to obtain a final strong

classifier. We will try to improve the computation time by

using other face models.

Haarlike Features

Comparing these face modeling methods and taking into

account the specific needs of our application, we arrived to

conclusion that a feature based methodwould be more

appropriate rather than pixel based. There are many

motivations for using features (some reminiscent of Haar

Basis functions) than pixels directly as Pavlovic [5]. The

most common reason is that features can act to encode

adhoc domain knowledge that is difficult to learn using a

finite quantity of training data. And as we will see, these

features can operates much faster than pixelbased system.

These features are the same as those used by

Papageorgiou[2]. The Haar wavelets are a natural set basis

functions which computes the difference of intensity in

neighbor regions. The next subsection recalls basic theory

about wavelet representation.

Rectangular Haar Features

In our face detection system, very simple features are used.

We use some reminiscent of Haar Basis. Recall that the

wavelet function corresponding to Haar wavelet is:

2/10,,1)(xifx

12/1,,1)(xifx (3.2)

otherwisex ,0)(

Are three kinds of Haarlike features. The value of a

tworectangle feature is the difference between the sum of

the pixels within two rectangular regions. The regions have

the same size and shape and are horizontally or vertically

adjacent.(see figure 10). A threerectangle feature computes

the sum within two outside rectangles subtracted from the

sum in a center rectangle. Finally, a fourrectangle feature

computes the difference between diagonal pairs of

rectangles.

Given that the basic resolution of the detector is 15x20, the

exhaustive set of rectangle features is quite large: 37525.

Note that unlike the Haar basis, the set of rectangle features

is overcomplete.

Figure 3.3 shows the different twothreeand fourrectangles

prototypes used by our detector.

Figure 10: Example rectangle features shown relative to the

enclosing detection window. The sum of the pixels which lie

within the white rectangles are subtracted from the sum of pixels in

the grey rectangles. Tworectangle features are shown in (A) and

(B). Figure (C) shows a threerectangle feature, and (D) a

fourrectangle feature.

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 135

Figure 11: Feature prototypes of simple Haarlike . Black areas

have negative and white areas positive weights.

Number of Features:

The number of features derived from each prototype is quite

large and differs from prototype to prototype and can be

calculated as follows. Let H and W be the size of a

WH pixels window and let w and h be the size of one

prototype inside the window as shown on figure 3.4.

Let
w

W
X and

h

H
Y be the maximum scaling

factors in x and y direction. An upright feature of size

hw then generates features for an image of size

.HW

2

1
1

2

1
1.

Y
hH

X
wWYX (3.3)

Results with the notations of Figure 3.3:

Table 3.2: Number of features in a 2015 window for each prototype

.

Feature Type hw / YX /
Count

(1a) (1b) 2/1;1/2 7/20 23592

(2a) (2b) 3/1;1/3 5/20 8402

(3) 2/2 7/10 5603

Total 37524

As detailed in Table 3.2 and given that the base resolution of

the detector is 15 20, the exhaustive set of rectangle features

is quite large: 37520. Note that unlike the Haar basis, the set

of rectangle features is over complete.

Even if our detector only uses these four types of features,

we could use other types: for instance we could introduce

the same rectangular features but rotated by 45 degrees as

made by [7] as shown in Figure 12.

Figure 12: Feature prototypes of simple Haarlike and centersurround

features, in line and rotated by 45 degrees. Black areas have negative and

white areaspositive weights.

With these other rotated features and centersurround

features, the new set of features has 117,941 components in

a 20x24 window.

On another side, Papageorgiou [2] introduce another kind of

Haarfeature called quadruple density transform . This one

permits to achieve the spatial resolution necessary for

detection and to increase the expressive power of the model.

It is nothing more than an extension of the 2D Haar wavelet

as shown in Figure 3.6.

Figure 13: Quadruple density 2D Haar basis.

We have decided to limit our set to the simple Haarlike

wavelets because it seems to be complete enough to obtain

good detection results. The choice of the feature is important

but not crucial in order to train the classifiers because as

explained in the next section, the training is a combination

of weak classifiers. It does not really matter if the features

are not optimal, and it seems that the horizontally and

vertically oriented features represent better faces that rotated

ones which would represent nonsymmetries of faces. It is

not a lack or a great loss to limit our set to basics features.

We leave other types of features for a future

work.rectangular features seem to be primitive if we

compare them to other alternatives such as steerable filters

[10]. Steerable filters are really well adapted to boundaries

detection, image compression and texture analysis whereas

the rectangle features are more sensitive to bars, the

presence of edges and quite simple image structures. All the

dilemma of choosing the representation resides in the

compromise between the simplicity which provides fast

computing and more representative filters but slower

computation. In the next subsection a new image

representation will be introduced in order to improve the

computing speed of these Haarlike masks responses.

Integral Image

We now know that we need Haarlike features to train the

classifiers. The goal of this part is to introduce a new image

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 136

representation called Integral Image which yields a fast

feature computation. This representation is in close relation

with ―sum area tables‖ as used in graphics [8]. The value of

the Integral Image at the coordinates (x, y) is the sum of all

the pixels above and to the left of (x, y), including this last

point as shown in Figure 3.7.

Figure 14: The Integral Image representation. The Integral image value at

the point (x,y) is the sum of all the pixels above and to the left of (x,y).

Let ii be the integral image of the initial image i and ii(x, y)

the value of the integral image at the point (x, y).

We can define the integral image ii by:

As we use this new representation to improve the

computation time, let us explain its advantages. First it can

be computed in a efficient way using the following pair of

recurrences:

),(),1(),(

),()1,(),(

yxsyxiiyxii

yxiyxsyxs

s(x, y) is the cumulative row sum, 0)1,(, xsx , and

0),1(, yiiy . The integral image can thus be

computed in one pass at the beginning of the detection over

the original image i. The main advantage using such a

representation is that any rectangular sum in the original

image can be computed in four array references (see Figure

15) in the integral image. The difference between two

rectangular sums can be computed in eight references.

Therefore computing a feature is only a difference of two,

three or four rectangular sums.

The two rectangle features are computed with six references

because the two rectangles are adjacent. The three rectangle

features need eight references and the four rectangle array

only nine.

Figure 15: The sum of the pixels within rectangle D can be computed with

four array references.

The value of the integral image at location 1 is the of the

pixels in rectangle A. The value at location 2 is A+B, at

location 3 is A+C, and at location A+B+C+D. The sum

within D can be computed as 4+1(2+3).

There are some other reasons which made us choose the

integral image representation. One of them is given by the

box let work of Simard, et al. [9]. It is based on a

fundamental property of linear operations (e.g. gf . or

gf). Any invertible linear operation can be applied to or

if its inverse is applied to the result. For instance, assuming

that and have finite support and that f
n

denotes the nth

integral of (or the nth derivative if n is negative), we can

write the following convolution identity:
nnn

gfgfgf)((3.5)

where denotes the convolution operator. They also show that

the convolution can be significantly accelerated if the

derivatives of and are sparse. From this property we can

extract that for example:

.)()(
''

gfgf (3.6)

We can apply this last formula to the rectangle sum

computation: let r be the rectangle (with value 1 inside and

0 outside) and i the image, the sum in the rectangle is ir and

it can be computed as follow:

.).(.
n

riri (3.7)

The integral image is in fact the double integral of the image

(that is why it is called integral image) and the second

derivative of the rectangle yields four delta functions at the

corners of a rectangle. The evaluation of the second dot

product is accomplished with four array accesses.

One of the consequences of the use of such a representation

is the way to scan the images.

The conventional system computes a pyramid of images to

process the detection at several scales. By using the integral

image, we only need to rescale the 20x15 pixels detector and

apply it on the first integral image. No resampling and no

image rescaling are needed that is why it provides a

significant gain of time and it becomes easier to implement

than using the pyramid approach.

This approach permits to compute a single feature at every

location and at every scale in few operations. The power of

all these independent feature is still quite weak, so the

challenge of the next section is to find how the best features

are selected and how we can combine them to produce a

strong final classifier.

