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INTRODUCTION

A sequence space is defined to be a linear space of real or 
complex sequences. Throughout the paper N, R and C denotes 
the set of non-negative integers, the set of real numbers and the 
set of complex numbers respectively. Letω denote the space of 
all sequences (real or complex). Let l∞ and c be Banach spaces 
of bounded and convergent sequences =0= { }n nx x ∞ with supremum 
norm = | |sup n

n
x x  . Let T denote the shift operator onω , that is, 

=1= { }n nTx x ∞  , 2
=2= { }n nT x x ∞  and so on. A Banach limit L is defined 

on l∞ as a non-negative linear functional such that L is invariant 
i.e., L(Sx)=L(x) and L(e)=1, e=(1,1,1,…) [1]. 

Lorentz, called a sequence {xn} almost convergent if all Banach 
limits of x, L(x), are same and this unique Banach limit is called 
F-limit of x [1]. In his paper, Lorentz proved the following 
criterian for almost convergent sequences.

A sequence = { }nx x l∞∈  is almost convergent with F-limit L(x) 
if and only if 

( ) = ( )                                          lim mn
m

t x L x
→∞

where, 
1

0

=0

1             ( ) = , ( = 0)
m

j
mn n

j
t x T x T

m

−

∑  uniformly in n≥0.

We denote the set of almost convergent sequences by f.

Several authors including Duran [2], Ganie et al. [3-7], King [8], 
Lorentz [1] and many others have studied almost convergent 
sequences. Maddox [9,10] has defined x to be strongly almost 
convergent to a number α if

=1

1 = 0,  uniformly in m.lim
n

k m
n k

x
n

α+ −∑

By [f] we denote the space of all strongly almost convergent 
sequences. It is easy to see that [ ]³c f f ∞⊂ ⊂ ⊂ . 

The concept of paranorm is related to linear matric spaces. It is a 
generalization of that of absolute value. Let X be a linear space. 
A function P:x→R is called a paranorm, if [11,12].

 ( .1)   (0) 0p p ≥

( .2)   ( ) 0  p p x x X≥ ∀ ∈

( .3)   ( ) = ( )  p p x p x x X− ∀ ∈

( .4)   ( ) ( ) ( )  , p p x y p x p y x y X+ ≤ + ∀ ∈ (triangle inequality)

( .5)    ( )np if λ  is a sequence of scalars with λn→λ (n→∞) and 
(xn) is a sequence of vectors with ( ) 0np x x− → ( n →∞ ), then 

( ) 0n np x xλ λ− →  ( n →∞ ),(continuity of multiplication of vectors).

A paranorm p for which p(x)=0 implies x=0 is called total. It is 
well known that the metric of any linear metric space is given 
by some total paranorm [10].

The following inequality will be used throughout this paper. 
Let p=(pk) be a sequence of positive real numbers with 
0 < = <supk kkp p H≤ ∞  and let 1= max(1, 2 )HD − . For , k ka b ∈ . We 
have that (Equation 1) [9,11].

| | {| | | | .}p p pk k k
k k k ka b D a b+ ≤ +                                                        (1)

Nanda defined the following [13,14]:

=1

1[ , ] = : = 0 uniformly in m ,lim
n

pk
k m

n k
f p x x

n
α+

 
− 

 
∑

0
=1

1[ , ] = : = 0 uniformly in m ,lim
n

pk
k m

n k
f p x x

n +
 
 
 

∑

, =1

1[ , ] = : < .sup
n

pk
k m

m n k
f p x x

n∞ +
 

∞ 
 

∑

The difference sequence spaces,
{ }( )= = ( ): ,kX x x x X∆ ∆ ∈

where X= l∞, C and C0, were studied by Kizmaz [15].

It was further generalized by Ganie et al. [5], Et and Colak [16], 
Sengonul [17] and many others.

