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Abstract: In this Case Study & report, a face detection method is presented. Face detection is the first step of face Recognition methods. Face 

detection is a difficult task in Pattern. There are different methods of face detection namely-Knowledge Based Face Detection Methods, Feature 

Based Face Detection Methods, Template Based Face Detection Methods and Appearnce Based Face Detection Methods. But here we divided 

basically in two methods for face detection (i) image based methods (ii) feature based methods. We have developed an intermediate system, 

using a boosting algorithm to train a classifier which is capable of processing images rapidly while having high detection rates. AdaBoost is a 

kind of large margin classifiers and is efficient for on-line learning. In order to adapt the AdaBoost algorithm to fast face recognition, the 

original Adaboost which uses all given features is compared with the boosting along feature dimensions. The comparable results assure the use 

of the latter, which is faster for classification. The main idea in the building of the detector is a learning algorithm based on boosting: AdaBoost. 

AdaBoost is an aggressive learning algorithm which produces a strong classifier by choosing visual features in a family of simple classifiers and 

combining them linearly. The family of simple classifiers contains simple rectangular wavelets which are reminiscent of the Haar basis. Their 

simplicity and a new image representation called Integral Image allow a very quick computing of these Haarlike features. Then a structure in 

cascade is introduced in order to reject quickly the easy to classify background regions and focus on the harder to classify windows. For this, 

classifiers with an increasingly complexity are combined sequentially. This improves both, the detection speed and the detection efficiency. The 

detection of faces in input images is proceeded using a scanning window at different scales which permits to detect faces of every size without 

resampling the original image. On the other hand, the structure of the final classifier allows a realtime implementation of the detector. Due to 

some limitation of neural network based methods we adopt the Adaboost algorithm for face detection. Here we present some results on real 

world examples are presented. Our detector found good detection rates with frontal faces and the method can be easily adapted to other object 

detection tasks by changing the contents of the training dataset. 

 

Keywords: AdaBoost algorithm, Knowledge Based Face Detection Methods, Feature Based Face Detection Methods, Template Based Face          

Detection Methods and Appearnce Based Face Detection Methods.

INTRODUCTION 

In this Section, a face detection approach is presented. Face 

detection is an essential application of pattern detection and 

it is one of the main components of face modeling, analysis 

and understanding with face localization and face 

recognition. It becomes a used in a large number of 

applications, among which we find security, new 

communication interfaces, biometrics and many others. The 

goal of face detection is to detect human faces in still images 

or videos, in different situations. In the past 30 years, large 

numbers of methods have been developed with different 

goals and for different contexts. We will make a overview of 

the main of them and then focus on a detector which 

processes images very fast while achieving high detection 

rates. This detection is based on a boosting algorithm called 

AdaBoost and the response of simple Haarbased features 

used by Viola and Jones [1].The motivation for using 

Viola‘s face detection method is to achieve experience with 

boosting and to explore issues and obstacles concerning the 

application of image analysis to object detection. 

 

Automatic face detection is a complex problem which 

consists in detecting one or many faces in an image or video 

sequence. The difficulty in the fact that faces are non rigid 

objects. Face appearance may vary between two different  

 

 

persons but also between two photographs of the same 

person, depending on the lightning conditions, the emotional  

state of the subject and pose avriations. That is why so many 

methods have been developed during last years. Each 

method is developed in a particular context and we can 

cluster. these numerous methods into two main approaches: 

image based methods and feature based  methods. The first 

one use classifiers trained statically with a given example 

set. Then the classifier is scanned through the whole image. 

The other approach consists in detecting particular face 

features as eyes, nose. 

The goal of this project is to detect very fast low resolution 

faces in cluttered background. This situation can be found in 

many applications as surveillance of public places. The 

method used is both image based and feature based. It is 

image based in the sense that it uses a learning algorithm to 

train the classifier with some well chosen train positive and 

negative examples. It is also feature based because the 

features chosen by the learning algorithm are for lots of 

them directly related to the particular features of faces (eyes 

positions, contrast of the nose bridge). The boosting 

techniques improve the performances of base classifiers by 

re-weighting the training examples. The learning using 

Boosting is the main contribution of this face detection. On 

the other hand, the simple classifiers used for the boosting 

are simples Haarlike features which permits a fast 

computation while good detection rates. 
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CHALLENGES IN FACE DETECTION 

Face detection is the problem of determining whether a sub-

window of an image contains a face. Looking from the point 

of view of learning, any variations which increase the 

complexity of decision boundary between face and non-face 

classes, will also increase the difficulty of the problem. For 

example, adding tilted faces into the training set increases 

the variability of the set, and may increase the complexity of 

the decision boundary. Such complexity may cause the 

classification to be harder. There are many sources 

introducing variability when dealing with the face. They can 

be summarized as follows:  

Image Plane Variations 

 Is the first simple variation type one may encounter? Image 

transformations, such as rotation, translation, scaling and 

mirroring may introduce such kind of variations. Utilization 

of image pyramids with a sliding detector window is one 

common way to deal with such transformations for the input 

image. Variations in the global brightness, contrast level can 

also be expressed in the same category. 

Pose Variations 

Can also be listed under image plane variations aspects. 

However, changes in the orientation of the face itself on the 

image can have larger impacts on its appearance. Rotation in 

depth and perspective transformation may also cause 

distortion. The common way to deal pose variation is to 

isolate pose types (i.e. frontal, profile, rotated). Some 

Lighting variations may dramatically change face 

appearance in the image.  Such variations are the most 

difficult type to cope with due to fact that pixel intensities 

are directly affected in a nonlinear way by changing 

illumination intensity or direction. For example, when using 

skin color as a feature for face detection, varying color 

temperature of the light source may cause skin color 

filtering to fail. Some examples for lighting variations. 

Background Variations 

Is another challenging factor for face detection in cluttered 

scenes. Discriminating windows including a face from non-

face is more difficult when no constraints exist on 

background. 

Size 

A face detector should be able to detect faces in different 

sizes. This we can achieve by scaling the input image. And 

small faces are more difficult to detect than the large face. 

Expressions 

The appearance of a face changes considerably for different 

facial expressions and, thus, makes the face detection more 

difficult. The simplest type of variability of images of a face 

can be expressed independently of the face itself, by 

rotating, translating, scaling and mirroring its image. Also 

changes in the overall brightness and contrast of the image 

and occlusion by other objects. 

Lighting and Texture Variation 

Now we will describe how the variation caused by the 

object and its environment, specifically the object‘s surface 

properties and the light sources. Changes in the light source 

in particular can change a face‘s appearance. 

 Presence or absence of structural components:  

Facial features such as beards, moustaches and glasses may 

or may not be present. And also there may be variability 

among these components including shape, color and size. 

Shape Variation 

Shape variation includes facial expressions, ether the mouth 

and eyes are open or closed, and the shape of the 

individual‘s face. The appearances of faces are directly 

affected by person‘s facial expression. 

Occlusion 

Faces may be partially occluded by other objects. In an 

image with a group of people some faces may partially 

occlude other faces. Partial occlusions of faces can be 

caused by objects within the environment (e.g, poles and 

people), objects worn by the person (glasses, scarf, mask), 

other body parts of person (hands) and shadows. Image 

orientation: Faces can appear in different orientation the 

image plane depending on the angle of the camera and the 

face. Images directly vary for different rotations about the 

camera‘s optical axis.  

Imaging conditions 

When the image is formed, factors such as lighting (spectra, 

source distribution and intensity) and camera characteristics 

(sensor response, lenses) affect the appearance of a face. 

BASIC TERMS 

 Detection rate  

It is defined as the ratio between the number of faces 

correctly detected and the number of faces determined by a 

human. 

 False negative  

In which faces are missed resulting in low detection rates. 

False positive 

In which an image region is declared to be face but it is not. 

OVERVIEW  

Next section, an overview of the main existing approaches is 

given. We first define precisely what the face detection task 

is and then detail the image based and feature based 

methods. Face Detection Section explains the developed 

algorithm. The main theory of Boosting is given as well as 

the use of the haarlike masks, a new image representation 

and an implementation in cascade. 

 Finally the last Section will focus on the experiments and 

results of our face detector.  

 

OVERVIEW OF FACE DETECTION 

INTRODUCTION 

Face Detection is the first step of face Recognition, 

S.Jaiswal et.al.[56] given a comprehensive literature on 

Image Based human and machine recognition of faces 

during 1987 to 2010. Machine recognition of faces has 

several applications. As one of the most successful 
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applications of image analysis and understanding, face 

recognition has recently received significant attention, 

especially during the past several years. In addition, relevant 

topics such as Brief studies, system evaluation, and issues of 

illumination and pose variation are covered. In this paper 

numerous method which related to image based 3D face 

recognition are discussed. 

S.Jaiswal et.al. [57] described an efficient method and 

algorithm to make individual faces for animation from 

possible inputs. Proposed algorithm reconstruct 3D facial 

model for animation from two projected pictures taken from 

front and side views or from range data obtained from any 

available resources. It is based on extracting features on a 

face in automatic way and modifying a generic model with 

detected feature points with conic section and pixalization. 

Then the fine modifications follow if range data is available. 

The reconstructed 3Dface can be animated immediately with 

given parameters. Several faces by one methodology applied 

to different input data to get a final Animatable face are 

illustrated. 

S.Jaiswal et.al.[58] the proposed study, 2D photographs 

image divided into two parts; one part is front view (x, y) 

and side view (y, z). Necessary condition of this method is 

that position or coordinate of both images should be equal. 

We combine both images according to the coordinate then 

we will get 3D Models (x, y, z) but this 3D model is not 

accurate in size or shape. In defining other words, we will 

get 3D animatable face, refinement of 3D animatable face 

through pixellization and smoothing process. Smoothing is 

performed to get the more realistic 3D face model for the 

person. 

In the following we will present different aspects of the face 

processing domain while reviewing the main existing 

methods. First of all, we need to define what face detection 

is, why it is an interesting objective and how it can be 

approached with various methods. We can define the face 

detection problem as a computer vision task which consists 

in detecting one or several human faces in an image. It is 

one of the first and the most important steps of Face 

analysis. Usually, the methods for face recognition or 

expression recognition assume that the human faces have 

been extracted from the images, but while the human visual 

system permit us to find instantaneously faces in our 

purview indifferently of the external conditions, doing the 

same automatically with a computer is a quite difficult task. 

A Brief History  

Along face detection, many other parts of Face analysis 

present useful applications and the number of these 

applications is increasing considerably nowadays with the 

evolution of the automatic systems in the life of every one of 

us. Face Recognition, Face localization, Face Tracking, 

Facial expression, alignment, registration, recognition are 

the main of these research domains.  

Face Recognition  

Consists in identifying the people present in images, in other 

words, we want to assign one name to one detected face. It 

is used in security systems for example.  

Face Localization  

Is the problem of finding precisely the position of one face, 

whose presence is already known in a single image. 

Face Tracking  

Has for goal to follow a detected face in a sequence of 

images in a real world context in most of the cases.  

Facial Expression  

Recognition will try to estimate the affective state of 

detected people (happiness sadness etc...).  

Face Registration  

Is the task of aligning the faces such that di_erent faces are 

transformed to a common coordinate system? This task is a 

crucial preparation step for face recognition. Since most 

recognition algorithms are quite sensitive to even small 

changes in orientation or position correct registration is very 

important. If registration fails recognition cannot be 

performed successfully. 

Alignment  

After face and eye positions have been established 

alignment is straight forward. The image is rotated and then 

cropped according to the distance between the eyes. The 

output of the aligner is a cropped and rotated face image of 

given pixel size. 

It is clear that the first step for all these problems is to find 

faces in images. For that various approaches have been 

developed and that is what will be detailed in this section. 

The first face detection systems have been developed during 

the 1970‘s but the computation limitations restricted the 

approaches to anthropometric techniques which could be 

efficient in only few applications as passport photograph 

identification for instance. It is only since the beginning of 

the 1990‘s that more elaborated techniques have been built 

with the progress in video coding and the necessity of face 

recognition. In the past years, lots of different techniques 

have been developed, in such a proportion that today we can 

count not less than 150 different methods. 2.1.2 Face 

detection difficulties If automatic face detection has not 

been developed before, it is because it is particularly hard to 

build robust classifiers which are able to detect faces in 

different image situations and face conditions even if it 

seems really easy to do this with our human visual system.  

In fact, the object ―face‖ is hard to define because of its 

large variability, depending on the identity of the person, the 

lightning conditions, the psychological context of the person 

etc. The main challenge for detecting faces is to find a 

classifier which can discriminate faces from all other 

possible images. The first problem is to find a model which 

can englobe all the possible states of faces. Let‘s define the 

main variable points of the faces:  

The face global attributes: 

We can extract some common attributes from every face. A 

face is globally an object which can be estimated by a kind 

of ellipse but there are thin faces, rounder faces... The skin 

color can also be really different from one person to one 

another.  

The pose of the face: 

The position of the person in front of the camera which has 

been used to acquire the image can totally change the view 

of the face: the frontal view, the profile view and all the 

intermediate positions, upside down.. 

The facial expression: 
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Face appearance depends highly on the affective state of the 

people. The face features of a smiling face can be far from 

those of an indifferent temperament or a sad one. Faces are 

nonrigid objects and that will limit considerably the number 

of detection methods.  

Presence of added objects: 

Face detection included objects that we can usually find on a 

face: glasses which change one of the main characteristics of 

the faces: the darkness of the eyes. Natural facial features 

such as mustache beards or hair which can occult one part of 

the face.  

Image Condition: 

The face appearance vary a lot in function of the lightning 

conditions, the type of illumination and intensity and the 

characteristics of the acquisition system need to be taken in 

account. The next figure shows some typical face examples 

extracted from the CMU test dataset [23].  

 
 

Figure 1: Typical faces extracted from the CMU Database [23]. We can 

notice the great variability of the nonrigid object ―Face‖. 

 

The background composition is one of the main factors for 

explaining the difficulties of face detection. even if it is 

quite easy to build systems which can detect faces on 

uniform backgrounds, most of the applications need to 

detect faces in any background condition, meaning that the 

background can be textured and with a great variability. So 

our two class classification task is to assign an image to the 

face class or the Non faces class. Given a set of we can 

extract some properties of faces for representing the face but 

it is impossible to find properties which can represent all the 

non class.  

FACE DETECTION 

Face detection is the first stage of an automatic face 

recognition system, since a face has to be located in the 

input image before it is recognized. A definition of face 

detection could be: given an image, detect all faces in it (if 

any) and locate their exact positions and size. Usually, face 

detection is a two-step procedure: first the whole image is 

examined to find regions that are identified as ―face‖. After 

the rough position and size of a face are estimated, a 

localization procedure follows which provides a more 

accurate estimation of the exact position and scale of the 

face. So while face detection is most concerned with 

roughly finding all the faces in large, complex images, 

which include many faces and much clutter, localization 

emphasizes spatial accuracy, usually achieved by accurate 

detection of facial features. 

Face detection algorithms can be divided into four 

categories according to: 

Knowledge-Based Methods  

It is based on human knowledge of the typical human face 

geometry and facial features arrangement. Taking advantage 

of natural face symmetry and the natural top-to-bottom and 

left-to-right order in which features appear in the human 

face, these methods find rules to describe the shape, size, 

texture and other characteristics of facial features (such as 

eyes, nose, chin, eyebrows) and relationships between them 

(relative positions and distances). A hierarchical approach 

may be used, which examines the face at different resolution 

levels. At higher levels, possible face candidates are found 

using a rough description of face geometry. At lower levels, 

facial features are extracted and an image region is 

identified as face or non-face based on predefined rules 

about facial characteristics and their arrangement. The main 

issue in such techniques is to find a successful way to 

translate human knowledge about face geometry into 

meaningful and well-defined rules. Another problem of such 

techniques is that they do not work very well under varying 

pose or head orientations.  