Learning with Ada Boost

Considering a mono stage classifier and given a set of

features, we can build a face detector by applying all the

masks at each image location (each shift and each scale).For

this many different learning methods could be used.

Moreover, we have a complete set of 37520 features which

is far larger than the number of pixels, so even if the features

responses are very simple to compute (notably with the

integral image representation), applying the all set of

features would be two expensive in time. The next stage in

the building of the face detector is thus to use a learning

function which selects a small set of these features: the ones

which separates the best positive and negative examples.

The resulting final classifier would be a simple linear

combination of these few Haarlike features. For this, we will

discuss in this section about an algorithm called Ada Boost

(Adaptive Boosting) (see Figure 16) which has two main

goals:

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 137

 • Selecting a few set of features which represents as well as

possible faces. Train a strong final classifier with a linear

combination of these best features.

Figure 16: Basic scheme of AdaBoost.

In the following subsections, it is explained why we have

chosen this algorithm instead of more classical ones and

then we some theory is explained to show why AdaBoost is

efficient and how it can be adapted to face detection.

Possible Algorithms:

Given a set a features and a training set of positive and

negative examples (see section 4.1 on page 65 for details

about the training dataset), any machine learning approach

could be used to learn a classification function. AdaBoost is

efficient boosting algorithms which combine simple

statistical learners while reducing significantly not only the

training error but also the more elusive generalization error.

As all the learning functions, it presents advantages and

drawbacks which are exposed here:

ADVANTAGES:

 No a prior knowledge. As shown in Figure 3.9,

AdaBoost is an algorithm which only needs two inputs: a

training dataset and a set of features (classification

functions). There is no need to have any a priori knowledge

about face structure. The most representative features will

automatically be selected during the learning.

 Adaptive algorithm. At each stage of the learning, the

positive and negative examples are tested by the current

classifier. If an example xi is misclassified, that means that it

is hard to classify i.e it cannot clearly be assign in the good

class. In order to increase the discriminant power of the

classifier these misclassified examples are upweighted for

the next algorithm iterations. So the easily classified

examples are detected in the first iterations and will have

less weight in the learning of the next stages to focus on the

harder examples.

 The training errors theoretically converge exponentially

towards 0. As proved by Freund and Schapire in [12], given

a finite set of positive and negative examples, the training

error reaches 0 in a finite number of iterations.

DISADVANTAGES:

The result depends on the data and weak classifiers. The

quality of the final detection depends highly on the

consistence of the training set. Both the size of the sets and

the interclass variability are important factors to take in

account. Other way, the types of basic classifiers which are

combined have some influence on the result. The only need

for all the basic functions is to be better than random

selection but if we want to achieve good detection rates in a

cogent number of iterations, they have to be as well chosen

as possible.

 Quite slow training. At each iteration step, the

algorithm tests all the features on all the examples which

requires a computation time directly proportional to the size

of the features and examples sets. Imagine that the training

set has many thousands of positive and negative examples

and a complete set of 37520 features. However, the

computation time is increased linearly with the size of the

both sets.

The Weak Classifiers

This subsection shows how the Haarlike features can be

used to build simple classifiers which need AdaBoost. The

principle of the Boosting is to combine simple classifiers

which are called weak learners. These weak learners are

called weak because we do not expect even the best

classification function to classify the data well, they only

need to classify correctly the examples in more of 50% of

the cases. One easy way to link the weak learner and the

Haar features is to assign one weak learner to one feature.

So the AdaBoost algorithm will select at each round the

feature that provides the best separation between positive

and negative examples.

From Features to Weak Classifiers

This subsection shows how to build the weak classifiers

with the rectangle features. A feature response is a

difference of the sum of pixels in neighbor regions. We hope

that these responses then permit to distinguish positive and

negative examples. For each feature and at each iteration of

AdaBoost (because all the examples are re-weighted at each

iteration, so the response to one feature of one example will

not necessary be the same at each stage). In other terms, one

weak classifier is a feature evaluation followed by an

optimal thresholding. This threshold is optimal in the sense

that the minimum numbers of examples are misclassified.

We can summary this by the following formula: Aweak

classifier hj (x) consists of a feature fj , a threshold θj and a

parity pj indicating the direction of the inequality sign:

otherwise

pxfifp
xh

jjjj

j

,0

)(,1
)((3.8)

w x is an weighted example, as well positive as negative. It

is weighted in the sense that all the examples are reweighted

at each stage of the algorithm.

The next subsection shows how to find the optimal threshold

for each feature.

The Optimal Threshold

Given one feature fj and all the examples responses fj (xi),

training set to this feature, we want the threshold θj that

separates the best positive and negative examples. One easy

method would be to approximate the positive and negative

distributions by two Gaussian, with only two parameters for

each Gaussian. This approach would work in theory in the

sense that we only want classifiers which achieve more than

50% of detection rate. But in practice the distributions have

for many features a great standard deviation such that lots of

examples are not characterized by the appropriate Gaussian.

Ada Boost

History of Boosting and AdaBoost methods The chosen

learning algorithm AdaBoost is a Boosting algorithm

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 138

sobefore explaining the use of AdaBoost in the context of

face detection, basic theory about boosting will be

introduced.

The Boosting theory takes its roots in the PAC learning [12].

They proved that a combination of simple learners, only

better than random could yield a good final hypothesis. That

is the main idea of what is called Boosting. AdaBoost

(Adaptive Boosting) was introduced as a practical algorithm

of the Boosting theory.

Let h1, h2,, hT be a set of simple hypothesis and consider

the composite ensemble of hypothesis
T

t

tt
xhxf

1

),()((3.9)

where αt denotes the coefficient with which the ensemble

member ht is combined. Both αt and ht have to be learned

during the boosting process.

In the beginning, Boosting algorithms were appreciated

for their performances with low noise data. However, the

first algorithms provided too bad results with noisy

patterns due to overfitting so the applications of Boosting

were limited.

On the other hand, AdaBoost can be viewed as a

constraint gradient descent in an error function with

respect to the margin. AdaBoost asymptotically achieves a

large margin classification, that means that it concentrate

its resources on a few hardtolearn patterns that are

interestingly very similar to support vectors. [13].

Trying to improve the robustness of Boosting, it was

interesting to clarify the relations between Optimization

Theory and Boosting procedures. From here, it became

possible to define Boosting algorithms for regressions

[14], multi class problems, unsupervised learning and to

establish convergence proofs for boosting algorithms by

using results from the Theory of Optimization.

For details about Boosting applications, publications,

softwares and demonstrations, see [15].

Introduction to Boosting and Ensemble Methods In this

whole section, we focus on the problem of binary

classification to stay in the context of face detection with

the face class and the nonface class.

The task of the binary classification is to find a rule,

which, given a set of patterns, assigns an object to one of

the two classes.

Let X be the input space which contains the objects and

we denote the set of possible classes by Y (In our

case, }1,1{Y). The task of learning can be

summarized as follow: Estimate a function YXf : ,

using input, output training data pairs generated

independently at random from an unknown probability

distribution P(x,y),

}1,1{),),.......(,(
11

d

nn
Ryxyx (3.10)

such that will correctly predict unseen examples (x,y). In the

case where }1,1{Y

we have a socalled hard classifier

and the label assigned to an input x is given by y = f(x).

The true performance of the classifier f is assessed by

),,()),(()(yxdPyxffL (3.11)

Where λis a chosen loss function. The risk L(f)is often

called the generalization error in the sense that it

measures the loss with respect to the example not observes

in the training set. For binary classification, we usually

use the loss function)0)(,()),((xfyIyxf

where I(E)=1 if the event E occurs and 0 otherwise. In

other words,

Otherwise

iedmisclassififx
yxf

i

ii
,0

,1
)),((

Since the probability distribution P(x,y) is unknown, this

risk L(f) cannot be directly minimized. So we have to

estimate a function as close as possible from foptimal based

on the available information, i.e. the training examples and

the properties of the function class F from which f is

chosen. One classical solution is to approximate the

generalization error by the empirical risk defined as follow
N

n

nn
yxf

N
fL

1

),),((
1

)((3.12)

Is the case if the examples are uniformly distributed. If the

training set is large enough, we expect that:

)()(
lim

fLf
L

N

 one stronger condition is required to validate the last

formula: The risk error)(fL has to converge uniformly

over the class of functions F to L(f).