Further, it was Tripathy et al. [18] generalized the above notions 
and unified these as follows: 

{ }= :( ) ,m m
n k n kx x x Zω∆ ∈ ∆ ∈

Where

=0
= ( 1) ,

n
m
n k k m

n
x x

r
µ

µ
µ

+

 
∆ −  

 
∑

Abstract: The aim of the present paper is to introduce some new generalized difference sequence spaces with respect to modulus function 
involving strongly almost summable sequences. We give some topological properties and inclusion relations on these spaces.
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and
0 =  .n k kx x k∆ ∀ ∈  

Recently, M. Et [19] defined the following:

( )
=1

1[ , ]( ) = = ( ) : = 0, uniformly in m ,lim
n pkr r

k k m
n k

f p x x f x
n

α+
  ∆ ∆ −   

∑

( )0
=1

1[ , ] ( ) = = ( ) : = 0, uniformly in m ,lim
n pkr r

k k m
n k

f p x x f x
n +

  ∆ ∆   
∑

( )
=1

1[ , ] ( ) = = ( ) : < , uniformly in m .sup
n pkr r

k k m
n k

f p x x f x
n∞ +

  ∆ ∆ ∞   
∑

Following Maddox [20]and Ruckle [21], a modulus function g 
is a function from [0,∞) to [0,∞) such that

(i) g(x)=0 if and only if x=0,

(ii) ( ) ( ) ( ) , 0g x y g x g y x y+ ≤ + ∀ ≥

(iii) g is increasing,

(iv) g if continuous from right at x=0.

Maddox [10] introduced and studied the following sets:

0
=1

1= { : | |= 0   }lim
n

k m
n k

f x x uniformly in m
n

ω +∈ ∑

0= { :     }f x x le f for some in lω∈ − ∈ ∈

of sequences that are strongly almost convergent to zero and 
strongly almost convergent.

Let p=(pk) be a sequence of positive real numbers with 
0 < =supk k

k
p p M≤  and H=max(1, M).

MAIN RESULTS:

In the present paper, we define the spaces 0[ , , ]( ), [ , , ] ( )r r
n nf g p f g p∆ ∆

and [ , , ] ( )r
nf g p ∞ ∆  as follows:

( )
=1

1[ , , ]( ) = = ( ) : = 0, uniformly in m ,lim
n pkr r

n k n k m
n k

f g p x x g x
n

α+
  ∆ ∆ −   

∑

( )0
=1

1[ , , ] ( ) = = ( ) : = 0, uniformly in m ,lim
n pkr r

n k n k m
n k

f g p x x g x
n +

  ∆ ∆   
∑

( )
=1

1[ , , ] ( ) = : < , uniformly in m ,sup
n pkr r

n n k m
n k

f g p x g x
n∞ +

  ∆ ∆ ∞   
∑

Where (pk) is any bounded sequence of positive real numbers.

Theorem 1: Let (pk) be any bounded sequence and g be 
any modulus function. Then 0[ , , ]( ), [ , , , ] ( )r r

n nf g p f g p∆ ∆ and 
[ , , , ] ( )r

nf g p ∞ ∆  are linear space over the set of complex numbers.

Proof: We shall prove the result for 0[ , , ] ( )r
nf g p ∆  and the others 

follows on similar lines. Let
0, [ , , ] ( )r

nx y f g p∈ ∆ . Now for ,α β ∈

, we can find positive numbers Aα,Bᵝ such that | | Aαα ≤  and 
| | Bββ ≤ . Since f is subadditive and r

n∆  is linear

( )( )
=1

1                              
n pkr

n k m k m
k

g x y
n

α β+ +
 ∆ + ∑

( ) ( )
=1

1                
n pkr r

n k m n k m
k

g x g y
n

α β β+ +
 ≤ ∆ + ∆ ∑

( )
=1

1( )
n pkH r

n k m
k

D A g x
nα α +

 ≤ ∆ ∑

( )
=1

1                                           ( ) 0
n pkH r

n k m
k

D B g x
nβ α +

 + ∆ → ∑

As n→∞, uniformly in m. This proves that 0[ , ] ( )r
nf p ∆  is linear 

and the result follows.