Feature Invariant Approaches  

Aim to find structural features that exist even when the 

viewpoint or lighting conditions vary and then use these to 

locate faces. Different structural features are being used: 

facial local features, texture, and shape and skin color. Local 

features such as eyes, eyebrows, nose, and mouth are 

extracted using multi-resolution or derivative filters, edge 

detectors, morphological operations or thresholding. 

Statistical models are then built to describe their 

relationships and verify the existence of a face. Neural 

networks, graph matching, and decision trees were also 

proposed to verify face candidates. Skin color is another 

powerful cue for detection, because color scene 

segmentation is computationally fast, while being robust to 

changes in viewpoint, scale, shading, to partial occlusion 

and complex backgrounds. The color-based approach labels 

each pixel according to its similarity to skin color, and 

subsequently labels each sub-region as a face if it contains a 

large blob of skin color pixels. It is sensitive to illumination, 

existence of skin color regions, occlusion, and adjacent 

faces. There are also techniques that combine several 

features to improve the detection accuracy. Usually, they 

use features such as texture, shape and skin color to find 

face candidates and then use local facial features such as 

eyes, nose and mouth to verify the existence of a face. 

Feature invariant approaches can be problematic if image 

features are severely corrupted or deformed due to 

illumination, noise, and occlusion.  

Template-Based Methods 

To detect a face in a new image, first the head outline, 

which is fairly consistently roughly elliptical, is detected 

using filters, edge detectors, or silhouettes. Then the 

contours of local facial features are extracted in the same 

way, exploiting knowledge of face and feature geometry. 

Finally, the correlation between features extracted from the 

input image and predefined stored templates of face and 

facial features is computed to determine whether there is 

face present in the image. Template matching methods 

based on predefined templates are sensitive to scale, shape 
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and pose variations. To cope with such variations, 

deformable template methods have been proposed, which 

model face geometry using elastic models that are allowed 

to translate, scale and rotate. Model parameters may include 

not only shape, but intensity information of facial features as 

well.  

Appearance-Based Methods 

While template-matching methods rely on a predefined 

template or model, appearance-based methods use large 

numbers of examples (images of faces and \ or facial 

features) depicting different variations (face shape, skin 

color, eye color, open\closed mouth, etc). Face detection can 

be viewed as a pattern classification problem with two 

classes: ―face‖ and ―non-face‖. The ―non-face‖ class 

contains images that may depict anything that is not a face, 

while the ―face‖ class contains all face images. Statistical 

analysis and machine learning techniques are employed to 

discover the statistical properties or probability distribution 

function of the pixel brightness patterns of images belonging 

in the two classes. To detect a face in an input image, the 

whole image is scanned and image regions are identified as 

―face‖ or ―non face‖ based on these probability functions. 

Well-known appearance-based methods used for face 

detection are eigenfaces, LDA, neural networks, support 

vector machines and hidden Markov models.  

Hjelmås and Low conducted a survey on face detection 

techniques, and identified two broad categories that separate 

the various approaches, namely Feature-based and Image-

based approaches. Each category will be explained, 

providing a brief yet thorough overview of the various face 

detection techniques. Figure 2 illustrates the different 

approaches for face detection.  

 

 
Figure 2 Different approaches for face detection. 

FEATURE-BASED APPROACH  

Hjelmås and Low divided the group of feature-based system 

into three sub-categories: Low-level Analysis, Feature 

Analysis and Active Shape Models.  

Low-level Analysis  

Low-level analysis deals with the segmentation of visual 

features using various properties of pixels, predominantly 

gray-scale or color.  

Edge representation (detecting changes in pixel properties) 

was first implemented by Sakai et al for detecting facial 

features in line drawings. Craw et al developed this further 

to trace a human head outline, allowing feature analysis to 

be constrained to within the head outline. Various operators 

are used to detect the presence of an edge, including the 

Sobel operator, the Marr-Hildreth operator, and a variety of 

first and second derivatives of Gaussians. All edge-based 

techniques rely on labeled edges which are matched to a 

face model for verification. Labeled edges as left side, 

hairline, and right side, developing a system capable of 

detecting 76% of faces in a set of 60 images with complex 

backgrounds, with an average of two false alarms per image.  

Gray information can be used to identify various facial 

features. Generally eyebrows, pupils and lips appear darker 

than surrounding regions, and this extraction algorithm can 

search for local minima. In contrast, local maxima can be 

used to indicate the bright facial sports such as nose tips. 

Detection is then performed using low-level gray-scale 

thresholding.  

Color contains extra dimensions which can help 

differentiate two regions which may contain similar gray 

information but appear very different in color space. It was 

found that different skin color gives rise to a tight cluster in 

color space, thus color composition of human skin differs 

little across individuals, regardless of race. The most widely 

used color model is RGB, although there are many others 

that exist and have been used.  

Motion information (where available) can be used to assist 

in the detection of human faces, using the principle that, if 

using a fixed-camera, the "background clutter" will remain 

somewhat static, relative any "moving object". A 

straightforward way to achieve motion segmentation is by 

frame difference analysis. Thresholding accumulated frame 

differences is used to detect faces or facial features. Another 

way to measure motion is thought the estimation of moving 

image contours, a technique that has proven to be more 

reliable, particularly when motion is insignificant.  

Feature Analysis  

Low-level analysis introduces ambiguity which can be 

solved by high-level feature analysis, often through the use 

of some additional knowledge about the face. There are two 

approaches for the application of this additional knowledge 

(commonly face geometry).  

The first involves sequential feature searching strategies 

based on the relative positioning of individual facial 

features. Initially prominent facial features are determined 

which allow less prominent features to be hypothesized (for 

example a pair of dark regions found in the face area 

increases the confidence of facial existence). The facial 
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feature extraction algorithm is a good example of feature 

searching, achieving 82% accuracy with invariance to gray 

and color information, failing to detect faces with glasses 

and hair covering the forehead.  

The second technique, constellation analysis, is less rigid 

and is more capable of locating faces of various poses in 

complex backgrounds. It groups facial features in face-like 

constellations, using robust modeling methods such as 

statistical analysis. Burl et al used statistical shape theory on 

features detected from a multi-scale Gaussian derivative 

filter, capable of detecting 84% of faces, with some 

invariance to missing features, translation, rotation and 

scale.  

Active Shape Model  

Active shape model represents the actual physical and hence 

higher-level appearance of features. These models are 

released near to a feature, such that they interact with the 

local image, deforming to take the shape of the feature. 

There are three types of active shape models that have been 

used through the literature: snakes, deformable templates 

and smart snakes.  

Snakes or active contours are commonly used to create a 

head boundary. Created nearby, they lock on to nearby 

edges, eventually assuming the shape of the head. The 

evolution of a snake is achieved by minimizing an energy 

function, which consists of the sum of an internal energy 

function, defining its natural evolution (typically shrinking 

or expanding), and an external energy function, which 

counteracts the internal energy enabling the contours to 

deviate from the natural evolution. Energy minimization can 

be obtained by optimization techniques such as the steepest 

gradient descent although the additional computational 

demands have encourages others to use faster iteration 

methods. 

Deformable temples can be used as an extension to the 

snake models. Smart snakes or Point Distributed Models 

(PDMs) are compact parameterized descriptions of a shape 

based upon statistics. They use Principle Component 

Analysis (PCA) to construct a linear flexible model from 

variations of the features in a training set. Face PDM was 

first developed by Lantis et al as a flexible model with 

promising results (95% detection rate). Multiple faces can 

be detected tests have shown that partial occlusion is not a 

problem as other features are still available to contribute to a 

global optimal solution.  

Image-based Approach  

Face detection by explicit modeling of facial features is a 

very rigid approach which has been shown to be troubled by 

the unpredictability of faces and environmental conditions. 

There is a need for more robust techniques, capable of 

performing in hostile environments, such as detecting 

multiple faces with clutter-intensive backgrounds. This has 

inspired a new research area in which face detection is 

treated as a general pattern recognition problem. Whereas 

face recognition deals with recognizing the face, face 

detectors must recognize an object as a face, from examples. 

This eliminates the problem of potentially inaccurate models 

based on the erroneous or incomplete face knowledge and 

instead places the emphasis on the training examples from 

which the system leans to distinguish a face. Most image- 

based approaches apply a window scanning technique for 

detecting faces, which due to its exhaustive nature, increases 

computational demand.  

Hjelmås and Low divided the group of image-based system 

into three sub-categories:  

Linear Subspace Methods, Neural Networks and 

Statistical Approaches.  

Linear Subspace Methods  

Images of human faces lie in a subspace of overall image 

space which can be represented by methods closely related 

to standard multivariate statistical analysis, including 

Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), and Factory Analysis (FA). 

Neural Networks  

Early approaches based on the simple Multiple Layer 

Perceptrons (MLP) gave encouraging results on fairly 

simple datasets. The first advanced neural approach which 

reported performance statistics on a large, visually complex 

dataset was by Rowley et al. Their system incorporates face 

knowledge in the retinally connected neural network 

architecture, with specialized window sizes designed to best 

capture facial information (e.g. horizontal strips to identify 

the mouth).  

Statistical Approaches  

Systems based on information theory, support vector 

machines and Bayes' decision rule are examples of image-

based approaches that do not fit into either of the other 

categories.  

In this context, various approaches have been taken to detect 

faces in images. But as the face detection task is quite 

complex, each method is build in a precise context and we 

will now review the main existing methods. The next 

sections detail the two main face detection approaches:  

Image Based Methods: Which are built given a set of 

examples and uses a sliding window to perform the 

detection?  

Geometrical Based Methods: Which take in account 

geometric particularity of face structures? 

Definition of Some General Notions Needed to Understand 

Face Detection Problem  

First of all, we have to define some basic criteria that will 

determine the performances of the detectors. The first notion 

that we need to introduce is the detection rate. The detection 

rate d is the percentage of faces in the image that have been 

correctly detected by the detector. In lots of applications, it 

is the rate that we want to maximize. On the other hand, we 

have to define the false rates. The false negative fn rate is 

the opposite of the detection rate in the sense that it is the 

rate of faces that have been forgotten by the detector: fn =1 -

 d. The false positive rate is the second essential rate 

considered in face detection: let fp be the rate of non faces 

windows that are classified as faces by the detector. Due to 

the large number of windows evaluated in a usual image, 

this false positive rate is usually 10
−

5

or 10
−

6 

but this low 

value is not really significant.  

Once these definitions are given, it is easy to understand that 

the objective of the face detection is to maximize the 

detection rate while minimizing the false positive rate fp. 

However, as in lots of applications in the real life, it is hard 
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to have both low false positive rate and high detection rate, 

and that is why we have to look for a trade off between the 

two parameters. All the methods described in the following 

sections will try with different approaches to find the better 

compromise between false positive rate and detection rate. 

Finally, we will see that it is hard to compare the methods 

because of the problem of detection evaluations and of the 

different contexts. How can we measure the goodness of a 

detector?  

IMAGE BASED DETECTION  

INTRODUCTION  

Face is the collection of pixels. Each pixels gives the 

identical information about the images. We qualify them of 

―Image Based‖ because they are built using example images 

in opposition to some ―template methods‖ which need an 

apriori knowledge about faces. In order to extract the 

features from some training examples, we will need to 

follow a statistical learning approach or other machine 

learning algorithms. The principle is to learn a face and a 

non-face distribution, given a set of positive and negative 

examples. For this, we will naturally be placed in a 

probabilistic context : An image or any input data is 

considered as an random variable x and the two classes face 

and Non face are characterized by their conditional density 

functions: p(x /face) and  p(x/non ace) (see [22]). It is 

obvious that these density functions are unknown and one of 

the main goals is to approximate them in order to 

discriminate faces and non faces. Then there are several 

methods to find discriminant functions with permit to 

classify a given example in the face class or the non face 

class. In this probabilistic approach, many different methods 

exist, among which Eigenfaces, Fisher‘s Linear 

Discriminant and Neural network or support vector 

machines etc...  

The main difficulty in this approach is that the example 

dimension, i.e. the dimension of x is often high so an 

important step will be to reduce this example space in order 

to find a discriminant function which separates positive and 

negative examples. 

Eigenfaces  

Definition  

The first ImageBased method that we will describ e in this 

section is called Eigenfaces. The principle of face detection 

using Eigenfaces is to extract these features from a set of 

images by Principal Components Analysis (PCA) and 

estimate if the extracted Eigenfaces correspond to typical 

face pattern. In fact all input images can be represented by a 

weighted vector of Eigenfaces in the eigen space and the 

challenge is to determine if this linear combination is closer 

to one class or to the other. A global overview of face 

recognition using Eigenfaces can be found in [25] .  

Principal Components Analysis  

The first step for this Eigenfaces classification is to extract 

the Eigenfaces from the original images. For this, the 

Principal Components Analysis (PCA) is used. PCA which 

is also known as the KarhunenLo eve method reduces the 

input space dimensionality by applying a linear projection 

that maximizes the scatter of all projected samples. This 

subsection presents the main steps of such an analysis. 

Let },{
,........,21 n

xxx  be a set of N images which are values 

from a ndimensional feature space. The orthonormal matrix 

W define a linear transformation from the n-dimensional 

space to a m-dimensional feature space where m < n 

(dimensionality reduction). Noticing that 

mn
RW the new feature vectors 

m

k
Ry are 

defined by the linear transformation: 

,xk
T

k
wy          Nk ,....,2,1           (2.1) 

Then the total scatter matrix ST is defined as 

T

kk

N

K

T
xxS ))((

1

  (2.2) 

where  is the mean of all the examples : ,
1

N

x

N

k

k

 

By applying the linear transformation, the new scatter 

matrix in the dimensional subspace is given by WTSW: The 

PCA theory shows that the optimal linear projection Wopt is 

the one which minimizes the determinant of the projected 

scatter matrix (for the samples },......,,{
21 N

yyy i.e. 

].,.....,[||maxarg
2,1 mT

T

w

T

opt
WSWW    (2.3) 

The set },.....,1|{ mi
i are the n-dimensional 

eigenvectors of ST , corresponding 

to the },.....,1|{ miy
i eigenvalues ordered 

decreasingly. 

This projection in the feature space using 
T

opt
W  permits to 

decompose the distance between an example and the face 

space into two components: the distance in feature space 

DIFS (projection on the m dimensional space) and the 

distance from feature space DFFS. For more details about 

PCA, see [26], [27] and [28]. 

One serious point is that the main variance cause in an 

object class is the lightning variations as shown in [29] . The 

optimal linear transformation Wopt given by PCA has the 

drawback to focus on components representing the 

illumination changes. One of the correction methods is to let 

out the first principal Eigenfaces considering that they 

contain almost all the variations due to lightning. 

Here we present some advantages and disadvantages: 

Advantages 

Robust against noise and occlusion, Robust against 

illumination, scaling,orientation and translation when face is 

correctly normalized, Robust against facial 

expressions,glasses, facial hair, makeup etc., Can handle 

high resolution images efficiently, Can handle small training 

sets, Can handle very low resolution images, Fast 

recognition/Low computational cost. 