While this condition is possible for large size training sets,

for small samples size large deviations are possible and over

fitting might occur. If it is the case, the generalization

cannot be obtained by minimizing the training error)(fL .

As Boosting algorithms generate a complex hypothesis, one

may think that the complexity of the resulting function class

would increase dramatically when using an ensemble of

many learners. It is the case under some conditions .

Now discuss about a strong and weak model called PAC for

learning binary classifiers.

Let S be a sample consisting of data points

N

nnn
yx

1
)},{(

,where xn are generated independently at

random from some distribution P(x) and yn = f(xn), belongs

to some known class F of binary functions. A strong PAC

(Probably Approximately Correct) learning algorithm has

the property that for every distribution P, every Ff and

every
2

1
,0 the probability larger than 1 , the

algorithm outputs a hypothesis h such that

)]()(Pr[xfxh . The running time of the algorithm

should be polynomial in /1 , 1/δ, n, d, where d is the

dimension (appropriately defined) of the input space. A

weak PAC learning algorithm is defined without any

constraints, except that it is only required to satisfy the

conditions for particular and rather than all pairs.

Consider a combination of hypothesis as shown in 3.9.

There are many approaches for selecting both the

coefficients
t
 and the base hypothesis ht. In a Bagging

approach, the hypothesis
T

t
ht

1
}{ are chosen based on a

set of T bootstrap samples, and the coefficients αt are set to

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 139

T
t

/1 (see [16] for detailed Bagging approach). The

advantage of this simple method is that it tends to reduce the

variance of the overall estimate)(xf . The AdaBoost

algorithm is a more sophisticated algorithm for boosting the

combination of the hypotheses. It is called Adaptive in the

sense that examples that are misclassified get higher weights

in the next iteration, for instance the examples near the

decision boundary are harder to classify and therefor get

high weights in the input set after the first iterations. The

next figure illustrates AdaBoost learning on a 2D data set.

ADABOOST CONCEPT

 Adaboost starts with a uniform distribution of

―weights‖ over training examples. The weights tell the

learning algorithm the importance of the example.

 Obtain a weak classifier from the weak learning

algorithm, hj(x).

 Increase the weights on the training examples that were

misclassified.

 (Repeat)

 At the end, carefully make a linear combination of the

weak classifiers obtained at all iterations.

Ada Boost is explained here, it will be discussed after in

detail

Algorithm 1 The AdaBoost algorithm. [17]

1. Input)},(),......,,{(
11 NN

yxyxS Number of

iterations T.

2. Initialize: Nd
n

/1
)1(

 for all n=1,…,N.

3. Do for t=1,….,T.

(a)Train Classifier with respect to the weighted sample set

},{
)(t

dS and obtain hypothesis

).,(...},1,1{:
)(t

tt
dSLheiXh

(b) Calculate the weighted training error .,
, tt

hof

N

n

ntn

t

nt
xhyId

1

)(
),)((

(c) Set :

t

t

t

1
log2/1

(d) Update the weights:

,/)}(exp{
)()1(

tntnt

t

n

t

n
Zxhydd

Where
t

Z is normalization constant, such that

N

n

t

n
d

1

)1(
.1

4. Break if 0
t

 or 2/1
t

 and set T=t-1.

5. Output:).()(

1

1

xh

O

O
xf

t

T

t
T

t

t

t

r

To understand this fundamental algorithm, the main steps

are detailed in the following paragraphs.

AdaBoost Step by step AdaBoost

Is an aggressive algorithm which selects one weak classifier

at each step A weight (
)()(

1

)(
,.....,

t

N

tt
ddd) is assigned

to the data at step t and a weak learner ht is constructed

based on d(t). This weight is updated at each iteration. The

weight is increased for the examples which have been

misclassified in the last iteration.

The weights are initialized uniformly: Nd
t

n
/1

)(
 for the

general version of AdaBoost but how it is modified to adapt

AdaBoost to our face detection problem. To estimate if an

example is correctly or badly classified, the weak learner

produces a weighted empirical error defined by:

).)((),(

1

)()(

ntn

N

n

t

n

t

tt
xhyIddh (3.13)

Once the algorithm has selected the best hypothesis ht, its

weight

t

t

t

1
log2/1 is computed such that it

minimizes a loss function. One of the possible loss function

considered in AdaBoost is:
N

n

ntntn

AB
xfxhyG

1

1
))},()((exp{)((3.14)

where
1t

f is the combined hypothesis of the previous

iteration given by:

1

1

1
).()(

t

r

nrrnt
xhxf (3.15)

The iteration loop is stopped if the empirical error
t
equals

0 or 2/1
t

. If 0 , the classification is optimal at this

stage and so it is not necessary to add other classifiers. If

2/1
t

the classifiers does not respect the weak condition

anymore. They are not better than random selection so

AdaBoost cannot be efficient at all. (see 3.3.3.3) Finally, all

the weak hypotheses selected at each stage ht are linearly

combined as follow:

)()(

1

1

xhxf
t

T

t

T

r

r

t

T (3.16)

The final classification is a simple threshold which

determines if an example xi is classified as positive or

negative. Other similar algorithms such as LogitBoost or

Arcing algorithms use different loss functions.

Leverage of the Weak Learners

At each iteration, AdaBoost, constructs weak learners based

on weighted examples. We will now discuss the

performances of these weak learners based on re-weighted

examples.

Convergence of the Training Error to Zero

We have seen just before that under some appropriate

conditions, that the weighted empirical error could be

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 140

smaller than)0(,
2

1

2

1 We will now explain how

this condition can imply a strong and fundamental result for

AdaBoost (it can be generalized to most of Boosting

algorithms): The condition

)0(,
2

1

2

1
),(dh

tt

is sufficient to ensure that

the empirical error of the strong final hypothesis approaches

zero as the number of iterations increases. The proof of this

important property of AdaBoost is given in this paragraph.

Let f be a real-valued classification function. The

classification is performed using sign(f) but we will work

with the actual value of f. Let y }1,1{ be the labels of

the binary classification and f R, we define the margin of

f at the example),(
nn

yx as :

).()(
nnn

xfyf (3.20)

Consider the following function defined for
2

1
0

otherwise

zifz

zif

z

,0

0,,1

0,,1

)(
 (3.21)

Let f be a real-valued function taken values in [-1, +1]. The

empirical margin error is defined as :

).),((
1

)(

1

nn

N

n

yxf
N

fL (3.22)

If it is obvious from the definition that the classification

error, namely the fraction of misclassified examples, is

given by .0

We not that we often use the so-called 0/1-margin error

defined by:

)),((
1

)(

1

nn

N

n

yxfI
N

fL . (3.23)

Noting that),)((())((xfyIxyf (3.24)

it follows that).()(
~

fLfL (3.25)

Generalization Error Bounds

We know that the training error produced by AdaBoost

approaches exponentially zero as the number of iterations

increases. However, as the examples of the training set are

manually labeled, it is not really interesting to know that

these examples are well classified. It will be wiser to see

how efficient the final model is on other dataset which

haven‘t been used for the training. The error committed on

this new dataset (with positive and negative examples) is

called the generalization error and it will be shown in this

paragraph how it can be bounded. Recalling that AdaBoost,

such as all learning algorithms can be viewed as a procedure

for mapping any data set
N

nnn
yxS

1
)},{((3.26)

1to some hypothesis h belonging to a hypothesis class H

consisting to functions from X to {-1,+1}. We want to test

the performance of the hypothesis f on future data,

considering that f and S is random variables. Let

))(,(xfy be a loss function which measures the loss

caused by using the hypothesis f to classifyinput x, the true

label of which is y. The loss expected is given by

))(,()(xfyhL (3.27)

where the expectation is taken with respect to the unknown

probability distribution generating the pairs (xn, yn): We

will use the following loss function:

)]([))(,(xfyIxfy (3.28)

Vapnik [19] proved a classical result about the empirical

classification of binary hypothesis f, to the probability of

error.