Theorem 2: Let g be any modulus function. Then

0[ , , ]( ) [ , , ] ( ) and [ , , ] ( ) [ , , ] ( ).r r r r
n n n nf g p f g p f g p f g p∞ ∞∆ ⊂ ∆ ∆ ⊂ ∆

Proof: We shall prove the result for [ , , ]( ) [ , , ] ( )r r
n nf g p f g p ∞∆ ⊂ ∆ and 

the second shall be proved on similar lines. Let [ , , ]( )r
nx f g p∈ ∆  . 

Now, by definition of g, we have

( ) ( )
=1 =1

1 1=    
n np pk kr r

n k m n k m
k k

g x g x L L
n n+ +

   ∆ ∆ − +   ∑ ∑

( ) ( )
=1 =1

         .
n np pk kr

n k m
k k

D Dg x L g L
n n+

   ≤ ∆ − +   ∑ ∑
 

Thus, for any number L, there exists a positive integer KL such 
that | | LL K≤ , we have

( ) ( )
=1 =1

1 1=    
n np pk kr r

n k m n k m
k k

g x g x L L
n n+ +

   ∆ ∆ − +   ∑ ∑

( ) [ ]
=1 =1

         (1) 1.
n npk pr k

n k m L
k k

D Dg x L K g
n n+

 ≤ ∆ − + ∑ ∑

Since, [ , , ]( )r
nx f g p∈ ∆ , we have and the proof of the result follows.

Theorem 3:
0[ , , , ] ( )r

nf g p ∆  is a paranormed space with

( )
1

, =1

1( ) = .sup
n p Hkr

n k m
m n k

h x g x
n∆ +

  ∆   
∑

Proof: From Theorem 2, for each 0[ , , ] ( )r
nx f g p∈ ∆ , ( )h x exists. 

Also, it is trivial that ( ) = ( )h x h x∆ ∆ − and = 0r
n k mx +∆ for x=0. 

Since, h(0)=0, we have ( ) = 0h x∆ for x=0. Since, 
1kp

M
≤

for M≥1, 
therefore, by Minkowski’s inequality and by definition of g for 
each n that

( )
1

=1

1                                 
n p Hkr r

n k m n k m
k

g x y
n + +

  ∆ + ∆   
∑

( ) ( )
1

=1

1                   
n p Hkr r

n k m n k m
k

g x g y
n + +

  ≤ ∆ + ∆   
∑

( ) ( )
1 1

=1 =1

1 1                       ,
n np pH Hk kr r

n k m n k m
k k

g x g y
n n+ +

      ≤ ∆ + ∆         
∑ ∑

which shows that ( )h x∆  is sub-additive. Further, let α be any 
complex number. Therefore, we have by definition of g, we have

( )
1

, =1

1( ) = ( ),sup
Hn p Hkr M

n k m
m n k

h x g x S h x
n αα α∆ + ∆

  ∆ ≤   
∑

where, Sα is an integer such that α<Sα. Now, let α→0 for any 
fixed x with ( ) 0h x∆ ≠ . By definition of g for | |< 1α , we have for 

> ( )n N ε  that (Equation 2)

( )
=1

1 < .
n pkr

n k m
k

g x
n

ε+
 ∆ ∑                                                                   (2)

As g is continuous, we have, for 1≤n≤N and by choosing α so 
small that (Equation 3)

( )
=1

1 < .
n pkr

n k m
k

g x
n

ε+
 ∆ ∑                                                                 (3)
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 Consequently, (2) and (3) gives that ( ) 0h xα∆ →  as α→0.

Theorem 4: Let X be any of the spaces [f,g], [f,g]0 and [f,g]∞. 
Then, 1( ) ( )r r

n nX X−∆ ⊂ ∆ is strict. In general, ( ) ( )j r
n nX X∆ ⊂ ∆  for all 

j=1,2,…,r-1 and the inclusion is strict.