Disadvantages 

Removes neighborhood relationships between pixels, 

Sensitive to faulty normalization, Sensitive to perspective, 

viewing angle and head rotation (can be improved using 

eigen light-fields or other view-based methods), Sensitive to 

large variation in illumination and strong facial expression, 
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Slow training/High computational cost (with large 

databases). 

Fisher’s Linear Discriminant 

Even if the Eigenfaces method seems to be quite efficient on 

non noisy images, one of the drawbacks is that it does not 

minimize the intraclass variance. A good classifier is a 

classifier in which the model of each class has a small 

variance while a large variance between different classes. 

Fisher‘s Linear Discriminant (FLD) is one method to find 

the optimal projection. The projection determined by 

xWZ
T

FLD
 minimize the quantity 

WC

BC

S

S which is the 

ratio between the between class variance 
BC

S  and the 

within class 
WC

S  , see [24]. If we consider the general case 

of a class problem, then we can define the between class 

covariance matrix by: 

\

c

i

T

iiiBC
NS

1

))((   (2.4) 

and the within class covariance matrix by : 

c

i x

T

ikikiWC

iXk

xxNS

1

))((      (2.5) 

Where  is the mean of all the samples, 
i
 is the mean of 

the class Xi and Ni the number of samples in the class 

i
X .The optimal projection is obtained if we  choose the 

projection matrix 
T

FLD
W  as follow: 

],,......,,[
||

||
maxarg

21 m

WC

T

BC

T

w

T

FLD

WSW

WSW
W     (2.6) 

Where },.....,1|{ mi
i is the set of generalized 

eigenvectors of SBC and SW, which are associated to the 

eigenvalues },.....,1|{ miy
i

. In [24] is it shown 

that the upper bound for the projection space dimension is 

c¡1where c is the number of classes. In our binary class 

case, the projected space is a line. An example in the next 

figure shows the comparison between the two methods: 

PCA and FLD. 

 
Figure 3: A comparison of principal component analysis (PCA) and 

Fisher‘s linear discriminant (FDL) for a two class problem where data for 

each class lies a linear subspace. (taken from [24]). 

Here we present some advantages and disadvantages: 

Advantages 

Robust against noise and occlusion, Robust against 

illumination, scaling,orientation and translation when face is 

correctly normalized, Robust against facial expressions, 

glasses, facial hair, makeup etc., Can handle high resolution 

images efficiently, Can handle very low  resolution images, 

Fast recognition/Low computational cost. 

Disadvantages 

Removes neighbourhood relationships between pixels, 

Sensitive to faulty normalization,Sensitive to perspective, 

viewing angle and head rotation (can be improved using 

fisher light-fields), Does not handle small training sets well, 

Slow training/High computational cost (with large 

databases). 

Other methods in Eigenspace  

Others methods which use dimensionality reduction in the 

image space have been developed. One of the most efficient 

is the distribution based model developed by Sung and 

Poggio (see [4]). The method consists in modeling both the 

distribution of face patterns and non face patterns. The face 

distribution is modeled using 6 face pattern prototypes 

clustered bya modified version of the kmeans clustering 

algorithm. This algorithm computes the 6 centroids and 

covariance matrix of the 6 multidimensional Gaussian. In 

order to decrease the number of misclassified examples, 6 

other Gaussian clusters representing the non face class are 

built using some critical non face pattern which are facelike 

patterns in the sense that their prototypes are close to the 

face models. These facelike non faces are chosen using a 

Bootstrap method which mean collecting the false positive 

patterns detected on a large set of images. Given these 12 

clusters, a candidate window pattern has to be classified as 

face or non face. For this, each the distance between the 

tested pattern and the 12 clusters centroids are computed 

using 2 metrics.  

The first component is normalized Mahalanobis distance 

between the tested pattern‘s projection and the cluster 

centroid in a subspace spanned by the cluster‘s 75 largest 

eigenvectors. The second is the Euclidean distance between 

the test pattern and its projection in the subspace. So the 

entire set of 12 distance measurements is a vector of 24 

values. Then a multilayer perceptron (MLP) is used to 

separate the positive and negative examples. This approach 

is quite powerful but the limit is that the choice of all the 

parameters is not clear: what is the optimal number of 

clusters, how many examples do we have to use to train the 

classifier?  

One other interesting method is a Bayesian based model.  

Neural Network, SVM, HMM, Winnow  

Other machine learning tools can be used to train good 

classifiers. Among these learning approaches, we can find 

neural network oriented systems and support vector ones. 

These are the more popular tools in machine learning and 

the most common used nowadays. The next two subsections 

expose them and make an overview of the different existing 

systems using them.  
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NEURAL NETWORK  

One of the best face detection system in term of false 

positive rate and detection rate is a Neural NetworkBased 

face detection developed by Rowley [11]. It uses a retinally 

connected neural network which decides if a scanned 

window is a face or not. The face detection system can be 

divided in two main steps:  

A neural networkbased filter 

The input of this first stage is a preprocessed square image 

(20x20 pixels in [11]) and the output of the neural network 

is an real value between 1 and +1. The preprocessing and 

neural network steps are presented in the next figure. 

 
Figure 4: Neural Networkbased face detection proposed by [11] 

 

The original image is decomposed in a pyramid of images 

(by simple subsampling) in order to detect faces larger than 

the basic detector size. The Receptive fields and Hidden 

units are shown in figure. There are three types of hidden 

units to represent local features that represent well faces. 

This first stage yields good detection rates (if the training set 

is particularly well chosen) but it remains still an insufficient 

false positive rate.  

Arbitration and merging overlapping detections. In order to 

improve this high false positive rate, two neural networks 

are trained with various initializations ( in term of non face 

training set, weight initialization and order presentation). 

These two networks are built by the methods of the first 

step. Even if the two networks have individually bad false 

positive rates, the false alarms may differ from one network 

to the other. Hence, an integration of the result using a 

simple arbitration strategy improves significantly the 

detection results. The most common of this strategy is called 

ANDing. A window if definitively classified as face only if 

the two neural networks have detected it. This method using 

neural networks have good results in term of false positive 

rate and detection rate, but one limitation is that the quality 

of the detection depends highly on the coherence of the 

training sets and on the tuning of the neural networks which 

has lots of parameters.  

Neural Network-Based Face Detection 

As discussed in the Literature Survey, there are many 

different approaches to face detection, each with their own 

relative merits and limitations. One such approach is that of 

Neural Networks. This section gives a brief introduction to 

the theory of neural networks and presents a neural network-

based face detector developed by Sanner (REF), with the 

aim of implementing and analysing the Rowley et al [11] 

detector with enhancements proposed by Sung and Poggio 

[52]. An explanation of Sanner‘s detector is given, and 

details of the experimental work carried out are also 

included. 

Neural Network Theory 

Neural Nets are essentially networks of simple neural 

processors, arranged and interconnected in parallel. Neural 

Networks are based on our current level of knowledge of the 

human brain, and attract interest from both engineers, who 

can use Neural Nets to solve a wide range of problems, and 

scientists who can use them to help further our 

understanding of the human brain. Since the early stages of 

development in the 1970‘s, interest in neural networks has 

spread through many fields, due to the speed of processing 

and ability to solve complex problems. As with all 

techniques though, there are limitations. They can be slow 

for complex problems, are often susceptible to noise, and 

can be too dependent on the training set used, but these 

effects can be minimised through careful design. Neural 

Nets can be used to construct systems that are able to 

classify data into a given set or class, in the case of face 

detection, a set of images containing one or more face, and a 

set of images that contains no faces. Neural Networks 

consist of parallel interconnections of simple neural 

processors. Figure 2 shows an example of a single neural 

processor, or neuron. Neurons have many weighted inputs, 

that is to say each input (p1, p2, p3… pm) has a related 

weighting (w1, w2, w3… wm) according to its importance. 

Each of these inputs is a scalar, representing the data. In the 

case of face detection, the shade of GRAY of each pixel 

could be presented to the neuron in parallel (thus for a 

10x10 pixel image, there would be 100 input lines p1 to 
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p100, with respective weightings w1 to w100, 

corresponding to the 100 pixels in the input image). 

 

 
Figure 5 – a single neuron example neural network 

 

The weighted inputs are combined together, and if present, a 

bias (b) is added. This is then passed as the argument to a 

transfer function (typically a pure linear, hardlimit, or log-

sigmoid function), which outputs a value (a) representing 

the chosen classification. 

Problems that are more complex can be realised by adding 

more neurons, forming multiple layers of several neurons, 

interconnected via a weighted matrix (as shown in figure 

2.4.2). Additional layers of neurons not connected directly 

to the inputs or the outputs are called hidden layers (layers 1 

and 2 in figure 3). 

 
Figure 6– An example of a three layer network with multiple neurons per 

layer taken from Matlab documentation 

 

Once the architecture is established, the network must be 

trained. A labeled representative set of examples from each 

class is presented to the network, which attempts to classify 

each example. The weights and biases are initialised with 

small random values and updated incrementally, such that 

the performance of the detector improves producing a more 

accurate decision boundary for the problem. Once trained, 

the network can be used to classify previously unseen 

images, indicating whether they contain faces or not, based-

on the ‗location‘ of the input relative to the decision 

boundary formed during training. 

SYSTEM OVERVIEW 

The operation of the face detection system can be broken 

down into three main areas: 

1. Initialisation (design and creation of a neural network) 

2. Training (choice of training data, parameters, and 

training) 

3. Classification (scanning images to locate faces) 

A feedforward neural network is created which is trained 

using back propagation. The training set used contains 

examples of both face and non-face images, and the 

classifier is trained to output a value between 0.9 and -0.9 

(0.9 firmly indicating the presence of a face, -0.9 firmly 

indicating the absence of a face). When a new image is 

presented to the network, the image is rescaled and divided 

into windows which are individually presented to the 

network for classification. Windows thought to contain a 

face are outlined with a black bounding box and on 

completion a copy of the image is displayed, indicating the 

locations of any faces detected. In the next section a more 

thorough description of the system is included detailing the 

operation of the detector. 

SYSTEM DESCRIPTION 

There are two main functions: ‗facetrain‘ to create and train 

a neural network and ‗facescan‘ to scan new images for 

faces. A 

Facetrain 

A set of 25x20images from a training set is loaded and 

stored as an image vector. There are two vectors, one which 

contains numerous face examples, the other for non-face 

examples. Each image vector is then augmented, adding 

mirror-images of the original training examples, to create a 

larger training set. A mask is applied to the face examples, 

removing pixels outside of the oval mask to focus the 

attention of the classifier on the true face region. Pixels in 

the unmasked area are then normalised: a rough 

approximation of the shading plane is subtracted from the 

image to correct for single light source effects and the 

histogram is rescaled to ensure all images have the same 

gray level range (0-1). Once the training data has been pre-

processed, the neural network is created. The network has 

‗NI‘ inputs, 23 hidden nodes, and just one output which 

indicates the presence, or absence of face. Each node‘s 

transfer function is of type ‗tansig‘ – hyperbolic tangent 

sigmoid transfer function. 
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Figure 7 – A representation of the network architecture 

Matlab‘s training algorithm ‗traindm‘ is used which 

implements gradient decent back propagation with 

momentum. The network‘s weights and biases are updated 

according to gradient descent in order to improve the 

networks performance function. The Neural network is 

trained with all of the training data until convergence is 

achieved, or a decrease in performance is registered on the 

arbitrarily chosen validation set. Once the system has been 

created and trained, it is possible to classify new unseen 

images. The second function, ―facescan‖, conducts the final 

task, scanning previously unseen images for faces. Images 

are processed prior to classification, which involves the 

construction of an image resolution pyramid, and scanning 

25x20 window regions, normalising each window before 

passing it to the network for classification. The image 

resolution pyramid is used to allow faces of differing scales 

(sizes) to be detected. When calling the ‗facescan‘ function, 

a number of parameters can be specified which control the 

number of levels in the pyramid and the scale factor for 

resizing between levels, as well as other parameters 

specifying the network and mask to be used, and a threshold 

value, above which images are classified as faces. 

This focuses on Sanner‘s reported findings, predominantly 

performance statistics and the limitations of the detector. 

Sanner completed several tests to investigate the choice of 

parameters, although a comprehensive analysis of true 

performance was not provided in the documentation, just a 

few examples of images classified by the system. Several 

strengths and limitations were identified. The image 

normalisation routine was identified as a strength, as it eases 

the collecting of examples and the submitting of faces for 

scanning, due to the degree of invariance to lighting 

conditions that it provides. It can also lead to improvements 

in computational efficiency, given the small size of the 

matrices used during normalisation. The detector was also 

able to correctly process a fairly wide range of poses, 

emotions, and lighting conditions, despite a relatively small 

and limited example training set. However, the detector was 

unable to detect rotated faces as there were no rotated face 

examples in the training set and the number of false 

positives (areas of background or scenery that the detector 

incorrectly identifies as faces), was unacceptable in some 

images. The implementation of a retinally connected 

network [11], was suggested to help reduce the effect of 

noise. The addition of a more comprehensive set of non-face 

examples in the training set was also suggested as a 

potential improvement, a task which is extremely difficult, 

although improved greatly through using a bootstrapping 

technique to construct the non-face example set (see section 

6 for more details). The remainder of this report will analyse 

the Sanner [51] detector, evaluate its performance, and look 

at some possible improvements.  

EXPERIMENS 

This section details work carried out to measure the 

performance of the discussed Sanner face detector, and to 

analyse the improvements made. 

Performance Analysis - Original Detector 

The performance of the original face detector developed by 

Sanner will be discussed, and a set of optimal values for the 

various tuning parameters will be investigated. All the 

experimental work is to be carried out in Matlab using the 

existing code written by Scott Sanner. Some additional 

scripts will be written to implement any improvements, and 

to automate some of the performance testing experiments 

which would otherwise be a tedious repetitive procedure. 

Classification Performance 

At the very heart of the system lies the classifier, the object 

that actually makes the decision as to whether an image is 

receives contains a face or not. Initially tests were carried 

out to investigate how well the classifier could classify the 

data set on which it was trained. Although this is not 

indicative of true performance, it serves as a guide to how 

well the network is learning from the training data. The 

classify function written by Sanner, classifies 25x20 pixel 

images as either face or non-face images, producing a 

numerical value between -0.9 and  0.9 (0.9 strongly 

indicating the presence of a face, -0.9 indicating the absence 

of a face). The addition of a threshold value allows the 

classifier to be tuned somewhat, such that an image is 

marked as when the numerical output value exceeds the 

threshold. A script entitled ―massclassify‖ makes use of the 

classify function by repeatedly classifying each example 

from the training data. For these experiments a virtual 

threshold of ‗0‘ is assumed such that anything classified 

positive is defined as a face image, and negative values are 

defined as scenery images. This additional code is included 

in the appendices for reference. Face and non-face examples 

are classified separately. Whilst processing the face 

examples, correct classification values (exceeding the virtual 

threshold) are used to increment a ‗face counter‘. Likewise a 

‗non-face counter‘ tallies the number of times non-face 

examples that are below the threshold value (again correct 

classification). Upon completion the classification rate and 

number of incorrect classifications for both the face and 

non-face examples are displayed. Figure 6 shows the results 

of ‗massclassify‘ when used to classify the original training 

data set using Sanner‘s original detector. 