Adaptation to Face Detection

The algorithm presented in the previous paragraph is not

specific to face detection. This new subsection will explain

how the algorithm can be adapted to our face detection

context, particularly with the introduction of an asymmetric

classification. AdaBoost, as described in 1, is a an algorithm

which minimize the classi- fication error (or generalization

error) but it does not minimize the number of false negative

as explained in 3.1.2. There are several methods to modify

AdaBoost in order to obtain an asymmetric algorithm,

asymmetric in the sense that we want to increase the

influence of the positive examples which have been

misclassified earlier in the precess in order to minimize the

false negative rate, i.e. the rate of the faces which are

missed.

One first simple mean would be to unbalance the initial

distribution of the positive and negative examples as in [20].

If we want to minimize the false negatives, we can increase

the weight on positive examples so that the minimum error

criteria will also have very low false negatives. This idea

can be introduced by changing the loss function in a non

symmetric loss function.

Recall that the classical AdaBoost minimizes

t

it

i

i

t

t
xhyZ)).(exp((3.31)

Each term in the summation is bounded above by the loss

function from

3.28:

 (3.32)

where ¸ is the loss function. It follows that minimizing Qt Zt

minimizes an

upper bound on simple loss. So we can introduce the

asymmetric loss defined

by:

otherwise

xfandyifif
k

xfandyifk

A
ii

ii

i

,0

1)(,,1,,
1

1)(,,1,,

 (3.33)

where false negative cost k times more than false positives.

If take 3.32 and multiply both sides by

)logexp(Ky
i

we find :

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 141

t

iiiti
AKyxhy)logexp()).(exp((3.34)

In order to minimize this bound, we can use a non-uniform

weight initialization:

Modify 2 in AdaBoost algorithm 1 by

./))log(exp(
)1(

Nkyd
in

Updating the weights will become:

t

t

t

iiti

i
Z

kyxhy

iD

))log(exp()).(exp(

)(
1

 (3.35)

The modification of the pre-weighting is transmitted through

the second term of the numerator. This new weighting

process permits to reduce efficiently the false negative rate.

However, the effects of the unbalanced weights are lost after

the first iteration. In fact, the AdaBoost algorithm seems to

be too greedy. The first classifier absorbs the effects of the

asymmetric weights. AdaBoost selects thus a small set of

features and as detailed in section 4.2, good results can be

obtained with some 201 features. The first features selected

in the process can be quite easily interpreted: they

emphasize on particular features of faces. The eye region is

often darken than the front and the nose bridge is brighter

than the eyes. However, this is not enough to reach the fixed

goal of our project. The computation time for a 201 features

classifier is to large to satisfy us.We will introduce a way to

combine classifiers in cascade in order to focus quickly on

the regions of interest.

Classification in Cascade

We know how to select a small number of critical features

and to combine them into a strong classifier. However, we

need to introduce a new main contribution in our face

detection system in order to reduce significantly the

computation time. This contribution is an attentional

cascade which cafurthermore achieve better detection

performances. We have seen that it is possible to minimize

the number of false negatives instead of classical training

error that is precisely the main idea that will be used to build

this cascade classifier.

Why is it so Efficient?

The principle is to reject quickly the majority of negative

windows while keeping almost all positive examples and

then focus on more sensitive sub-windows with more

complete classifiers. To do that, the first stages in the

cascade will contain only few features, which achieve very

high detection rates (about 100 %) but will have a false

positive rate of roughly 40 %. It is clear that it is not

acceptable for a face detection task but combining

succecively many of these stages which are more and more

discriminant will permit to reach the goal of fast face

detection. We can just compare this cascade structure with a

degenerated decision tree. If a sub-window is classified as

positive at one stage, it proceeds down in the cascade and

will be evaluated by the next stage. It will be like this until

this sub-window is found negative by one stage or if all the

stages classify it as positive. In this last case, it will finally

be considered as a positive example. The Figure 3.4.1 shows

this cascade process.

Figure 17: Schematic description of cascade detection.

the goal of the project is to detect faces in images which

contain few faces. Noticing that there are about 25.000.000

windows in a 100 X100 image for only a few faces, the

great majority of windows are negative ones. So it is a real

gain of time to reduce quickly this number. Even if the last

stages of the cascade are based on many thousand features,

they will be called only for few subwindows.

Building More Consistent Classifiers

We have defined the cascade as a succession of classifiers.

The first ones are quite simple but as we progress in the

cascade, the classifiers have to be more consistent. This

paragraph describes how such more consistent classifiers

can be built at each stage.

First of all, the last stages of the cascade have more features

than the first ones. The AdaBoost algorithm generates a

training error which decreases theoretically exponentially

with the number of iteration. If there are more features (i.e.

AdaBoost has been ran with more iterations) the final

classifier is more discriminant between positive and

negative examples, in other words, we can say that such

classifier are ―stronger‖ than classifiers with few features

(i.e. few iterations). The second but not less important

reason for using a cascade classification is the way chosen

to select the training set. At each learning step, the classifier

or the ith stage, socalled ith classifier is tested on a test set

of negative examples. All the misclassified examples are

kept for the (i+ 1)th classifier such that the (+1)th classifier

will focus on harder examples than ordinary ones. By this

mean, we force the further classifiers to have better false

positive rate.

Training a Cascade of Classifiers

The goal of the cascade detection is to achieve given both

false positive rate and detection rate. The choice of these

goals is arbitrary. Typically, past systems have achieved

detection rates between 83 and 94percent and false positive

rate on the order 10-4 . The number of features in each stage

and the total number of stages will depend of these

constraints. Let F be the false positive rate of the cascaded

classifiers, K the number of classifiers and fi the false

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 142

positive rate of the ith classifier on examples that get

through to it. For a given trained cascade of classifiers, F is

given by

K

i

i
fF

1

, (3.36)

Then the detection rate can be computed as:
K

i

i
dD

1

, (3.37)

Where di is the detection rate of the ith classifier on the

examples that get through to it. To fix the ideas, a examples

is given here. If we want to achieve a detection rate of 90

percent, we can build a 10 stage classifier in which each

stage has a detection rate of 0.99. Indeed, 0.9

0.99
10

. If

each of these stage rejects 70 percent of negatives (i.e. a

false positive rate of 30 percent), the total false positive rate

is 0.30
10

6.10
−

6

. The number of features evaluated when

scanning real images is necessary a probabilistic process.

Any window will progress down through the cascade, one

classifier at a time, until it is decided that the window is

negative or, in really rare cases, the window succeeds in

each test and is labeled positive. The behavior of this

process is determined by the distribution of the images of

the test set. The main tool which can measure the

performance of a given classifier is its positive rate, which is

the proportion of windows which are labeled as potentially

containing the object of interest. Given a number of stages

in the cascade K, the positive rate pi of the ith classifier. Let

ni be the number of features in the ith stage. The expected

number of features which are evaluated is given by:

K

i ij

ii
pnnN

1

0
)(

 (3.38)

We can notice only few examples are objects, that is why

the positive rate is almost equal to the false positive rate.

As it was explained in section 3.3.3.7, the original AdaBoost

algorithm has to be modify to ensure the minimization of the

false negative rate instead of the training error. One simple

way to impose that is to adjust the final threshold. Increasing

this threshold will affect badly the detection rate and

improve the false positive rate, while the opposite will yield

lower detection rate with higher false positive rate. The

main problem is that is has never been proved that

modifying the AdaBoost theoretical training threshold

preserve the guarantees in term of generalization error.

The cascade structure has three main parameters that we

have to determine:

The total number of classifiers: K

The number of features ni of each stage

The threshold θi of each stage i.

Finding the three optimal parameters is quite complicated if

we keep in mind that we want to minimize the computation

time of the total classification. The principle is to increase

the number of features and of stages until the given

detection objective are reached.