 

Number of Faces   30 

Correcr Classification on Rates  93.3% 

Number of Incorrect Classification  2 

Number of Scenery Examples  40 

Correct Classification Rate   97% 

Number of Incorrect Classifications   1 

 
Figure 8– Original Face Detector Learning Performance Statistics 

 

Several parameters in the system can be set to adjust various 

properties of the detector and tune its performance. Each of 

the parameters will be taken in turn, and experiments carried 
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out to determine an optimal value for each one.The mask is 

used to remove pixels towards the edge of the 25x20 

images, thus focussing the attention of the network on the 

unmasked oval region, most likely to contain a face. The 

chosen mask is shown in the appendices and closely mirrors 

masks chosen by many others in the Literature survey. The 

unanimous acceptance of this mask throughout various 

approaches infers that the mask is somewhat optimal 

already, and thus no experiments will be done with other 

alternatives masks for the purposes of this project. 

Various characteristics of the network can be changed or 

varied including the network type, number of hidden nodes, 

training algorithm used and the training duration. Each 

parameter will be taken in turn and analysed. 

Changing the type of network used could potentially 

improve the performance of the detector, although the 

chosen feed-forward type is an excellent choice for this type 

of application, a choice which is mirrored by other neural 

network based face detection systems including Rowley et 

al [11]. Therefore due to the widespread acceptance of this 

network type, making changes at this stage is deemed 

unnecessary. 

Number of Hidden Neurons 

It is thought that any complexity of problem can be solved 

with just a single layer of hidden neurons. With a greater 

number of hidden neurons, there are more weights to tune 

during training, and thus a more complex a decision 

boundary can be formed (although too many neurons can 

lead to over fitting of the boundary to the training set, thus 

poor generalisation). The number of hidden neurons will be 

varied from 1 through to 1000 (25 being the default number 

in the original design), and the ‗massclassify‘ function will 

be used to see how well the system learns the training set. 

Figure 2.4.5 shows the results of these experiments: 

 
Figure 9 – The effect on performance of varying the number of hidden 

neurons 

LIMITATIONS 

Sanner [51] identified some limitations with his face 

detector, mainly the number of false positives (windows the 

classifier incorrectly believes are faces). This infers a 

weakness in the training set. The detector was also stated to 

provide translational invariance, although rotation in faces 

was not catered for, with the failure to detect several rotated 

faces in the test sets. 

The system developed by Sanner [51] is a good example of 

a neural network based system, indicative of some of the 

more complex detectors in the field. It mirrors the strengths 

of the technology providing impressive classification results 

from a relatively small image training set, and also reflects 

the major limitations, mainly computational expense, and 

reliance on the training data. It illustrates well some of the 

key problems that developers of intelligent artificial face 

detection systems are faced with, not only in the field of 

neural networks but across the board. 

Here we present some advantages and disadvantages of 

these methods: 

Advantages 

Stores neighbourhood relationships,Robust against noise 

and occlusion,Robust against scaling, orientation and 

translation when face is correctly normalized,Fast 

recognition/Low computational cost (depending only on the 

network and not the number of images). 

Disadvantages 

Sensitive to faulty normalization, Sensitive to illumination 

and face expressions, Sensitive to perspective, viewing 

angle and head rotation (can be improved using ensambles 

of networks), Can be slow and difficult to train (especially 

for large databases). 

Support Vector Machine  

Modeling of imperial data is essential in many disciplines, 

to build a representation of an object or a task that can 

deduce the results for an unseen input only by observing a 

set of training samples or by using predefined rules, to 

assign units from a target space into classes by using a 

representative model obtained only by using a subspace of 

the entire space, the choice of this subspace is essential and 

should contain enough information to represent the entire 

space or the approximation error will be high due the poor 

choice of the representative data, after using a representative 

subspace an optimal model should be selected to minimize 

the estimated error, both these errors (approximation error 

results from poor subspace and estimation resulting from 

poor model) are called the generalization error, which is the 

error resulting from the attempt of modeling a space using s 

subspace, most classification techniques tried to minimize 

this error to obtain a better model Vapnik(1998)[53]. 

SVM were founded by Vapnik (1995) [54]and gained 

popularity due their promising results in classification of 

complex problems ad their performance, it has the ability to 

generalize only by using a finite set of training samples, 

SVMs have been applied successfully in the field of pattern 

recognition, as in Cortes and Vapnik(1995)[53] for 

handwriting recognition and in[55] for face detection. 

In the case of face detection the classification problem is 

narrowed down to a two-class case, a face and none-face, 

the goal of using SVM in this case is to deduce a function 

which can separate the two classes by using a training set to 

deduce a classifier that can classify unseen examples as 

well, one that generalizes properly, in most classification 

problems there exists many functions that can separate the 

data but there exist only one that maximizes the margin 

between the function and the nearest data sample of each 

class, this classifier can be called as the: optima hyperplane, 

this hayperpane could be linear in some cases and in many 

other cases it is not, presenting an addition supporting 

function could be necessary to be associated with the  

misclassified set, how even another alternative is the 

introduction of a non-linear function that can do the same 

thing and separate the classes appropriately. Support Vector 

Machine is a learning technique introduced by Vapnik [19]. 
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It seems to be efficient when the data sets become larger 

than few thousands. It the case of face detection if we want 

to describe precisely all the faces (because of the variability 

of faces.) The principle is to find the decision surfaces by 

solving a linearly constrained quadratic programming 

problem. The hyperplan decision is the one that maximize 

the margin between the face and the non faces classes. One 

of the simple margins that can be used is the distance 

between the closest points of the two classes. The points that 

are kept in the hyperplan are not numerous. 

 They are called supper vectors but they are the most 

important because they define the boundary between the two 

classes. Osuna and al. have developed such a face detection 

system using Support Vector Machine in. 

Hidden Markov Model  

These Hidden Markov Models have been used by Samaria 

and Young (see [41] and [42]) for face localization and 

recognition. The principle is to divide a face pattern into 

several regions such as forehead, eyes, nose, mouth and 

chin. A face pattern is then recognize if these features are 

recognize in an appropriate order. In other words, a face 

pattern is a sequence of observation vectors where 

eachvector is a strip of pixels.A image is scanned in a 

precise order and an observation is taken by block of pixels. 

The boundaries between strips of pixels are represented by 

probabilistic transitions between states and the image data 

within a region is modeled by a multivariate Gaussian 

distribution. 

The output states correspond to the class to which the 

observation belong. Other methods using HMM have been 

developed by Rajagopolan [44], and Sung [43]. 

Here we present some advantages and disadvantages of 

these methods: 

Advantages 

Robust against scaling, orientation and translation when face 

is correctly normalized, Robust against illumination if 

training data has different lighting conditions, Robust 

against facial expressions,glasses, facial hair, makeup etc. 

and Easy to update. 

Disadvatages 

Sensitive to faulty normalization, Sensitive to occlusion, 

Sensitive to perspective, viewing angle and head rotation 

(can be improved training models for different views), Slow 

training and recognition/High computational cost (can be 

improved using DCT or KLT feature vectors). 

Sparse Network of Winnows (SNoW)  

SNoW is a sparse network of linear functions that uses the 

Winnow update rule defined in [45]. We define two linear 

units called target nodes: one as representation for the face 

pattern and another one for the nonface 

 pattern. Given a set of relations that may be of interest in 

the input image, each input image is mapped into a set of 

features which are present in it. This representation is given 

to the SNoW procedure and propagates to the target nodes. 

Let },.....,{
1 mt

iiA  be the set of features that are present 

in an 

example and are linked to the target node t. Then the linear 

unit is active tif and only if ,,
t

t

it
Ai where 

t

i  is the weight on the edge connecting the i− th feature 

to the target node t and 
t

 is its threshold. The Winnow 

update consists in a threshold 
t

 at the target t, two update 

parameters: a promotion parameter α>1 and a demotion 

parameter 0 <β<1. 

Geometrical Based Detection  

Introduction  

The previous statistical methods are based on a learning to 

obtain a face model from one positive and one negative data 

set. They are not directly correlated to the particular 

geometrical features of a typical face. Some other methods 

are in such a point of view. They are called 

Geometricalbased  or Featurebased. 

 Many approaches have been taken is this large area of 

featurebased 

 detection and we can distinguish:  

 The top-down approach: One model is computed for 

one scale. This was used by Yang and Huang [30], and 

Lanitis [31] .  

 The bottom-up approach: The faces are searched in an 

image by the presence of facial features. See Leung [32] and 

Sumi [33]. The main advantage of this geometric approach 

is that the face detection is not restricted to frontal faces. In 

fact the main face features (eyes nose, skin color etc...) are 

present independently of the pose and the lighting 

conditions. 

Top-down Methods  

This category includes all the methods that used a multi 

scale approach. The great majority of them use the skin 

color to find faces in images. The existing system use 

several segmentation algorithms to extract faces from the 

images. The more classical ones are region growing, Gibbs 

Random Field Filtering and more... The skin color is maybe 

one of the features the first noticed by the human visual 

system. Many methods use different color spaces. The main 

advantage of this approach is that the face detection is very 

fast. However, there is one important issue: lots of problems 

appears if the background contains faces of the skin color. 

Yang and Ahuja [36] have build their system in this sense.  

Although the human skin color seems to change from one 

example to one other, the effective variation is more 

luminance than the color itself. The distribution is modeled 

by a Gaussian distribution. All the pixel are tested and we 

attribute them the skin color if their corresponding 

probability is greater than a given threshold. Finally, a 

region is declared as face if more than 70 percents of its 

pixels have the skin color. Another method proposed by 

Saber and Tekalp [47] uses Gibbs Random Field filtering as 

segmentation algorithm.After the segmentation, each region 

is approximated by an ellipse. the distance between the 

ellipse and the region shape is computed using the 

Hausdorff distance measure. If this last measure is greater 

than a predefined threshold, the region is rejected. Then a 

procedure of finding the facial features is applied. Wei and 

Sethi uses a quite different approach in [?, ?]. They use a 

partitioning of the human skin region to detect faces. The 

binary image of the segmented skin is obtained by 

performing skin color classification at each pixel location. 

The a morphological closing is performed followed by an 
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opening to remove small regions. Then the remaining 

regions are another time approximated by ellipses 

Bottom-up Methods  

The principle is to find invariant features of faces. By 

invariant, we mean invariant by scaling, poses, lighting 

conditions and other variations. The common and natural 

features that are usually extracted are the eyes, the nose the 

mouth and the hair line. Any edge detector might be used to 

extract them.A bottom up method try to find this features in 

an original image and then they are grouped according to 

their geometrical relationships.  

The difference between the methods in this bottomup 

approach resides in the way to choose the features and how 

to establish the links between them.  

One of the early methods was proposed by Govindara ju in 

[46]. In this method, the facial features arecharacterizedby 

curves and structural relationships which link them. Two 

successive stages are applied: First, curves of the faces are 

extracted from an input image to find the face candidates. 

The features detected are then grouped using a matching 

process (a cost function and one threshold).  

Leung [32] uses a random graph matching by apply a set of 

Gaussian filters which is compared to a template graph 

representing a face. (The comparison between the computed 

graph and the template is usually a simple threshold).  

In another method used by Yow and Cipolla [34], a set of 

derivative filter is apply in order to select edge features like 

the corner of the eyes for example. Then only the points that 

have particular properties are kept: those which have 

parallel edges for example. The remaining points are then 

linked together and they are used to build a face model. Cai 

and Goshtasby [35] used the color information but in a 

different approach than [36]. A face is recognized by the 

presence of particular feature. 

Evaluation Difficulties  

As the definition of detecting faces in images is really 

simple: determine whether or not there are any faces in 

images and, if present, return the image location and extend 

for each face, we can think that it is easy to evaluate the 

performances of a face detector. However many parameters 

have to be taken in account to do this. How can we measure 

the goodness of a detection? How do we have to integrate 

the false alarms (how do we have to consider the false 

positive rate?) What about the detection speed? Several such 

questions make hard the face detection evaluation.  

It would be interesting to compare the existing methods in 

face detection but the major problem is that every method is 

made in a particular context and today there are still no 

standards for face detection evaluation that will make easier 

the future research work about face detection.  

The first step in detection evaluation is to use a common 

testing set which contains a large variety of situations. The 

most common used set is probably the CMU testing set 

which contains many faces manually labeled. Then we 

usually use the detection rate over false positive rate ratio to 

characterize the performances even if the number of false 

alarms is directly related to the way how the images are 

scanned (more precisely the number of subwindows 

scanned). A summary of the main results and method 

comparison canbe found in [22] and [37]. Nevertheless, we 

can give general observations about the different 

approaches. The image based techniques are quite efficient 

regarding the frontal face detection. The detection rate 

reaches more than 90% with at most several tens of false 

alarms in a typical sized image but the main limitation of the 

image based methods is that the faces detected will slightly 

match with the training examples. Thus it is difficult for 

example to include in the training set faces at many different 

poses, with both rotations in and out of plane. The 

geometrical approaches are more robust in term of face 

pose, i.e. the face orientation in front of the acquisition 

system but they generally give worse detection results. Both 

the segmentation part and the feature extraction are critical 

points. The use of the color information needs is not really 

representative of faces because lots of objects in the 

background may have the human skin color. The speed of 

the detector is without any doubt the parameter the most 

difficult to take into account.  

Each method has its own speed and it is difficult to 

determine the speed performances: it depends on the 

scanning method and on the way it is implemented. So it has 

been shown that a lot of different approaches are available 

but face detection is still an open task. Many solutions are 

possible taking into account the results of the existing 

methods. The main promising approach seems to be 

combined approaches of image based and feature based 

methods. We will see one of them which uses a Boosting 

learning algorithm in the next chapters. 

FACE DETECTION: AGGRESSIVE LEARNING 

ALGORITHM 

Introduction  

Choice of the Method 

Due to some limitations of the neural network based system, 

indicative of some of the more complex detectors in the 

field. It mirrors the strengths of the technology providing 

impressive classification results from a relatively small 

image training set, and also reflects the major limitations, 

mainly computational expense, and reliance on the training 

data. It illustrates well some of the key problems that 

developers of intelligent artificial face detection systems are 

faced with, not only in the field of neural networks but 

across the board. 

here, we discuss about a face detection based on a boosting 

algorithm which yields good detection rates.  

Boosting is a general strategy for learning classifiers by 

combining simpler ones. The idea of boosting is to take a 

―weak classifier‖ — that is, any classifier that will do at 

least slightly better than chance—and use it to build a much 

better classifier, thereby boosting the performance of the 

weak classification algorithm. This boosting is done by 

averaging the outputs of a collection of weak classifiers. The 

most popular boosting algorithm is AdaBoost, so-called 

because it is ―adaptive.‖ AdaBoost is extremely simple to 

use and implement (far simpler than SVMs), and often gives 

very effective results. There is tremendous flexibility in the 

choice of weak classifier as well. Boosting is a specific 

example of a general class of learning algorithms called 

ensemble methods, which attempt to build better learning 

algorithms by combining multiple simpler algorithms. 

This detector is highly inspired by the Robust Real-time 

Object Detection of Viola and Jones [1]. We have chosen to 

build a model using a statistical learning given some 

positive and negative examples. A learning algorithm trains 
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a classifier by selecting visual features, so we will discuss 

why this chosen algorithm is appropriate for face detection 

and explain how it works. We will also emphasis on some 

other essentials key contributions like a new image 

representation, the choice of these visual features and finally 

the introduction of detection in cascade. 

Context of the Frontal face Detection 

Before going into details, we just remark that every face 

detection method is designed in a particular context that is 

why it is not always easy to compare the results between 

them. Some detectors have for only goal to have a detection 

rate as near as possible from 100% but our project is a little 

bit in a different context: even if we naturally want reach 

good detection rates, we want to build a realtime oriented 

detector. So the goal is to detect all the faces (or almost all 

of them) even if this means we have to accept a higher false 

positive rate (nonface images labeled as face by the 

detector). This choice is only in order to respect most of 

applications which need for example to detect all the people 

in front of a video camera. (Video surveillance for instance). 