Given the minimum acceptable rates fi (false positive rate

for the th stage) and di (detection rate for the th stage), the

detection rate di is reached by decreasing the AdaBoost

threshold θiand this also directly affects fi. We increase the

number of features ni in the th stage until fi is obtained. The

general principle of the cascade learning is given in the

algorithm 2 :

One major factor for the efficiency of the cascade learning is

the management of the sets during the training. Usual

training sets are used for the first stage, and then, at each

iteration, the current stage classifier is evaluated on a

validation set in order to minimize coherent false positive

and false negative rates. It would obviously unskilled to

evaluate Fi and Di on the training set whichwas used to

obtain the model because these values would be evaluated

much better than with other examples. Then, at each stage

we reinitialize the negative training set. Once the objectives

Fi and Di are reached for the stage i, the current model is

tested on a large negative set chosen randomly and many

false positive alarms are introduced into the negative

training set for the stage i − 1. As the new negative training

set is made with examples which have been misclassifiedby

the stage i, the stage + 1 will be build with examples which

can be considered as ―hard examples‖. So, the more we go

down into the cascade, the more critical the examples are,

and the last stages in the cascade are more robust models

which discriminate better positives and negatives than the

first stages. Since the large majority of negative windows

have been rejected by the first stages, even if the further

stages need more computation time to classify the windows,

only few windows have passed earlier stages and the global

computation time is not too much affected by these last

discriminant stages.

Scanning

As explained with the definition of the integral image in

3.2.3, the scanning of an input image is quite simple and

efficient with the integral image representation. To detect

faces of different sizes and places in a image, we will apply

scaled and shifted detectors all over the image. Our basic

detector is a 20x15. All the images used to train the model,

as well faces as non faces are of this size, and accordingly,

all the selected rectangular features that we have to apply in

the windows are defined in this 20x15 basic window.

Although the scanning process seems to be simple at the

first sight we need to take some care while rescaling the

detector if we want to preserve the efficiency of the model.

See A.1 for details about the implementation issues about

the scanning window.

Once all the possible windows have been scanned all over

the image, we have to integrate a process which clusters the

multidetections of a single face in order to have finally one

bounding box around one face. It is clear that the shifting of

the window at different scales using a small shift step and a

small scaling steps permits to detect all the faces of any size

and position. However, one face may be detected several

times during the scanning process (by neighbor windows or

very close scales at the same position). The chosen method

to cluster these multiple detections is to cluster all the

positive windows which are close enough. Then the center

of the resulting bounding box is simply the gravity center of

all the centers in the cluster and the size is the mean of all

the sizes Let }{
,.....,2,1 n

ccc be the centers of the windows in

a cluster containing n windows and },{
,.......,21 n

www their

respective width (The height of the window is directly given

and preserved by the constant ratio whr /). The center

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 143

of the cluster is given by:

n

i

i
c

n
c

1

1
 and the final

width is simply

n

i

i
w

n
w

1

1
.

Algorithm 2 Learning in Cascade.

1. Input: Definition of the targets of the learning

f the maximum acceptable false positive rate per stage.

d the minimum acceptable detection rate per layer

Ftarget the false positive rate desired at the end of the

process.

P the set of positive examples

N the set of negative examples

2. Initialization:

F0 = D0 = 1

i = 0 the number of the current layer.

3. Main loop:

While
etti

FF
arg

1

0

1

ii

i

FF

n

ii

While
1ii

FfF

1
ii

nn

Train a classifier using AdaBoost with P and N as training

set.

Compute Fi and Di for the current classifier with the

validation set.

Decrease the threshold of the classifier until the detection

rate for the i-th classifier is at least
1i

Dd :

dDD
ii

.
1

– Empty the negative training set.

– If Fi > Ftarget , evaluate the current cascade classifier on

a set of negative examples and put any false detections into

the set N.

Experiments and Results this Section exposes the different

results obtained by the face detector that has been

developed. We will discuss our choices, try to interpret

some results such as the power of the selected features and

finally estimate the global performances of the system. Of

course, all these results are obtained in specific conditions

and we will particularly pay attention to explain these

testing conditions. The first step we will focus on is the

choice of the datasets because it influencesa lot the quality

of the learning (and the evaluation of the results). Then, an

important step is the result of the learning algorithm, how

does AdaBoost perform? What kinds of features are

selected? What are the different training rates which can fix

the quality of the learning? Then in which way the cascade

implementation improves the face detection will be

explained. The final section relates about the performances

of the final detector tested on a particular Testing Set.

Datasets

The Datasets represent all the images that we use for our

face detection task. It is really important to notice that the

choice of the datasets is crucial for the learning and the tests

on the detectors. We can separate the Datasets as follows:

 Learning Data

 Testing Data

Learning Data: It clusters all the examples that have been

used to train and test the different classifiers. There are some

positive and negative examples. On one side there are

positive examples which are faces extracted from different

sources: Banca database (see [39]), the BioID images (can

be found in [38]) and XM2VTS [40]. The faces are thus

pictures from different acquisition conditions and lightning

conditions. Concerning the Negative examples (non faces),

they have to represent the best the backgrounds that can be

found in real situations. Thus we just extract them randomly

from the web in images without faces. It is hard to know a

priori which images are the most representative of the non

face class and the number of non faces that we need to train

the classifier. However a bootstrap method will select non

face images that are the hardest to classify and so to find

more precisely the boundary between the face and non face

classes. The images from the various Databases are of

different sizes and the faces are more or less cropped while

our learning set has to be homogeneous in term of size and

face repartition. As most of the faces are higher than larger,

we have chosen a rectangular window of 20x15 pixels. All

the faces have been cropped and rescaled if necessary in

order to respect this basic detector size. (We notice that the

examples are effectively low resolution ones as imposed in

the context of the detection.)

Training Set : It is the input of AdaBoost for the monostage

classifier (to train some 500 features) and for the first sage

of a learning in cascade. Recall that one of the limitations of

AdaBoost is the large influence of the input data on the

boosting results, the choice of the training set needs

particular careful. The use of diverse databases is well

adapted because images from a single database are often

taken from from similar conditions. For example, faces of

the BANCA database have a lot of variety in the sense that

people do not always look exactly at the camera but the

lightning conditions are quite troublesome because the light

often comes from one side of the face. Regrouping the

different sources, we have 8257 faces and more than

300.000 non faces. Testing Set : Once a classifier has been

trained using AdaBoost, we have to train it on another set of

images (both positive and negative images).Thus we can

obtain the test error of the classifier. In the case of the

cascade, this set is used during the learning to test the

current cascade. The misclassified examples become the

train examples of the next stage. Thus each stage is directly

adapted to the efficiency of the previous ones, in the sense

that it is trained from the examples that have been badly

classified by the previous stages. For the monostage

classifier, we have 60.000 non faces built by an intermediate

detector and 8257 faces. The examples used by the cascade

are the same as the ones used in the training set.

Validation Set: This set is used to test the performances of

the cascade:

Some images are presented to the final cascade detector and

it permits to evaluate the global quality of the detector.

Testing Data : Images from the CMU: They represent many

real situations with several faces and unconstrained

background. They are used to test the final classifier using a

scanning window. They are the most used Test images

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 144

because they englobe a large radius of real situations and the

exact position of the faces in these images has been

manually labeled in a groundtrouth file containing the

position of the eyes. This set differs from the learning set

because the images are not 20x15 ones. The sizes of the

images vary (roughly from 80x80 to 750x750). Testing

these images allows to evaluate the detection rates, the

speed of the detector (and the scanning window) and the

behavior of the scaling system.

Learning Results

This section explains the performances of AdaBoost and all

the learning process in general by giving the results of

different classifiers trained with different parameters such as

the dataset used number of features, the number of stages in

the cascade, etc...

Weakness of the Weak Classifiers

It has been shown in theory that the weak classifiers used to

train with AdaBoost need to satisfy one condition. They

have to be better than random selection. That means that

they have to classify correctly the examples in at least 50%

of cases. Let us look how evolutes the error rate of the

selected features. The model used is trained with 3000 faces

and some 30.000 non faces. The results are shown in Figure

4.1. We can notice that the best feature (the first selected by

AdaBoost) misclassifies roughly 13% of the examples (faces

and non faces are treated indifferently), while this error rate

increases quickly until more than 40% for the last selected

features. That shows clearly why the feature responses

followed by a threshold are qualified of weak. It proves that

the challenge of boosting is to organize many of these weak

classifiers into a linear combination followed by another

final threshold.
Test results

Monostage

Classifier Let us see what are the performances of a single

stage classifier trained with about 37.520 features, 3000

faces and 30.000 non faces chosen by bootstrapping (false

alarms from a previous simple classifier.).To evaluate the

learning performances, i.e. the classification rates after the

Boosting process, we have to recall the definition of two of

the main evaluation errors:

1. The Training error noted which is the error rate

made on the training set:

trN

i

tr

i

trtr

i

tr

tr
xyxH

N 1

)()()(
|,)()(|

1

Where Ntr denotes the total number of training examples

(positive + negative), x(tr) i the i-th example and y(tr) i the

label of the i-th example. The theory about Boosting shows

that this training error tends to 0 when the number of

iterations increases.

2. The Testing error noted ²te which is the error rate

made on the testing set:

teN

i

te

i

tete

i

te

te
xyxH

N 1

)()()(
|,)()(|

1

Where Nte denotes the total number of training examples

(positive +negative), x(te) i the i-th example and y(te) i the

label of the i-th example.

In this first experiment, the testing set is made of 6.000 faces

taken from the Banca Database and a part of the BioID

database, while we use 30.000 randomly selected non faces.

The Figure 4.2 shows the obtained results.

The Multiple Detections

As it is shown in the last figures, it is difficult to see and

evaluate clearly which are the regions of the images that

contain faces. Indeed, many bounding boxes often frame a

single face and the arbitration is made by the integration of

multiple detections. Here are some pictures before and after

the multidetection algorithm.

The integration of these multiple detection is quite intuitive.

All the detected windows in the image are clustered. Two

windows are clustered together if their recovering area is

higher than a predefined threshold. Then for each cluster,

the final window is computed as the mean of the windows in

the cluster. Thus, the center of the final window is the

gravity center of all the centers and the definitive size is the

mean of the size. One problem may arise when two faces are

very close. In fact, when neighbor windows containing two

close faces are detected, they are clustered together and so

the resulting window can be between the two faces. Thus

both of the faces may be missed.

To solve this problem, we can introduce another condition

to cluster two windows together. The difference of theirsizes

has to be larger than a predefined threshold.Another

implementation which may be more appropriate would be

the use of median windows instead of simple mean window.

This is let to a future work.

The Cascade Classifier

In this project, a cascade of classifiers has been developed.

The final version of the cascade was built as follows. First

of all, we had to choose the training examples and the

cascade parameters which determine the number of stages

and the number of features in each stage.

We use an initial set of about 340.000 negative examples.

This set is built by bootstrapping and then, each example is

symmetrized in order to ensure he invariability to face

illumination orientation. We have a total of 8500 faces.

The goal of the cascade is to apply classifiers more and

more specialized when we go through the process. To reject

quickly the great majority of negative windows while

keeping a high detection rate, during the learning process,

we start with roughly 340.000 negative examples. Then, at

each stage, only the examples that are considered as positive

are kept for the next training set. Thus, the stages in the

process are directly trained to classify the examples that

have been misclassified by the previous ones. The examples

that are hardest to classify are left to the last stages of the

cascade. Thus we have trained a cascade of 25 stages.

Scanning Implementation

Like the most of the Image-based methods, we use a sliding

window to scan the images. The implementation of this

sliding window needs some care for different reasons if we

want to obtain good results in term of detection rate and

speed.

Once again our basic detector is 20 X 15 pixels and that the

training of the classifiers using AdaBoost has been made

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 145

with examples of the same size. We want to detect faces

from different scales and positions so we have to re-scale

this basic detector along the scanning process. We have seen

that the Integral representation permits to re-scale the

detector instead of using a traditional image pyramid, i.e. no

down-sampling is needed to scan the image at different

scales.

Let us see how to re-scale the basic window of h £ w where

h and w are respectively the height and the width of the

initial window. Suppose that we want to re-scale this

window by a factor of = 1:25. It is clear that the h and w

values are integers so we have to make an approximation to

obtain a window at the next scale. We choose to preserve

the ratio r = h/=w to keep a window of the same shape as

the basic detector. Thus, the size of the window rescaled by

 is:

h

r
h

.
.(

Where . represents the rounding operation towards the

largest integer smaller than the argument. The problem is

now to re-scale the Haar-like features which have been

selected by AdaBoost. For example, consider a 2-rectangle

feature as defined in Figure:

Denote x and y the coordinates of the up left corner of the

feature, hf and wf the height and width of the feature. We

choose another time to keep the ration between height and

width such that
ff

whyxwhr /// So the feature

is rescaled and moved proportionally in the window. The

problem is that rounding the values of the coordinates of the

rectangle‘s corners changes a few the properties of the

mask. The rescaled mask is one mask which is maybe not so

good than the basic one, and it would maybe not be selected

by AdaBoost. However, there is no other possibility than

making an approximation. The experiments made on several

set of images shows that this issue has not too bad

consequences on the final results. In fact choosing

sufficiently small shift step and scale step ensure to detect

faces in different scales so even if a face is missed because

the imprecision of one scale, it is in most of the cases

detected at other scales.

Ada Boost Implementation

We have seen that AdaBoost is a powerful learning

algorithm which selects the best weak classifiers given a set

of training images. One of the main drawbacks is that the

result depends highly on the size and consistence of the

datasets. Our final choice has been to choose a training set

containing some 340.000 negative examples and more than

6000 positive ones. Recalling that there are 37518 features,

the computing time during the learning is quite long as well

as the memory used is big.

For example, if we want to build a simple mono-stage

classifier using 200 features. The first step is to write the

integral images of all the positive and negative examples.

Considering our 308.000 images 15X20 (which means 300

integers per image) written into a binary format, the integral

image file takes 352 Mb on the disk. Then, given these

integral images, we have to compute the total set of features

responses. Indeed, as the same feature responses are used at

each learning step, it would be two heavy to compute them

at each iteration. A feature response is an integer (sums and

differences of integers) and we have a total of 37518features

which means that a single file containing all the features

responses. Assuming that this file would be created, we have

then to read it completely at each iteration step (It can not be

loaded into the memory in one time, of course). It would

take many days to build a classifier with these data.

In order to improve that, we have chosen to work using a

parallel implementation to distribute the work on several

processors. For this we have used the MPI (Message Passing

Interface) library. The cluster on which we have provided

the training has 5 machines and we just launch 2 processes

on each machine so we have a total of 10 processes than can

work in parallel. The parallel method chosen in a traditional

master slave implementation. The master process (Process

0) sends the respective data to each of the 10 slave‘s

processes and then clusters all the independent results. In the

practice, the repartition of the processes is made as follow:

As we have to evaluate and compare the features responses

for 308.000 images and 37518 features, each slave process

will treat 3751 features for all the images.

The process 0 sends the image weights to each slave

process, then each process finds, independently of the

others, the best feature into the set of 3751 and send the

results back to the process 0 (the index of the best feature

and the corresponding classification error). Finally, the

master processes compare the results of the 10 processes and

extract the best of the 10. Then the weights are reevaluated

and a new iteration begins with the new weights. Thus the

total computing time is reduced by a factor of 10 (or a few

less if we take into account that all the processes have access

to the same hard-disk in the same time).

RESULTS

This section gives the main results that have been obtained

using a cascade of 14 classifiers. The first stage has five

features while the second one has seven. The number of

features increases until the last stage which has 40 features.

The first stages reject a great majority of negative examples,

those which are easy to distinguish from faces and then as

the number of stages increases, the remaining examples are

harder to reject. The last stage focuses only on few examples

hard to classify which we could call face-like examples. The

evaluation of the performances of the classifier can be

divided into two groups: the test on the test set made of

8500 faces and about 900.000 non faces and the test on the

CMU Dataset.The detector has been tested on the MIT-

CMU frontal face test set [23].We have 132 images with a

total of 507 frontal faces. The performances of the detector

can be placed at every fonctionning point. By changing the

final threshold of the detection, we can modify the detection

rate and the false positive rate.