On the other hand, if for example, a camera is placed in a 

airport hall, the faces are often low resolution faces, at 

different scales and the background seems to be quite 

textured and complicated. In this way, we have to built a 

robust detector with respect to illumination, face variation 

and face size. On the other side, if we keep in mind that we 

want to detect faces for a further face recognition or 

comprehension, it would be good to select only faces which 

can be considered as frontal faces, this will explain the 

choice of the training set used to learn the final classifier 

(see 4.1). To summarize, even if we could choose other face 

detection contexts, this one seems to be the most used in the 

realworld applications. We will particularly pay attention to 

the fact that it will be interesting to build a simple and 

unbiased representation that can represent faces. (And 

objects by generalization). 

Why We Choose Boosting and Haar Features? 

Previous Section presented the main approaches available to 

build a face detection system. Now the context of our face 

detection is given, we can explain why we choose this 

approach using a boosting learning algorithm and simple 

Haar features. As we want to detect faces in various 

background and principally low resolution faces, it would be 

improper to use purely geometrical methods. In fact the 

main advantage to these geometrical methods is the 

geometric invariant properties. We are not interested by 

them because we have chosen to stay in a frontal face 

detection context. So it is quite naturally that we have 

oriented our choice towards learning algorithms. Boosting is 

a powerful iterative procedure that builds efficient classifiers 

by selecting and combining very simple classifiers. Good 

theoretical results have been demonstrated, so we have some 

theoretical guarantees for achieving good detection rates. 

This idea is interesting in the sense that a combination of 

simple classifiers may intuitively give a rapid detection 

without deteriorating the detection rates. So it seems to be 

one of the best compromises between efficiency in term of 

detection and speed.  

 

 

Overview of the Detection  

This new method given by Viola [1] is a combined method 

of more traditional ones like geometrical and image based 

detection. It is a geometrical in the sense that it uses general 

features of human faces: position of particular features 

among which the eyes the nose and the mouth. We will not 

try to extract particular face features: It is only an a 

posteriori observation in the sense that the selected Haarlike 

masks are effectively representing particular facial features 

but it is not our decision. See section 4.2 for details about 

the selected features. On the other hand, it is also image 

based because we use a statistical learning with the use of a 

consequent data set needed to build the face model. Viola 

has developed this face detector in July 2001 and he was 

inspired by the work of Papageorgiou[2]. It seemed to be the 

fastest and the most robust and it is still today. The speed of 

the detection is notably given by the simplicity of the 

features chosen and the good detection rates are obtained by 

the use of the fundamental boosting algorithm AdaBoost 

which selects the most representative feature in a large set.  

To have a concrete idea of the performances of the 

detection, imagine that Viola‘s detector can process 15 

frames of 350x260 pixel images per second on a 

conventional 700 MHz Intel Pentium. Let us look at the 

main steps of the fast face detector that will be explored in 

the next sections. The detector consists in scanning an image 

by a shifting window at different scales. Each subwindow is 

tested by a classifier made of several stages (notion of 

cascade). If the subwindow is clearly not a face, it will be 

rejected by one of the first steps in the cascade while more 

specific classifier (later in the cascade) will classify it if it is 

more difficult to discriminate. The first contribution is the 

choice of the features that describ e the faces. The principle 

of the detection is to apply successively simple classifiers to 

combine them in a final strong classifier. The choice of 

these features is fundamental for the performances of the 

detection. The difficulty is to find masks simple enough to 

permit a fast classification but characteristic enough to 

discriminate faces and non faces.  

A good compromise for that is obtained by the use of 

reminiscent of Haar Basis functions. In fact the feature 

response is nothing more than the difference of two, three or 

four rectangular regions at different scales and shapes.To 

improve the computation time of these features, we 

introduce a new image representation called Integral Image 

which permits to compute a rectangle area with only 4 

elementary operations, i.e additions and subtractions. Then, 

as we have a large set of features at disposition, AdaBoost is 

used to select a small set of them to construct a strong final 

classifier. We want to keep only the feature which separates 

the best positive and negative examples. At each selection 

step, a weak classifier (one feature) is selected so AdaBoost 

provides an effective learning algorithm and strong bounds 

on generalization performance. Finally, the third important 

contribution is the cascade implementation which focuses 

the detection on critical regions of interest. Thus, it first 

eliminates quickly regions where there are no positive 

examples and then, the more we go down in the cascade 

process, the more specific the classifiers are and so almost 

only faces are detected.  

For example, the first stage of Viola‘s detector is a 

combination of only two features which rejects 60% of 

negative examples and it provides a false negative rate of 
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1% with only 20 simple operations. Sections 2 will describ e 

the particularity of the features and the computation with the 

integral image. Then, section 3 will focus on the learning 

algorithm and the method in which the weak classifiers are 

combined to ensure a strong final classifier. Finally, section 

4 will expose the cascade structure.  

Features and Integral Image 

This section presents the features used in our statistical face 

detection. Human faces are objects particularly hard to 

model because of there significant variety in color and 

texture and there are no constraints on the background. In 

fact, if we want to build a model which is able to take in 

account this face variability without identifying cluttered 

backgrounds, it will not work to use such as maximum 

likelihood methods for example. The next few subsections 

expose different methods used to model the faces. 3.2.1 

Overview of the existing face models. Due to the context of 

our face detection, methods like maximum likelihood are 

particularly not efficient. Will will thus focus on example 

based face models to train a significant classifier.Many 

descriptive features could be used to train a classifier by 

Boosting. The next subsections explain some of them that 

have been used recently. We can distinguish to main 

methods that seems to be the more efficient: 

 Pixel based   models 

 Haar Like  features models  

A Pixelbased Method  

A possibleway of modeling faces is to use a pixel 

representation as presented in Pavlovic‘s detection [5]. In 

order to train a boosted classifier as we will discuss later, 

Pavlovic uses a combination of weak classifiers based on the 

pixel values to boost the model. Let 

)}(),|({
)( l

k
XsignlXth     (3.1) 

A weak classifier where Xdenotes a vectorized image 

of grayscale pixel values and X
(l) 

is its lth pixel. The 

weak classifier has an image as input and a decision 

face or non face as output, in comparison with a 

threshold θ. The used learning algorithm is AdaBoost 

which selects from the training dataset the pixels 

which represent the best a face structure. As you can 

see on the following figure, the geometrical basic 

features of faces are recognized: the eye region, the 

nose and the mouth. 

 
Figure 9 (a) shows an example of an average face obtained from the 

training dataset. Figure 3.1(b) shows a typical ―face‖ image sampled from a 

function learned using boosting. Each non white location corresponds to a 

pixel selected by the boosting algorithms. 

 

This method seems to be quite efficient because the boosting 

learning theoretically gives good training results but imagine 

that in a 19 x19 pixel image, there are some 361 pixels, we 

have to apply at each scanning window 361 weak 

classifications and combine them to obtain a final strong 

classifier. We will try to improve the computation time by 

using other face models.   

Haarlike Features  

Comparing these face modeling methods and taking into 

account the specific needs of our application, we arrived to 

conclusion that a feature based methodwould be more 

appropriate rather than pixel based. There are many 

motivations for using features (some reminiscent of Haar 

Basis functions) than pixels directly as Pavlovic [5]. The 

most common reason is that features can act to encode 

adhoc domain knowledge that is difficult to learn using a 

finite quantity of training data. And as we will see, these 

features can operates much faster than pixelbased system.  

These features are the same as those used by 

Papageorgiou[2]. The Haar wavelets are a natural set basis 

functions which computes the difference of intensity in 

neighbor regions. The next subsection recalls basic theory 

about wavelet representation.  

Rectangular Haar Features  

In our face detection system, very simple features are used. 

We use some reminiscent of Haar Basis. Recall that the 

wavelet function corresponding to Haar wavelet is: 

2/10,,1)( xifx  

12/1,,1)( xifx           (3.2) 

otherwisex ,0)(  

Are three kinds of Haarlike features. The value of a 

tworectangle feature is the difference between the sum of 

the pixels within two rectangular regions. The regions have 

the same size and shape and are horizontally or vertically 

adjacent.(see figure 10). A threerectangle feature computes 

the sum within two outside rectangles subtracted from the 

sum in a center rectangle. Finally, a fourrectangle feature 

computes the difference between diagonal pairs of 

rectangles.  

Given that the basic resolution of the detector is 15x20, the 

exhaustive set of rectangle features is quite large: 37525. 

Note that unlike the Haar basis, the set of rectangle features 

is overcomplete.  

Figure 3.3 shows the different twothreeand fourrectangles 

prototypes used by our detector.   

 
Figure 10: Example rectangle features shown relative to the 

enclosing detection window. The sum of the pixels which lie 

within the white rectangles are subtracted from the sum of pixels in 

the grey rectangles. Tworectangle features are shown in (A) and 

(B). Figure (C) shows a threerectangle feature, and (D) a 

fourrectangle feature. 
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Figure 11: Feature prototypes of simple Haarlike . Black areas 

have negative and white areas positive weights. 

Number of Features:  

The number of features derived from each prototype is quite 

large and differs from prototype to prototype and can be 

calculated as follows. Let H and W be the size of a 

WH pixels window and let w and h be the size of one 

prototype inside the window as shown on figure 3.4. 

 

Let 
w

W
X and 

h

H
Y  be the maximum scaling 

factors in x and y direction. An upright feature of size 

hw  then generates features for an image of size 

.HW  

2

1
1

2

1
1.

Y
hH

X
wWYX      (3.3) 

Results with the notations of Figure 3.3: 
 

Table 3.2: Number of features in a 2015 window for each prototype 

. 

Feature Type hw /  YX /  
Count 

(1a) (1b) 2/1;1/2 7/20 23592 

(2a) (2b) 3/1;1/3 5/20 8402 

(3) 2/2 7/10 5603 

Total   37524 

 

As detailed in Table 3.2 and given that the base resolution of 

the detector is 15 20, the exhaustive set of rectangle features 

is quite large: 37520. Note that unlike the Haar basis, the set 

of rectangle features is over complete. 

Even if our detector only uses these four types of features, 

we could use other types: for instance we could introduce 

the same rectangular features but rotated by 45 degrees as 

made by [7] as shown in Figure 12. 

 

 
Figure 12: Feature prototypes of simple Haarlike and centersurround 

features, in line and rotated by 45 degrees. Black areas have negative and 

white areaspositive weights. 

With these other rotated features and centersurround 

features, the new set of features has 117,941 components in 

a 20x24 window.  

On another side, Papageorgiou [2] introduce another kind of 

Haarfeature called quadruple density transform . This one 

permits to achieve the spatial resolution necessary for 

detection and to increase the expressive power of the model. 

It is nothing more than an extension of the 2D Haar wavelet 

as shown in Figure 3.6. 

 
Figure 13: Quadruple density 2D Haar basis. 

We have decided to limit our set to the simple Haarlike 

wavelets because it seems to be complete enough to obtain 

good detection results. The choice of the feature is important 

but not crucial in order to train the classifiers because as 

explained in the next section, the training is a combination 

of weak classifiers. It does not really matter if the features 

are not optimal, and it seems that the horizontally and 

vertically oriented features represent better faces that rotated 

ones which would represent nonsymmetries of faces. It is 

not a lack or a great loss to limit our set to basics features. 

We leave other types of features for a future 

work.rectangular features seem to be primitive if we 

compare them to other alternatives such as steerable filters 

[10]. Steerable filters are really well adapted to boundaries 

detection, image compression and texture analysis whereas 

the rectangle features are more sensitive to bars, the 

presence of edges and quite simple image structures. All the 

dilemma of choosing the representation resides in the 

compromise between the simplicity which provides fast 

computing and more representative filters but slower 

computation. In the next subsection a new image 

representation will be introduced in order to improve the 

computing speed of these Haarlike masks responses. 

 

Integral Image  

We now know that we need Haarlike  features to train the 

classifiers. The goal of this part is to introduce a new image 
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representation called Integral Image which yields a fast 

feature computation. This representation is in close relation 

with ―sum area tables‖ as used in graphics [8]. The value of 

the Integral Image at the coordinates (x, y) is the sum of all 

the pixels above and to the left of (x, y), including this last 

point as shown in Figure 3.7. 

 
Figure 14: The Integral Image representation. The Integral image value at 

the point (x,y) is the sum of all the pixels above and to the left of (x,y). 

 

Let ii be the integral image of the initial image i and ii(x, y) 

the value of the integral image at the point (x, y).  

We can define the integral image ii by: 

 

 

As we use this new representation to improve the 

computation time, let us explain its advantages. First it can 

be computed in a efficient way using the following pair of 

recurrences: 

),(),1(),(

),()1,(),(

yxsyxiiyxii

yxiyxsyxs
 

s(x, y) is the cumulative row sum, 0)1,(, xsx , and 

0),1(, yiiy . The integral image can thus be 

computed in one pass at the beginning of the detection over 

the original image i. The main advantage using such a 

representation is that any rectangular sum in the original 

image can be computed in four array references (see Figure 

15) in the integral image. The difference between two 

rectangular sums can be computed in eight references. 

Therefore computing a feature is only a difference of two, 

three or four rectangular sums.  

The two rectangle features are computed with six references 

because the two rectangles are adjacent. The three rectangle 

features need eight references and the four rectangle array 

only nine. 

 
Figure 15: The sum of the pixels within rectangle D can be computed with 

four array references. 

The value of the integral image at location 1 is the of the 

pixels in rectangle A. The value at location 2 is A+B, at 

location 3 is A+C, and at location A+B+C+D. The sum 

within D can be computed as 4+1(2+3).  

There are some other reasons which made us choose the 

integral image representation. One of them is given by the 

box let work of Simard, et al.  [ 9]. It is based on a 

fundamental property of linear operations (e.g. gf .  or 

gf ). Any invertible linear operation can be applied to or 

if its inverse is applied to the result. For instance, assuming 

that and have finite support and that f
n 

denotes the nth 

integral of (or the nth derivative if n is negative), we can 

write the following convolution identity: 
nnn

gfgfgf )(     (3.5) 

where denotes the convolution operator. They also show that 

the convolution can be significantly accelerated if the 

derivatives of and are sparse. From this property we can 

extract that for example: 

.)()(
''

gfgf                   (3.6) 

We can apply this last formula to the rectangle sum 

computation: let r be the rectangle ( with value 1 inside and 

0 outside) and i the image, the sum in the rectangle is ir and 

it can be computed as follow: 

.).(.
n

riri                  (3.7) 

The integral image is in fact the double integral of the image 

(that is why it is called integral image) and the second 

derivative of the rectangle yields four delta functions at the 

corners of a rectangle. The evaluation of the second dot 

product is accomplished with four array accesses.  

One of the consequences of the use of such a representation 

is the way to scan the images.  

The conventional system computes a pyramid of images to 

process the detection at several scales. By using the integral 

image, we only need to rescale the 20x15 pixels detector and 

apply it on the first integral image. No resampling and no 

image rescaling are needed that is why it provides a 

significant gain of time and it becomes easier to implement 

than using the pyramid approach.  

This approach permits to compute a single feature at every 

location and at every scale in few operations. The power of 

all these independent feature is still quite weak, so the 

challenge of the next section is to find how the best features 

are selected and how we can combine them to produce a 

strong final classifier. 