Decreasing the threshold will yield a better detection rate

(100% if the threshold equals 0) but the false positive rate

will increase slightly. On the other hand, increasing the

threshold will decrease the number of false alarms and also

the detection rate. We can choose the threshold depends on

the goals of the detector. In our case, we want a high

detection rate so the threshold will be quite low.In these

tests, we use a shifting step of 1 pixel for the scanning

window and a scale factor of 1.20. The next figures show

some results using this detector. The detector using these 14

stages is robust and quite efficient on the CMU Dataset. We

obtain 86% of detection rate considering the 500 faces in the

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 146

test set and 52false alarms. 86% of detector rate may appear

insufficient but we have to take into account the contain of

the CMU set. Some of the 500 faces in the 130 images are

not well adapted to be detected by our cascade. In fact some

of the faces are not really frontal faces but more profile

views, other faces are manually drawn or photographs of

cards and these kinds of examples were not in our training

set. So they were not supposed to be classified as faces.

We have also used these examples and taken them into

account in our test because they already were used in testing

previous detectors. Thus we can compare our work with

existing methods. Our detector is quite efficient on this set

even if Viola‘s detector is more efficient. We can notice that

Viola‘s detector contains 30 stages with more features

which yields lower false positive rate. The detector has also

been tested on video sequences. We have applied our

detector on 220 images successively. The situation is a

classical real time application: a video camera was placed in

a corridor and some people crossed the scene. The detector

is quite efficient and it permits us to evaluate the power of

the features. In fact, faces were quite well detected during

the sequence but not in every image. A well detected face in

the image number i was not necessarily detected in the

image i + 1 even the visual difference between the two

images is very low. That shows the detection is really

precise. A single pixel may have lot of weight in the

detection. We have to notice that in this test, no time

integration was used.

Conclusions and Future Work

Conclusion Many methods can be used existing a precise

context for each of those methods. We have chosen an

intermediate method between the image based and the

feature based detection method. A face detection system has

been developed using a Boosting algorithm and simple

rectangular Haarlike features. The boosting characteristics

are- iterative, successive classifiers depends upon its

predecessors, look at errors from previous classifier step to

decide how to focus on next iteration over data.

 This method presents many advantages in comparison with

other methods for detecting faces.

 The frontal face detector yields very good detection

performances (in term of ratio over detection rate and false

positive rate).

 The performances can be highly increased in specific

applications. In fact, if the face detector is placed in a fixed

scene, the training set can be adapted to this scene to build a

robust detector.

 The computation of the classifier is very fast because of

the use of simple rectangular features which are easily

computed with the integral image.

 The method can be easily adapted to other kind of

application such as pedestrian detection for example. The

principle is to change the training sets.

AdaBoost has achieved great success, however, we have to

recall that this method, as every face detection method has

its own limitations:

 The training process could be unmanageable when the

number of features is extremely large;

 The same weak classifier may be learned multiple times

from a weak classifier pool, which does not provide

additional information for updating the model;

 There is an imbalance between the amount of the

positive samples and that of the negative samples for multi-

class classification problems.

 The detector has been trained with only frontal faces

with uniform pose.

 It is difficult to predict the optimal values of some

parameters. It is the case, for example, of the number of

training examples. The efficiency of the final detector

depends directly on this dataset. The main problem remains

the generalization power of the trained model. If the model

is efficient on the train data set, we do not know a priori

how it acts on the testing data. Particularly, if the train set is

too complete, the classifier will be too specialized on the

train faces and some faces may be missed on real set

images.

 This detection of low resolution images gives the

position of eventual faces and an idea of their size. However

we do not have a precise position of the faces.

 We do not know precisely the position of the eyes for

examples such that a further face analysis may be applied in

some applications.

 The performance of boosting on a particular problem

clearly relies on the particular data and the choice of the

weak learner. In some cases boosting may fail to perform

well, especially for the data with noises.

Our face detection system gives practically best results. The

result is that the detector is efficient in terms of detection

rate in spite of a non negligible number of false positions.

We use a learning procedure to extract feature which are

represent to the statistical characteristics of faces. We can

distinguish three main contributions in this face detection

system:

 The learning algorithm AdaBoost which selects the best

set of these Haarlike threshold;

 Rectangular Haar-features computed efficiently with a

new image representation called image integral;

 Finally an implementation in cascade which permits to

decrease the detection time while increasing the detection

rates;

REFERENCES

[1] Paul Viola & Micheal Jones. Robust realtime object

detection. Second International Workshop on Statistical

Learning and Computational Theories of Vision

Modeling, Learning, Computing and Sampling, July

2001.

[2] C.Papageorgiou, M. Oren, and T. Poggio. A general

framework for object detection. In International

Conference on Computer vision , 1998.

[3] M. Betke and N. Makris. Fast object recognition in noisy

images simulated annealing. In Proceedings of the Fifth

International Conference on Computer Vision, pages

52320, 1995.

[4] K.K. Sung and T. Poggio. Examplebased learning for

viewbased human face detection. A.I. Memo 1521,

Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, December 1994.

[5] Pavlovic V. and Garg A. Efficient Detection of Objects

and Attributes using Boosting.IEEE Conf. Computer

Vision and Pattern Recognition. 2001.

[6] Mallat S. A theory for the multiresolution signal

decomposition: the Wavelet representation. IEEE

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 147

Pattern Analysis and Machine Intelligence, Vol.11, n
◦
7,

pages 676693, 1989.

[7] Rainer Lienhart and Jochen Maydt, An Extended Set of

Haarlike Features for Rapid Object Detection, Intel

Labs, Intel Corporation, Santa Clara, CA 95052, USA

[8] F. Crow. Summedarea tables for texture mapping.

In Proceedings of SIGGRAPH, volume 18(3), pages

207212, 1984.

[9] Patrice Y. Simard, Lon Bottou, Patrick Haffner,

and Yann Le Cun. Boxlets: a fast convolution algorithm

for signal processing and neural networks. In M.

Kearns, S. Solla, and D. Cohn, editors, Advances in

Neural Information Processing Systems, volume 11,

pages 571577, 1999.

[10] William T Freeman and Edward H. Adelson. The

design and use of steerable filters. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 13(9):

891906, 1991.

[11]H. Rowley, S. Baluja and T. Kanade. Neural

networkbased face detection. In IEEE Patt. Anal. Mach.

Intell., volume 20, pages 2238, 1998.

[12] Yoav Freund and Robert and E. Schapine. A

decisiontheoretic generalization of online learning

and an application to boosting. In Computational

Learning Theory: Eurocolt ‘95, pages 2337.

SpringerVerlag, 1995.

[12]L.G Valiant. A theory of the learnable.Communications

of the ACM, 27(11):11341142, November 1984.

[13] G. R¨uller. Soft Margins for AdaBoost, Machine atsch,

T. Onoda KR. Learning, 135, August 1998.

[14]Duffy and D.P Helmbold. Boosting methods for

regression. Technical report, Department of Computer

Science, University of Santa Cruz, 2000.

[15] http://www.boosting.org

[16]L. Breiman. Bagging predictors. Machine Learning,

26(2):123140, 1996.

[17]Y. Freund and R.E Schapire. Game theory, online

prediction and boosting In Proc. COLT, pages 325332,

New York, NY, 1996. ACM Press.

[18]R.E. Schapire. A brief introduction to boosting. In

Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence, 1999

[19]V.N. Vapnik. Estimation of Dependencies

Based on Empirical Data. SpringerVerlag, 1982

[20] P. Viola and M. Jones, Fast and Robust Classification

using Asymmetric AdaBoost and Detector Cascade.

Mitsubishi Electric Research Lab, Cambridge, MA.

2001

[21] R. Meir and G. R¨atsch. An Introduction to Boosting

and Leveraging. Department of Electrical Engineering,

Technion, Haifa 32000, Israel.

[22] M.H. Yang, D. Kriegman, N. Ahuja, Detecting Faces in

Images: survey. IEEE Transactions on pattern analysis

and machine intelligence, vol. 24 n
◦
1, January 2002.

[23] CMU Dataset: ftp://whitechapel.media.mit.

edu/pub/images/.

[24]P. Belhummer, J. Hespanha, and D. Kriegman.

Eigenfaces versus fisherfaces: Recognition using class

specific linear projection. IEEE Transactions on Pattern

Analisis and machine Intelligence, 19(7):711720, 1997.

[25] D. Pissarenko , Eigenfacebased facial recognition,

December 1, 2002

[26]P. Hallinan. A low dimmensional representation of

human faces for arbitrary lighting Conditions. In Proc.

IEEE Conf. on Computer Vision and Pattern

Recognition. pages 995999, 1994.

[27] L. Sirovitch and M. Kirby, low dimensional procedure

for the caracterization of human faces. J. Optical Soc. of

America A, 2:519524, 1987

[28]M. Turk and A. Pentland. Eigenfaces for

recognition. J. of Cognitive Neuroscience, 3(1), 1991.

[29]Y. Moses, Y. Adini and S Ullman. Face Recognition:

the problem of the compensating for changing in

illumination direction. In Europeean conference on

Computer Vision, pages 286296, 1994.

[30]G. Yang and T. S. Huang. Human face detection in

complex background. Pattern Recognition, 27(1):5363,

1994

[31]A. Lanitis, C. J. Taylor, and T. F. Cootes. An

automatic face identification system using flexible

appearance models. Image and Vision Computing,

13(5):393401, 1995

[32]T. Leung, M Burl and P. Perona. Finding Faces in

cluttered scenes using labeled random graph matching.

In Proc. 5th Int. Conf. on Computer Vision, pages

637644, MIT, Boston 1995.

[33]Y. Sumi and Y. Ohta. Detection of face orientation and

facial components using distributed appearance

modeling. In Proc. Int. Workshop on Auto. Face and

Gesture Recogn., pages 254259, Zurich, 1995.

[34]K. C. Yow and R. Cipolla. Scale and orientation

invariance in human face detection. In Proc. British

Machine Vision Conference, pages 745754, 1996.

[35]J. Cai, A. Goshasby, Detecting human faces in color

images. Image and Vision Computing, 18:6374, 1999.

[36]M. H. Yang and N. Ahuja. Detecting human Faces

in Color Images. Beckman Institute and Department of

Electrical and Computer Engineering University of

Illinois at UrbanaChampaign., Ubrana, IL 61801.

[37]T. Pham, M. Worring. Face Detection Methods,

Critical Evaluation. Intelligent Sensory Information

Systems, Department of computer science.,

Amsterdam 2002.

[38]BioID Face Database.

www.humanscan.de/support/downloads/facedb.php

[39]E. BaillyBaillire, S. Bengio, F. Bimbot, M. Hamouz, J.

Kittler, J. Mariethoz, J. Matas, K. Messer, V. Popovici,

F. Poree, B. Ruiz, J.P. Thiran. The BANCA Database

and Evaluation Protocol. IDIAP, Martigny,

Switzerland, IRISA, Rennes, France, ITSEPFL,

Lausanne Suisse, University Carlos, Madrid Spain,

University of Surrey, Surrey UK. 2003.

[40]XM2VTS Database. xm2vtsdb.ee.surrey.ac.uk

[41]F. Samaria and S. Young, HMM Based Architecture

for Face Identification, Image and Vision Computing,

vol 12, p 537583 1994

[42]F. Samaria. Face Recognition Using Hidden Markov

Models. PhD Thesis, University of Cambridge, 1994.

[43] KK Sung Learning and Example Selection for Object

and Pattern Detection, PhD Thesis, Massachusetts

Institute of Technology 1996.

[44] A. Rajagopolan, K. Kumar, J. Karlekar, R.

Manivasakan, M. Patil, U. Desai,P.Poonacha and S.

Chaudhuri. Finding Faces in Photographs, Proc Sixth

IEEE Int‘l Conf. Computer Vision, 1998

Sushma Jaiswal et al, Journal of Global Research in Computer Science, Volume 2 No (7), July 2011, 119-148

© JGRCS 2010, All Rights Reserved 148

[45] N. Littlestone. Learning quickly when

irrelevant attributes abound new linearthreshold

algorithm. Machine learning vol 2 pp 285318 1998

[46] V. Govindara ju, S.N. Srihari, D.B Sher.

computational model for face location. In Proc. of the

Third International Conference on Computer Vision,

pages 718721, 1990.

[47] E. Saber and A.M. Tekalp. Frontalview face detection

and facial feature extraction using color, shape and

symmetry based cost functions. Pattern Recognition

Letters, 19(8), pages 669680, 1998.

[48] G. Wei, I.K Sethi. Face detection for image

annotation. Pattern Recognition letters, 20(11), pages

13131321, 1999.

[49] Osuna E., Freund E. Girosi F.: Training support vector

machines: an application to face detection. In

Proceedings of Computer Vision and pattern

recognition. 1998 4551.

[50] Erik Hjelmås, and Boon Kee Low ―Face Detection: A

Survey ― Computer Vision and Image Understanding,

Volume 83, Issue 3, September 2001, Pages 236-274.

[51] Sanner, S. ―Rowley-Baluja-Kanade Face Detector‖.

Available online at

http://www.cs.toronto.edu/~ssanner/Software/Vision/Pr

oject.html

[52] Sung, K.K. and Poggio, T. (1998). Example-based

learning for view-based human face detection. IEEE

Trans. Pattern Anal. Mach. Intelligence, 20, 39- 51.

[53] Burges, C. and Vapnik, V. (1995). A new method for

constructing artificial neural networks. Technical

report, AT&T, Bell Laboratories, NJ.

[54] Vladimir N. Vapnik. (1998). "Statistical Learning

Theory." John Wiley. ISBN 0471030031

[55] Osuna, E., Freund, R., and Girosi, F. (1997a). An

improved training algorithm for support vector

machines. In Proc. of IEEE NNSP'97

[56] Sushma Jaiswal, Sarita Singh Bhadauria, Rakesh Singh

Jadon and Tarun Kumar Divakar,Brief description of

image based 3D face recognition methods ,Volume 1,

Number 4, 1-15, DOI: 10.1007/3DRes.04(2010)02.

[57] Sushma Jaiswal , Sarita Singh Bhadauria , Rakesh

Singh Jadon ―Creation 3D Animatable Face

Methodology Using Conic Section-

Algorithm‖,Information Technology

Journal,ISSN:18125638,pages no.292-298,2007.

[58] Sushma Jaiswal , Sarita Singh Bhadauria , Rakesh

Singh Jadon,‖Automatic 3D Face Model from 2D

Image-Through Projection‖ Journal: Information

Technology Journal Year: 2007 Vol: 6 Issue: 7

Pages/record No.: 1075-1079.

http://www.sciencedirect.com/science/journal/10773142
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236750%232001%23999169996%23287848%23FLP%23&_cdi=6750&_pubType=J&view=c&_auth=y&_acct=C000057908&_version=1&_urlVersion=0&_userid=2595705&md5=5dd66fec43e2cc400ae5945894e09aaa
http://www.cs.toronto.edu/~ssanner/Software/Vision/Project.html
http://www.cs.toronto.edu/~ssanner/Software/Vision/Project.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://www.gabormelli.com/RKB/Special:BookSources/0471030031
http://www.springerlink.com/content/?Author=Sushma+Jaiswal
http://www.springerlink.com/content/?Author=Sarita+Singh+Bhadauria
http://www.springerlink.com/content/?Author=Rakesh+Singh+Jadon
http://www.springerlink.com/content/?Author=Rakesh+Singh+Jadon
http://www.springerlink.com/content/?Author=Rakesh+Singh+Jadon
http://www.springerlink.com/content/?Author=Tarun+Kumar+Divakar
http://www.springerlink.com/content/2092-6731/1/4/
http://www.springerlink.com/content/2092-6731/1/4/
http://www.springerlink.com/content/2092-6731/1/4/
http://www.doaj.org/doaj?func=openurl&issn=18125638&genre=journal
http://www.doaj.org/doaj?func=openurl&issn=18125638&genre=journal
http://www.doaj.org/doaj?func=openurl&issn=18125638&genre=journal