Learning with Ada Boost 

Considering a mono stage classifier and given a set of 

features, we can build a face detector by applying all the 

masks at each image location (each shift and each scale).For 

this many different learning methods could be used. 

Moreover, we have a complete set of 37520 features which 

is far larger than the number of pixels, so even if the features 

responses are very simple to compute ( notably with the 

integral image representation), applying the all set of 

features would be two expensive in time. The next stage in 

the building of the face detector is thus to use a learning 

function which selects a small set of these features: the ones 

which separates the best positive and negative examples. 

The resulting final classifier would be a simple linear 

combination of these few Haarlike features. For this, we will 

discuss in this section about an algorithm called Ada Boost 

(Adaptive Boosting) (see Figure 16) which has two main 

goals: 
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 • Selecting a few set of features which represents as well as 

possible faces. Train a strong final classifier with a linear 

combination of these best features. 

 
Figure 16: Basic scheme of AdaBoost. 

In the following subsections, it is explained why we have 

chosen this algorithm instead of more classical ones and 

then we some theory is explained to show why AdaBoost is 

efficient and how it can be adapted to face detection. 

Possible Algorithms:  

Given a set a features and a training set of positive and 

negative examples (see section 4.1 on page 65 for details 

about the training dataset), any machine learning approach 

could be used to learn a classification function. AdaBoost is 

efficient boosting algorithms which combine simple 

statistical learners while reducing significantly not only the 

training error but also the more elusive generalization error. 

As all the learning functions, it presents advantages and 

drawbacks which are exposed here:  

ADVANTAGES:  

 No a prior knowledge. As shown in Figure 3.9, 

AdaBoost is an algorithm which only needs two inputs: a 

training dataset and a set of features (classification 

functions). There is no need to have any a priori knowledge 

about face structure. The most representative features will 

automatically be selected during the learning.  

 Adaptive algorithm. At each stage of the learning, the 

positive and negative examples are tested by the current 

classifier. If an example xi is misclassified, that means that it 

is hard to classify i.e it cannot clearly be assign in the good 

class. In order to increase the discriminant power of the 

classifier these misclassified examples are upweighted for 

the next algorithm iterations. So the easily classified 

examples are detected in the first iterations and will have 

less weight in the learning of the next stages to focus on the 

harder examples.  

 The training errors theoretically converge exponentially 

towards 0. As proved by Freund and Schapire in [12], given 

a finite set of positive and negative examples, the training 

error reaches 0 in a finite number of iterations.  

DISADVANTAGES:  

The result depends on the data and weak classifiers. The 

quality of the final detection depends highly on the 

consistence of the training set. Both the size of the sets and 

the interclass variability are important factors to take in 

account. Other way, the types of basic classifiers which are 

combined have some influence on the result. The only need 

for all the basic functions is to be better than random 

selection but if we want to achieve good detection rates in a 

cogent number of iterations, they have to be as well chosen 

as possible.  

 Quite slow training. At each iteration step, the 

algorithm tests all the features on all the examples which 

requires a computation time directly proportional to the size 

of the features and examples sets. Imagine that the training 

set has many thousands of positive and negative examples 

and a complete set of 37520 features. However, the 

computation time is increased linearly with the size of the 

both sets. 

The Weak Classifiers  

This subsection shows how the Haarlike features can be 

used to build simple classifiers which need AdaBoost. The 

principle of the Boosting is to combine simple classifiers 

which are called weak learners. These weak learners are 

called weak because we do not expect even the best 

classification function to classify the data well, they only 

need to classify correctly the examples in more of 50% of 

the cases. One easy way to link the weak learner and the 

Haar features is to assign one weak learner to one feature. 

So the AdaBoost algorithm will select at each round the 

feature that provides the best separation between positive 

and negative examples. 

From Features to Weak Classifiers  

This subsection shows how to build the weak classifiers 

with the rectangle features. A feature response is a 

difference of the sum of pixels in neighbor regions. We hope 

that these responses then permit to distinguish positive and 

negative examples. For each feature and at each iteration of 

AdaBoost (because all the examples are re-weighted at each 

iteration, so the response to one feature of one example will 

not necessary be the same at each stage). In other terms, one 

weak classifier is a feature evaluation followed by an 

optimal thresholding. This threshold is optimal in the sense 

that the minimum numbers of examples are misclassified. 

We can summary this by the following formula: Aweak 

classifier hj (x) consists of a feature fj , a threshold θj and a 

parity pj indicating the direction of the inequality sign: 

otherwise

pxfifp
xh

jjjj

j

,0

)(,1
)(    (3.8) 

w x is an weighted example, as well positive as negative. It 

is weighted in the sense that all the examples are reweighted 

at each stage of the algorithm.  

The next subsection shows how to find the optimal threshold 

for each feature.  

The Optimal Threshold  

Given one feature fj and all the examples responses fj (xi), 

training set to this feature, we want the threshold θj that 

separates the best positive and negative examples. One easy 

method would be to approximate the positive and negative 

distributions by two Gaussian, with only two parameters for 

each Gaussian. This approach would work in theory in the 

sense that we only want classifiers which achieve more than 

50% of detection rate. But in practice the distributions have 

for many features a great standard deviation such that lots of 

examples are not characterized by the appropriate Gaussian. 

 

Ada Boost  

History of Boosting and AdaBoost methods The chosen 

learning algorithm AdaBoost is a Boosting algorithm 
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sobefore explaining the use of AdaBoost in the context of 

face detection, basic theory about boosting will be 

introduced.  

The Boosting theory takes its roots in the PAC learning [12]. 

They proved that a combination of simple learners, only 

better than random could yield a good final hypothesis. That 

is the main idea of what is called Boosting. AdaBoost 

(Adaptive Boosting) was introduced as a practical algorithm 

of the Boosting theory.  

Let h1, h2, ...., hT be a set of simple hypothesis and consider 

the composite ensemble of hypothesis  
T

t

tt
xhxf

1

),()(                           (3.9) 

where αt denotes the coefficient with which the ensemble 

member ht is combined. Both αt and ht have to be learned 

during the boosting process.  

In the beginning, Boosting algorithms were appreciated 

for their performances with low noise data. However, the 

first algorithms provided too bad results with noisy 

patterns due to overfitting so the applications of Boosting 

were limited.  

On the other hand, AdaBoost can be viewed as a 

constraint gradient descent in an error function with 

respect to the margin. AdaBoost asymptotically achieves a 

large margin classification, that means that it concentrate 

its resources on a few hardtolearn patterns that are 

interestingly very similar to support vectors. [13].  

Trying to improve the robustness of Boosting, it was 

interesting to clarify the relations between Optimization 

Theory and Boosting procedures. From here, it became 

possible to define Boosting algorithms for regressions 

[14], multi class problems, unsupervised learning and to 

establish convergence proofs for boosting algorithms by 

using results from the Theory of Optimization.  

For details about Boosting applications, publications, 

softwares and demonstrations, see [15].  

Introduction to Boosting and Ensemble Methods In this 

whole section, we focus on the problem of binary 

classification to stay in the context of face detection with 

the face class and the nonface class.  

The task of the binary classification is to find a rule, 

which, given a set of patterns, assigns an object to one of 

the two classes.  

Let X be the input space which contains the objects and 

we denote the set of possible classes by Y (In our 

case, }1,1{Y ). The task of learning can be 

summarized as follow: Estimate a function YXf : , 

using input, output training data pairs generated 

independently at random from an unknown probability 

distribution P(x,y), 

}1,1{),),.......(,(
11

d

nn
Ryxyx  (3.10) 

such that will correctly predict unseen examples (x,y). In the 

case where }1,1{Y
 

we have a socalled hard classifier 

and the label assigned to an input x is given by y = f(x).  

The true performance of the classifier f is assessed by 

),,()),(()( yxdPyxffL      (3.11) 

Where λis a chosen loss function. The risk L(f)is often 

called the generalization error in the sense that it 

measures the loss with respect to the example not observes 

in the training set. For binary classification, we usually 

use the loss function )0)(,()),(( xfyIyxf  

where I(E)=1 if the event E occurs and 0 otherwise. In 

other words, 

Otherwise

iedmisclassififx
yxf

i

ii
,0

,1
)),((

 

Since the probability distribution P(x,y) is unknown, this 

risk L(f) cannot  be directly minimized. So we have to 

estimate a function as close as possible from foptimal based 

on the available information, i.e. the training examples and 

the properties of the function class F from which f is 

chosen. One classical solution is to approximate the 

generalization error by the empirical risk defined as follow 
N

n

nn
yxf

N
fL

1

),),((
1

)(       (3.12) 

Is the case if the examples are uniformly distributed. If the 

training set is large enough, we expect that:  

)()(
lim

fLf
L

N

 

 one stronger condition is required to validate the last 

formula: The risk error )( fL has to converge uniformly 

over the class of functions F to L(f).  

While this condition is possible for large size training sets, 

for small samples size large deviations are possible and over 

fitting might occur. If it is the case, the generalization 

cannot be obtained by minimizing the training error )( fL .  

As Boosting algorithms generate a complex hypothesis, one 

may think that the complexity of the resulting function class 

would increase dramatically when using an ensemble of 

many learners. It is the case under some conditions .  

Now discuss about a strong and weak model called PAC for 

learning binary classifiers.  

Let S be a sample consisting of data points 

N

nnn
yx

1
)},{(

 
,where xn are generated independently at 

random from some distribution P(x) and yn = f(xn), belongs 

to some known class F of binary functions. A strong PAC 

(Probably Approximately Correct) learning algorithm has 

the property that for every distribution P, every Ff and 

every 
2

1
,0   the probability larger than 1 , the 

algorithm outputs a hypothesis h such that 

)]()(Pr[ xfxh . The running time of the algorithm 

should be   polynomial in /1 , 1/δ, n, d, where d is the 

dimension (appropriately defined)  of the input space. A 

weak PAC learning algorithm is defined without any 

constraints, except that it is only required to satisfy the 

conditions for particular  and  rather than all pairs.  

Consider a combination of hypothesis as shown in 3.9. 

There are many approaches for selecting both the 

coefficients 
t
 and the base hypothesis ht. In a Bagging 

approach, the hypothesis 
T

t
ht

1
}{ are chosen based on a 

set of T bootstrap samples, and the coefficients αt are set to 
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T
t

/1  (see [16] for detailed Bagging approach). The 

advantage of this simple method is that it tends to reduce the 

variance of the overall estimate )( xf . The AdaBoost 

algorithm is a more sophisticated algorithm for boosting the 

combination of the hypotheses. It is called Adaptive in the 

sense that examples that are misclassified get higher weights 

in the next iteration, for instance the examples near the 

decision boundary are harder to classify and therefor get 

high weights in the input set after the first iterations. The 

next figure illustrates AdaBoost learning on a 2D data set. 

ADABOOST CONCEPT 

 Adaboost starts with a uniform distribution of 

―weights‖ over training examples. The weights tell the 

learning algorithm the importance of the example. 

 Obtain a weak classifier from the weak learning 

algorithm, hj(x). 

 Increase the weights on the training examples that were 

misclassified. 

 (Repeat) 

 At the end, carefully make a linear combination of the 

weak classifiers obtained at all iterations. 

 
Ada Boost is explained here, it will be discussed after in 

detail 

Algorithm 1 The AdaBoost algorithm. [17] 

1. Input )},(),......,,{(
11 NN

yxyxS  Number of 

iterations T. 

2. Initialize: Nd
n

/1
)1(

 for all n=1,…,N. 

3. Do for t=1,….,T. 

(a)Train Classifier with respect to the weighted sample set 

},{
)( t

dS  and obtain hypothesis 

).,(...},1,1{:
)( t

tt
dSLheiXh  

(b) Calculate the weighted training error .,
, tt

hof  

N

n

ntn

t

nt
xhyId

1

)(
),)((  

(c) Set : 

t

t

t

1
log2/1  

(d) Update the weights: 

,/)}(exp{
)()1(

tntnt

t

n

t

n
Zxhydd  

Where 
t

Z is normalization constant, such that 

N

n

t

n
d

1

)1(
.1  

4.  Break if 0
t

 or 2/1
t

 and set T=t-1. 

5. Output: ).()(

1

1

xh

O

O
xf

t

T

t
T

t

t

t

r  

To understand this fundamental algorithm, the main steps 

are detailed in the following paragraphs.  

AdaBoost Step by step AdaBoost  

Is an aggressive algorithm which selects one weak classifier 

at each step A weight ( 
)()(

1

)(
,.....,

t

N

tt
ddd  ) is assigned 

to the data at step t and a weak learner ht is constructed 

based on d(t). This weight is updated at each iteration. The 

weight is increased for the examples which have been 

misclassified in the last iteration. 

The weights are initialized uniformly: Nd
t

n
/1

)(
 for the 

general version of AdaBoost but how it is modified to adapt 

AdaBoost to our face detection problem. To estimate if an 

example is correctly or badly classified, the weak learner 

produces a weighted empirical error defined by: 

).)((),(

1

)()(

ntn

N

n

t

n

t

tt
xhyIddh     (3.13) 

Once the algorithm has selected the best hypothesis ht, its 

weight 

t

t

t

1
log2/1 is computed such that it 

minimizes a loss function. One of the possible loss function 

considered in AdaBoost is: 
N

n

ntntn

AB
xfxhyG

1

1
))},()((exp{)(      (3.14) 

where 
1t

f  is the combined hypothesis of the previous 

iteration given by: 

1

1

1
).()(

t

r

nrrnt
xhxf                   (3.15) 

The iteration loop is stopped if the empirical error 
t
equals 

0 or 2/1
t

. If 0 , the classification is optimal at this 

stage and so it is not necessary to add other classifiers. If 

2/1
t

the classifiers does not respect the weak condition 

anymore. They are not better than random selection so 

AdaBoost cannot be efficient at all. (see 3.3.3.3) Finally, all 

the weak hypotheses selected at each stage ht are linearly 

combined as follow: 

)()(

1

1

xhxf
t

T

t

T

r

r

t

T                      (3.16) 

The final classification is a simple threshold which 

determines if an example xi is classified as positive or 

negative. Other similar algorithms such as LogitBoost or 

Arcing algorithms use different loss functions. 

Leverage of the Weak Learners 

At each iteration, AdaBoost, constructs weak learners based 

on weighted examples. We will now discuss the 

performances of these weak learners based on re-weighted 

examples.  

Convergence of the Training Error to Zero  

We have seen just before that under some appropriate 

conditions, that the weighted empirical error could be 
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smaller than )0(,
2

1

2

1 We will now explain how 

this condition can imply a strong and fundamental result for 

AdaBoost (it can be generalized to most of Boosting 

algorithms): The condition 

)0(,
2

1

2

1
),( dh

tt

is sufficient to ensure that 

the empirical error of the strong final hypothesis approaches 

zero as the number of iterations increases. The proof of this 

important property of AdaBoost is given in this paragraph. 

Let f be a real-valued classification function. The 

classification is performed using sign(f) but we will work 

with the actual value of f. Let y }1,1{ be the labels of 

the binary classification and f  R, we define the margin of 

f at the example ),(
nn

yx  as : 

).()(
nnn

xfyf                                 (3.20) 

Consider the following function defined for 
2

1
0  

otherwise

zifz

zif
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)(
               (3.21) 

 

Let f be a real-valued function taken values in [-1, +1]. The 

empirical margin error is defined as : 

).),((
1
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1
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yxf
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fL               (3.22) 

If it is obvious from the definition that the classification 

error, namely the fraction of misclassified examples, is 

given by .0  

We not that we often use the so-called 0/1-margin error 

defined by: 

)),((
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Noting that ),)((())(( xfyIxyf  (3.24) 

it follows that ).()(
~

fLfL                (3.25) 

Generalization Error Bounds 

We know that the training error produced by AdaBoost 

approaches exponentially zero as the number of iterations 

increases. However, as the examples of the training set are 

manually labeled, it is not really interesting to know that 

these examples are well classified. It will be wiser to see 

how efficient the final model is on other dataset which 

haven‘t been used for the training. The error committed on 

this new dataset (with positive and negative examples) is 

called the generalization error and it will be shown in this 

paragraph how it can be bounded. Recalling that AdaBoost, 

such as all learning algorithms can be viewed as a procedure 

for mapping any data set  
N

nnn
yxS

1
)},{(               (3.26) 

1to some hypothesis h belonging to a hypothesis class H 

consisting to functions from X to {-1,+1}. We want to test 

the performance of the hypothesis f on future data, 

considering that f and S is random variables. Let 

))(,( xfy  be a loss function which measures the loss 

caused by using the hypothesis f to classifyinput x, the true 

label of which is y. The loss expected is given by  

))(,()( xfyhL       (3.27) 

where the expectation is taken with respect to the unknown 

probability distribution generating the pairs (xn, yn): We 

will use the following loss function: 

)]([))(,( xfyIxfy     (3.28) 

Vapnik [19] proved a classical result about the empirical 

classification of binary hypothesis f, to the probability of 

error. 

Adaptation to Face Detection 

The algorithm presented in the previous paragraph is not 

specific to face detection. This new subsection will explain 

how the algorithm can be adapted to our face detection 

context, particularly with the introduction of an asymmetric 

classification. AdaBoost, as described in 1, is a an algorithm 

which minimize the classi- fication error (or generalization 

error) but it does not minimize the number of false negative 

as explained in 3.1.2. There are several methods to modify 

AdaBoost in order to obtain an asymmetric algorithm, 

asymmetric in the sense that we want to increase the 

influence of the positive examples which have been 

misclassified earlier in the precess in order to minimize the 

false negative rate, i.e. the rate of the faces which are 

missed. 

One first simple mean would be to unbalance the initial 

distribution of the positive and negative examples as in [20]. 

If we want to minimize the false negatives, we can increase 

the weight on positive examples so that the minimum error 

criteria will also have very low false negatives. This idea 

can be introduced by changing the loss function in a non 

symmetric loss function. 

Recall that the classical AdaBoost minimizes 

t

it

i

i

t

t
xhyZ )).(exp(       (3.31) 

Each term in the summation is bounded above by the loss 

function from 

3.28: 

     (3.32) 

where ¸ is the loss function. It follows that minimizing Qt Zt 

minimizes an 

upper bound on simple loss. So we can introduce the 

asymmetric loss defined  

by: 

otherwise

xfandyifif
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     (3.33) 

where false negative cost k times more than false positives. 

If take 3.32 and multiply both sides by 

)logexp( Ky
i

we find : 
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t

iiiti
AKyxhy )logexp()).(exp(   (3.34) 

In order to minimize this bound, we can use a non-uniform 

weight initialization: 

Modify 2 in AdaBoost algorithm 1 by 

./))log(exp(
)1(

Nkyd
in

 

Updating the weights will become: 
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kyxhy
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   (3.35) 

The modification of the pre-weighting is transmitted through 

the second term of the numerator. This new weighting 

process permits to reduce efficiently the false negative rate. 

However, the effects of the unbalanced weights are lost after 

the first iteration. In fact, the AdaBoost algorithm seems to 

be too greedy. The first classifier absorbs the effects of the 

asymmetric weights. AdaBoost selects thus a small set of 

features and as detailed in section 4.2, good results can be 

obtained with some 201 features. The first features selected 

in the process can be quite easily interpreted: they 

emphasize on particular features of faces. The eye region is 

often darken than the front and the nose bridge is brighter 

than the eyes. However, this is not enough to reach the fixed 

goal of our project. The computation time for a 201 features 

classifier is to large to satisfy us.We will introduce a way to 

combine classifiers in cascade in order to focus quickly on 

the regions of interest.  

Classification in Cascade  

We know how to select a small number of critical features 

and to combine them into a strong classifier. However, we 

need to introduce a new main contribution in our face 

detection system in order to reduce significantly the 

computation time. This contribution is an attentional 

cascade which cafurthermore achieve better detection 

performances. We have seen that it is possible to minimize 

the number of false negatives instead of classical training 

error that is precisely the main idea that will be used to build 

this cascade classifier.  

Why is it so Efficient? 

The principle is to reject quickly the majority of negative 

windows while keeping almost all positive examples and 

then focus on more sensitive sub-windows with more 

complete classifiers. To do that, the first stages in the 

cascade will contain only few features, which achieve very 

high detection rates (about 100 %) but will have a false 

positive rate of roughly 40 %. It is clear that it is not 

acceptable for a face detection task but combining 

succecively many of these stages which are more and more 

discriminant will permit to reach the goal of fast face 

detection. We can just compare this cascade structure with a 

degenerated decision tree. If a sub-window is classified as 

positive at one stage, it proceeds down in the cascade and 

will be evaluated by the next stage. It will be like this until 

this sub-window is found negative by one stage or if all the 

stages classify it as positive. In this last case, it will finally 

be considered as a positive example. The Figure 3.4.1 shows 

this cascade process. 

 
 

Figure 17: Schematic description of cascade detection. 

 

the goal of the project is to detect faces in images which 

contain few faces. Noticing that there are about 25.000.000 

windows in a 100 X100 image for only a few faces, the 

great majority of windows are negative ones. So it is a real 

gain of time to reduce quickly this number. Even if the last 

stages of the cascade are based on many thousand features, 

they will be called only for few subwindows.  

Building More Consistent Classifiers  

We have defined the cascade as a succession of classifiers. 

The first ones are quite simple but as we progress in the 

cascade, the classifiers have to be more consistent. This 

paragraph describes how such more consistent classifiers 

can be built at each stage.  

First of all, the last stages of the cascade have more features 

than the first ones. The AdaBoost algorithm generates a 

training error which decreases theoretically exponentially 

with the number of iteration. If there are more features (i.e. 

AdaBoost has been ran with more iterations) the final 

classifier is more discriminant between positive and 

negative examples, in other words, we can say that such 

classifier are ―stronger‖ than classifiers with few features 

(i.e. few iterations). The second but not less important 

reason for using a cascade classification is the way chosen 

to select the training set. At each learning step, the classifier 

or the ith  stage, socalled  ith  classifier is tested on a test set 

of negative examples. All the misclassified examples are 

kept for the (i+ 1)th  classifier such that the (+1)th  classifier 

will focus on harder examples than ordinary ones. By this 

mean, we force the further classifiers to have better false 

positive rate.  

Training a Cascade of Classifiers 

The goal of the cascade detection is to achieve given both 

false positive rate and detection rate. The choice of these 

goals is arbitrary. Typically, past systems have achieved 

detection rates between 83 and 94percent and false positive 

rate on the order 10-4 . The number of features in each stage 

and the total number of stages will depend of these 

constraints. Let F be the false positive rate of the cascaded 

classifiers, K the number of classifiers and fi the false 
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positive rate of the ith classifier on examples that get 

through to it. For a given trained cascade of classifiers, F is 

given by 

K

i

i
fF

1

,                      (3.36) 

Then the detection rate can be computed as: 
K

i

i
dD

1

,                       (3.37) 

Where di is the detection rate of the ith classifier on the 

examples that get through to it. To fix the ideas, a examples 

is given here. If we want to achieve a detection rate of 90 

percent, we can build a 10 stage classifier in which each 

stage has a detection rate of 0.99. Indeed, 0.9 

 

0.99
10 

. If 

each of these stage rejects 70 percent of negatives (i.e. a 

false positive rate of 30 percent), the total false positive rate 

is 0.30
10

6.10
−

6 

. The number of features evaluated when 

scanning real images is necessary a probabilistic process. 

Any window will progress down through the cascade, one 

classifier at a time, until it is decided that the window is 

negative or, in really rare cases, the window succeeds in 

each test and is labeled positive. The behavior of this 

process is determined by the distribution of the images of 

the test set. The main tool which can measure the 

performance of a given classifier is its positive rate, which is 

the proportion of windows which are labeled as potentially 

containing the object of interest. Given a number of stages 

in the cascade K, the positive rate pi of the ith classifier. Let 

ni be the number of features in the ith stage. The expected 

number of features which are evaluated is given by: 

K

i ij

ii
pnnN

1

0
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            (3.38) 

We can notice only few examples are objects, that is why 

the positive rate is almost equal to the false positive rate.  

As it was explained in section 3.3.3.7, the original AdaBoost 

algorithm has to be modify to ensure the minimization of the 

false negative rate instead of the training error. One simple 

way to impose that is to adjust the final threshold. Increasing 

this threshold will affect badly the detection rate and 

improve the false positive rate, while the opposite will yield 

lower detection rate with higher false positive rate. The 

main problem is that is has never been proved that 

modifying the AdaBoost theoretical training threshold 

preserve the guarantees in term of generalization error.  

The cascade structure has three main parameters that we 

have to determine:  

The total number of classifiers: K  

The number of features ni of each stage  

The threshold θi of each stage i.  

Finding the three optimal parameters is quite complicated if 

we keep in mind that we want to minimize the computation 

time of the total classification. The principle is to increase 

the number of features and of stages until the given 

detection objective are reached.  

Given the minimum acceptable rates fi (false positive rate 

for the th stage) and di (detection rate for the th stage), the 

detection rate di is reached by decreasing the AdaBoost 

threshold θiand this also directly affects fi. We increase the 

number of features ni in the th stage until fi is obtained. The 

general principle of the cascade learning is given in the 

algorithm 2 :  

One major factor for the efficiency of the cascade learning is 

the management of the sets during the training. Usual 

training sets are used for the first stage, and then, at each 

iteration, the current stage classifier is evaluated on a 

validation set in order to minimize coherent false positive 

and false negative rates. It would obviously unskilled to 

evaluate Fi and Di on the training set whichwas used to 

obtain the model because these values would be evaluated 

much better than with other examples. Then, at each stage 

we reinitialize the negative training set. Once the objectives 

Fi and Di are reached for the stage i, the current model is 

tested on a large negative set chosen randomly and many 

false positive alarms are introduced into the negative 

training set for the stage i − 1. As the new negative training 

set is made with examples which have been misclassifiedby 

the stage i, the stage + 1 will be build with examples which 

can be considered as ―hard examples‖. So, the more we go 

down into the cascade, the more critical the examples are, 

and the last stages in the cascade are more robust models 

which discriminate better  positives and negatives than the 

first stages. Since the large majority of negative windows 

have been rejected by the first stages, even if the further 

stages need more computation time to classify the windows, 

only few windows  have passed earlier stages and the global 

computation time is not too much affected by these last 

discriminant stages. 

Scanning  

As explained with the definition of the integral image in 

3.2.3, the scanning of an input image is quite simple and 

efficient with the integral image representation. To detect 

faces of different sizes and places in a image, we will apply 

scaled and shifted detectors all over the image. Our basic 

detector is a 20x15. All the images used to train the model, 

as well faces as non faces are of this size, and accordingly, 

all the selected rectangular features that we have to apply in 

the windows are defined in this 20x15 basic window.  

Although the scanning process seems to be simple at the 

first sight we need to take some care while rescaling the 

detector if we want to preserve the efficiency of the model. 

See A.1 for details about the implementation issues about 

the scanning window.  

Once all the possible windows have been scanned all over 

the image, we have to integrate a process which clusters the 

multidetections of a single face in order to have finally one 

bounding box around one face. It is clear that the shifting of 

the window at different scales using a small shift step and a 

small scaling steps permits to detect all the faces of any size 

and position. However, one face may be detected several 

times during the scanning process (by neighbor windows or 

very close scales at the same position). The chosen method 

to cluster these multiple detections is to cluster all the 

positive windows which are close enough. Then the center 

of the resulting bounding box is simply the gravity center of 

all the centers in the cluster and the size is the mean of all 

the sizes Let }{
,.....,2,1 n

ccc  be the centers of the windows in 

a cluster containing n windows and },{
,.......,21 n

www their 

respective width (The height of the window is directly given 

and preserved by the constant ratio whr / ). The center 
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of the cluster is given by: 

n

i

i
c

n
c

1

1
 and the final 

width is simply 

n

i

i
w

n
w

1

1
. 

Algorithm 2 Learning in Cascade. 

1. Input: Definition of the targets of the learning 

f the maximum acceptable false positive rate per stage. 

d the minimum acceptable detection rate per layer 

Ftarget the false positive rate desired at the end of the 

process. 

P the set of positive examples 

N the set of negative examples 

2. Initialization: 

F0 = D0 = 1 

i = 0 the number of the current layer. 

3. Main loop: 

While 
etti

FF
arg

 

1

0

1

ii

i

FF

n

ii

 

While 
1ii

FfF  

1
ii

nn  

Train a classifier using AdaBoost with P and N as training 

set. 

Compute Fi and Di for the current classifier with the 

validation set. 

Decrease the threshold of the classifier until the detection 

rate for the i-th classifier is at least 
1i

Dd : 

dDD
ii

.
1

 

– Empty the negative training set. 

– If Fi > Ftarget , evaluate the current cascade classifier on 

a set of negative examples and put any false detections into 

the set N. 

Experiments and Results this Section exposes the different 

results obtained by the face detector that has been 

developed. We will discuss our choices, try to interpret 

some results such as the power of the selected features and 

finally estimate the global performances of the system. Of 

course, all these results are obtained in specific conditions 

and we will particularly pay attention to explain these 

testing conditions. The first step we will focus on is the 

choice of the datasets because it influencesa lot the quality 

of the learning (and the evaluation of the results). Then, an 

important step is the result of the learning algorithm, how 

does AdaBoost perform? What kinds of features are 

selected? What are the different training rates which can fix 

the quality of the learning? Then in which way the cascade 

implementation improves the face detection will be 

explained. The final section relates about the performances 

of the final detector tested on a particular Testing Set.  

Datasets  

The Datasets represent all the images that we use for our 

face detection task. It is really important to notice that the 

choice of the datasets is crucial for the learning and the tests 

on the detectors. We can separate the Datasets as follows:  

 Learning Data  

 Testing Data  

Learning Data: It clusters all the examples that have been 

used to train and test the different classifiers. There are some 

positive and negative examples. On one side there are 

positive examples which are faces extracted from different 

sources: Banca database (see [39]), the BioID images (can 

be found in [38]) and XM2VTS [40]. The faces are thus 

pictures from different acquisition conditions and lightning 

conditions. Concerning the Negative examples (non faces), 

they have to represent the best the backgrounds that can be 

found in real situations. Thus we just extract them randomly 

from the web in images without faces. It is hard to know a 

priori which images are the most representative of the non 

face class and the number of non faces that we need to train 

the classifier. However a bootstrap method will select non 

face images that are the hardest to classify and so to find 

more precisely the boundary between the face and non face 

classes. The images from the various Databases are of 

different sizes and the faces are more or less cropped while 

our learning set has to be homogeneous in term of size and 

face repartition. As most of the faces are higher than larger, 

we have chosen a rectangular window of 20x15 pixels. All 

the faces have been cropped and rescaled if necessary in 

order to respect this basic detector size. (We notice that the 

examples are effectively low resolution ones as imposed in 

the context of the detection.)  

Training Set : It is the input of AdaBoost for the monostage  

classifier  (to train some 500 features) and for the first sage 

of a learning in cascade. Recall that one of the limitations of 

AdaBoost is the large influence of the input data on the 

boosting results, the choice of the training set needs 

particular careful. The use of diverse databases is well 

adapted because images from a single database are often 

taken from from similar conditions. For example, faces of 

the BANCA database have a lot of variety in the sense that 

people do not always look exactly at the camera but the 

lightning conditions are quite troublesome because the light 

often comes from one side of the face. Regrouping the 

different sources, we have 8257 faces and more than 

300.000 non faces. Testing Set : Once a classifier has been 

trained using AdaBoost, we have to train it on another set of 

images (both positive and negative images).Thus we can 

obtain the test error of the classifier. In the case of the 

cascade, this set is used during the learning to test the 

current cascade. The misclassified examples become the 

train examples of the next stage. Thus each stage is directly 

adapted to the efficiency of the previous ones, in the sense 

that it is trained from the examples that have been badly 

classified by the previous stages. For the monostage 

classifier, we have 60.000 non faces built by an intermediate 

detector and 8257 faces. The examples used by the cascade 

are the same as the ones used in the training set.  

Validation Set: This set is used to test the performances of 

the cascade: 

Some images are presented to the final cascade detector and 

it permits to evaluate the global quality of the detector. 

Testing Data : Images from the CMU: They represent many 

real situations with several  faces and unconstrained 

background. They are used to test the final classifier using a 

scanning window. They are the most used Test images 
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because they englobe a large radius of real situations and the 

exact position of the faces in these images has been 

manually labeled in a groundtrouth file containing the 

position of the eyes. This set differs from the learning set 

because the images are not 20x15 ones. The sizes of the 

images vary (roughly from 80x80 to 750x750). Testing 

these images allows to evaluate the detection rates, the 

speed of the detector (and the scanning window) and the 

behavior of the scaling system. 

Learning Results  

This section explains the performances of AdaBoost and all 

the learning process in general by giving the results of 

different classifiers trained with different parameters such as 

the dataset used number of features, the number of stages in 

the cascade, etc...  

Weakness of the Weak Classifiers  

It has been shown in theory that the weak classifiers used to 

train with AdaBoost need to satisfy one condition. They 

have to be better than random selection. That means that 

they have to classify correctly the examples in at least 50% 

of cases. Let us look how evolutes the error rate of the 

selected features. The model used is trained with 3000 faces 

and some 30.000 non faces. The results are shown in Figure 

4.1. We can notice that the best feature (the first selected by 

AdaBoost) misclassifies roughly 13% of the examples (faces 

and non faces are treated indifferently), while this error rate 

increases quickly until more than 40% for the last selected 

features. That shows clearly why the feature responses 

followed by a threshold are qualified of weak. It proves that 

the challenge of boosting is to organize many of these weak 

classifiers into a linear combination followed by another 

final threshold. 
Test results  

Monostage 

Classifier Let us see what are the performances of a single 

stage classifier trained with about 37.520 features, 3000 

faces and 30.000 non faces chosen by bootstrapping  (false 

alarms from a previous simple classifier.).To evaluate the 

learning performances, i.e. the classification rates after the 

Boosting process, we have to recall the definition of two of 

the main evaluation errors:  

1. The Training error noted which is the error rate 

made on the training set: 

trN
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Where Ntr denotes the total number of training examples 

(positive + negative), x(tr) i the i-th example and y(tr) i the 

label of the i-th example. The theory about Boosting shows 

that this training error tends to 0 when the number of 

iterations increases. 

2. The Testing error noted ²te which is the error rate 

made on the testing set: 
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Where Nte denotes the total number of training examples 

(positive +negative), x(te) i the i-th example and y(te) i the 

label of the i-th example. 

In this first experiment, the testing set is made of 6.000 faces 

taken from the Banca Database and a part of the BioID 

database, while we use 30.000 randomly selected non faces. 

The Figure 4.2 shows the obtained results. 

The Multiple Detections 

As it is shown in the last figures, it is difficult to see and 

evaluate clearly which are the regions of the images that 

contain faces. Indeed, many bounding boxes often frame a 

single face and the arbitration is made by the integration of 

multiple detections. Here are some pictures before and after 

the multidetection algorithm. 

The integration of these multiple detection is quite intuitive. 

All the detected windows in the image are clustered. Two 

windows are clustered together if their recovering area is 

higher than a predefined threshold. Then for each cluster, 

the final window is computed as the mean of the windows in 

the cluster. Thus, the center of the final window is the 

gravity center of all the centers and the definitive size is the 

mean of the size. One problem may arise when two faces are 

very close. In fact, when neighbor windows containing two 

close faces are detected, they are clustered together and so 

the resulting window can be between the two faces. Thus 

both of the faces may be missed. 

To solve this problem, we can introduce another condition 

to cluster two windows together. The difference of theirsizes 

has to be larger than a predefined threshold.Another 

implementation which may be more appropriate would be 

the use of median windows instead of simple mean window. 

This is let to a future work. 

The Cascade Classifier 

In this project, a cascade of classifiers has been developed. 

The final version of the cascade was built as follows. First 

of all, we had to choose the training examples and the 

cascade parameters which determine the number of stages 

and the number of features in each stage. 

We use an initial set of about 340.000 negative examples. 

This set is built by bootstrapping and then, each example is 

symmetrized in order to ensure he invariability to face 

illumination orientation. We have a total of 8500 faces. 

The goal of the cascade is to apply classifiers more and 

more specialized when we go through the process. To reject 

quickly the great majority of negative windows while 

keeping a high detection rate, during the learning process, 

we start with roughly 340.000 negative examples. Then, at 

each stage, only the examples that are considered as positive 

are kept for the next training set. Thus, the stages in the 

process are directly trained to classify the examples that 

have been misclassified by the previous ones. The examples 

that are hardest to classify are left to the last stages of the 

cascade. Thus we have trained a cascade of 25 stages.  

 

 

Scanning Implementation 

Like the most of the Image-based methods, we use a sliding 

window to scan the images. The implementation of this 

sliding window needs some care for different reasons if we 

want to obtain good results in term of detection rate and 

speed. 

Once again our basic detector is 20 X 15 pixels and that the 

training of the classifiers using AdaBoost has been made 
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with examples of the same size. We want to detect faces 

from different scales and positions so we have to re-scale 

this basic detector along the scanning process. We have seen 

that the Integral representation permits to re-scale the 

detector instead of using a traditional image pyramid, i.e. no 

down-sampling is needed to scan the image at different 

scales.  

Let us see how to re-scale the basic window of h £ w where 

h and w are respectively the height and the width of the 

initial window. Suppose that we want to re-scale this 

window by a factor of = 1:25. It is clear that the h and w 

values are integers so we have to make an approximation to 

obtain a window at the next scale. We choose to preserve 

the ratio r = h/=w to keep a window of the same shape as 

the basic detector. Thus, the size of the window rescaled by 

 is: 

h

r
h

.
.(  

Where . represents the rounding operation towards the 

largest integer smaller than the argument. The problem is 

now to re-scale the Haar-like features which have been 

selected by AdaBoost. For example, consider a 2-rectangle 

feature as defined in Figure: 

Denote x and y the coordinates of the up left corner of the 

feature, hf and wf the height and width of the feature. We 

choose another time to keep the ration between height and 

width such that 
ff

whyxwhr ///  So the feature 

is rescaled and moved proportionally in the window. The 

problem is that rounding the values of the coordinates of the 

rectangle‘s corners changes a few the properties of the 

mask. The rescaled mask is one mask which is maybe not so 

good than the basic one, and it would maybe not be selected 

by AdaBoost. However, there is no other possibility than 

making an approximation. The experiments made on several 

set of images shows that this issue has not too bad 

consequences on the final results. In fact choosing 

sufficiently small shift step and scale step ensure to detect 

faces in different scales so even if a face is missed because 

the imprecision of one scale, it is in most of the cases 

detected at other scales. 

Ada Boost Implementation 

We have seen that AdaBoost is a powerful learning 

algorithm which selects the best weak classifiers given a set 

of training images. One of the main drawbacks is that the 

result depends highly on the size and consistence of the 

datasets. Our final choice has been to choose a training set 

containing some 340.000 negative examples and more than 

6000 positive ones. Recalling that there are 37518 features, 

the computing time during the learning is quite long as well 

as the memory used is big. 

For example, if we want to build a simple mono-stage 

classifier using 200 features. The first step is to write the 

integral images of all the positive and negative examples. 

Considering our 308.000 images 15X20 (which means 300 

integers per image) written into a binary format, the integral 

image file takes 352 Mb on the disk. Then, given these 

integral images, we have to compute the total set of features 

responses. Indeed, as the same feature responses are used at 

each learning step, it would be two heavy to compute them 

at each iteration. A feature response is an integer (sums and 

differences of integers) and we have a total of 37518features 

which means that a single file containing all the features 

responses. Assuming that this file would be created, we have 

then to read it completely at each iteration step (It can not be 

loaded into the memory in one time, of course). It would 

take many days to build a classifier with these data. 

In order to improve that, we have chosen to work using a 

parallel implementation to distribute the work on several 

processors. For this we have used the MPI (Message Passing 

Interface) library. The cluster on which we have provided 

the training has 5 machines and we just launch 2 processes 

on each machine so we have a total of 10 processes than can 

work in parallel. The parallel method chosen in a traditional 

master slave implementation. The master process (Process 

0) sends the respective data to each of the 10 slave‘s 

processes and then clusters all the independent results. In the 

practice, the repartition of the processes is made as follow: 

As we have to evaluate and compare the features responses 

for 308.000 images and 37518 features, each slave process 

will treat 3751 features for all the images. 

The process 0 sends the image weights to each slave 

process, then each process finds, independently of the 

others, the best feature into the set of 3751 and send the 

results back to the process 0 (the index of the best feature 

and the corresponding classification error). Finally, the 

master processes compare the results of the 10 processes and 

extract the best of the 10. Then the weights are reevaluated 

and a new iteration begins with the new weights. Thus the 

total computing time is reduced by a factor of 10 (or a few 

less if we take into account that all the processes have access 

to the same hard-disk in the same time).  

RESULTS  

This section gives the main results that have been obtained 

using a cascade of 14 classifiers. The first stage has five 

features while the second one has seven. The number of 

features increases until the last stage which has 40 features. 

The first stages reject a great majority of negative examples, 

those which are easy to distinguish from faces and then as 

the number of stages increases, the remaining examples are 

harder to reject. The last stage focuses only on few examples 

hard to classify which we could call face-like examples. The 

evaluation of the performances of the classifier can be 

divided into two groups: the test on the test set made of 

8500 faces and about 900.000 non faces and the test on the 

CMU Dataset.The detector has been tested on the MIT-

CMU frontal face test set [23].We have 132 images with a 

total of 507 frontal faces. The performances of the detector 

can be placed at every fonctionning point. By changing the 

final threshold of the detection, we can modify the detection 

rate and the false positive rate.  

Decreasing the threshold will yield a better detection rate 

(100% if the threshold equals 0) but the false positive rate 

will increase slightly. On the other hand, increasing the 

threshold will decrease the number of false alarms and also 

the detection rate. We can choose the threshold depends on 

the goals of the detector. In our case, we want a high 

detection rate so the threshold will be quite low.In these 

tests, we use a shifting step of 1 pixel for the scanning 

window and a scale factor of 1.20. The next figures show 

some results using this detector. The detector using these 14 

stages is robust and quite efficient on the CMU Dataset. We 

obtain 86% of detection rate considering the 500 faces in the 
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test set and 52false alarms. 86% of detector rate may appear 

insufficient but we have to take into account the contain of 

the CMU set. Some of the 500 faces in the 130 images are 

not well adapted to be detected by our cascade. In fact some 

of the faces are not really frontal faces but more profile 

views, other faces are manually drawn or photographs of 

cards and these kinds of examples were not in our training 

set. So they were not supposed to be classified as faces.  

We have also used these examples and taken them into 

account in our test because they already were used in testing 

previous detectors. Thus we can compare our work with 

existing methods. Our detector is quite efficient on this set 

even if Viola‘s detector is more efficient. We can notice that 

Viola‘s detector contains 30 stages with more features 

which yields lower false positive rate. The detector has also 

been tested on video sequences. We have applied our 

detector on 220 images successively. The situation is a 

classical real time application: a video camera was placed in 

a corridor and some people crossed the scene. The detector 

is quite efficient and it permits us to evaluate the power of 

the features. In fact, faces were quite well detected during 

the sequence but not in every image. A well detected face in 

the image number i was not necessarily detected in the 

image i + 1 even the visual difference between the two 

images is very low. That shows the detection is really 

precise. A single pixel may have lot of weight in the 

detection. We have to notice that in this test, no time 

integration was used.  

Conclusions and Future Work 

Conclusion Many methods can be used existing a precise 

context for each of those methods. We have chosen an 

intermediate method between the image based and the 

feature based detection method. A face detection system has 

been developed using a Boosting algorithm and simple 

rectangular Haarlike features. The boosting characteristics 

are- iterative, successive classifiers depends upon its 

predecessors, look at errors from previous classifier step to 

decide how to focus on next iteration over data. 

 This method presents many advantages in comparison with 

other methods for detecting faces.  

 The frontal face detector yields very good detection 

performances (in term of ratio over detection rate and false 

positive rate).  

 The performances can be highly increased in specific 

applications. In fact, if the face detector is placed in a fixed 

scene, the training set can be adapted to this scene to build a 

robust detector.  

 The computation of the classifier is very fast because of 

the use of simple rectangular features which are easily 

computed with the integral image.  

 The method can be easily adapted to other kind of 

application such as pedestrian detection for example. The 

principle is to change the training sets.  

AdaBoost has achieved great success, however, we have to 

recall that this method, as every face detection method has 

its own limitations:  

 The training process could be unmanageable when the 

number of features is extremely large;  

 The same weak classifier may be learned multiple times 

from a weak classifier pool, which does not provide 

additional information for updating the model; 

  There is an imbalance between the amount of the 

positive samples and that of the negative samples for multi-

class classification problems. 

 The detector has been trained with only frontal faces 

with uniform pose. 

 It is difficult to predict the optimal values of some 

parameters. It is the case, for example, of the number of 

training examples. The efficiency of the final detector 

depends directly on this dataset. The main problem remains 

the generalization power of the trained model. If the model 

is efficient on the train data set, we do not know a priori 

how it acts on the testing data. Particularly, if the train set is 

too complete, the classifier will be too specialized on the 

train faces and some faces may be missed on real set 

images.  

 This detection of low resolution images gives the 

position of eventual faces and an idea of their size. However 

we do not have a precise position of the faces. 

 We do not know precisely the position of the eyes for 

examples such that a further face analysis may be applied in 

some applications.  

 The performance of boosting on a particular problem 

clearly relies on the particular data and the choice of the 

weak learner. In some cases boosting may fail to perform 

well, especially for the data with noises. 

Our face detection system gives practically best results. The 

result is that the detector is efficient in terms of detection 

rate in spite of a non negligible number of false positions. 

We use a learning procedure to extract feature which are 

represent to the statistical characteristics of faces. We can 

distinguish three main contributions in this face detection 

system:  

 The learning algorithm AdaBoost which selects the best 

set of these Haarlike threshold; 

 Rectangular Haar-features computed efficiently with a 

new image representation called image integral; 

 Finally an implementation in cascade which permits to 

decrease the detection time while increasing the detection 

rates; 
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