Proof: We give the proof for the space [f, g]∞ and others can 
be proved similarly. So, let 1[ , , ] ( )r

nx x f g p −
∞∈ ∈ ∆ . Then, we have

( )1

, =1

1 < .sup
n

r
n k m

m n k
g x

n
−

+
 ∆ ∞ ∑

Since, g is increasing function, we have

( ) ( )1 1
1

=1 =1

1 1=               
n n

r r r
n k m n k m n k m

k k
g x g x x

n n
− −

+ + + +
   ∆ ∆ − ∆   ∑ ∑

( ) ( )1
1

=1 =1

1 1                                           
n n

r r
n k m n k m

k k
g x g x

n n
−

+ + +
   ≤ ∆ + ∆   ∑ ∑

< .                            ∞

Thus, 1[ , ] ( ) [ , ] ( )r r
n nf g f g−

∞ ∞∆ ⊂ ∆ . Continuing in this way, we shall 
get [ , ] ( ) [ , ] ( )j r

n nf g f g∞ ∞∆ ⊂ ∆  for j=1,2,…,r-1. The inclusion is 
strict. For this, we consider x=(kr) and is in [ , ] ( )r

nf g ∞ ∆  but does 

not belong to 1[ , ] ( )r
nf g −

∞ ∆  for f(x)=x and n=1. ( if x=(kr), then 

= ( 1) !r r
n kx r∆ −  and 1 1= ( 1) !

2
r r
n k

rx r k+ − ∆ − + 
 

for all k∈ ). 

Theorem 5: 1
0[ , , ]( ) [ , , ] ( )r r

n nf g p f g p−∆ ⊂ ∆

Proof: The proof is obvious from Theorem 4 above.

Theorem 6: Let g, g1 and g2 be any modulus functions. Then,

(i) 1 0 1 0[ , , ] ( ) [ , , ] ( )r r
n nf g p f gog p∆ ⊂ ∆ .

(ii)
1 0 2 0 1 2 0[ , , ] ( ) [ , , ] ( ) [ , , ] ( )r r r

n n nf g p f g p f g g p∆ ∩ ∆ ⊂ + ∆ .

Proof: Let ε be given small positive number and choose δ with 
0< δ<1 such that g(t)< ε for 0<t≤ δ. We put ( )1= r

k m n k my f x+ +∆  and 
consider

( ) ( ) ( )
=1

=
n p p pk k k

k m k m k m
k I II

g y g y g y+ + ++          ∑ ∑ ∑

where the first summation is over k my δ+ ≤  and second summation 
is over yk+m> δ. As g is continuous, we have (Equation 4)

( ) <
p Hk

k m
I

g y nε+  ∑                                                                    (4)

 and for yk+m> δ, we use the fact that 
1 < 1 .k m k my y
n δ δ

+ +≤ +

Now, by definition of g, we have for yk+m> δ that
< 2 (1) .k m k my yg g

δ δ
+ +

Thus (Equation 5),

( ) ( )( )1

=1

1 1max 1, 2 (1) .
nHp pk k

k m k m
II k

g y g y
n n

δ −
+ +≤  ∑ ∑                                 (5)

 Consequently, we see from (4) and (5) that 
1 0 1 0[ , , ] ( ) [ , , ] ( )r r

n nf g p f gog p∆ ⊂ ∆ .

To prove (ii), we have from (1) that

( )( ) ( ) ( )1 2 1 2 .
p p pk k kr r r

n k m n k m n k mg g x D g x D g x+ + +
     + ∆ ≤ ∆ + ∆     

Let 1 0 2 0[ , , ] ( ) [ , , ] ( )r r
n nx f g p f g p∈ ∆ ∩ ∆ . Consequently, by adding 

above inequality form k=1 to k=n, we have and the result 
follows. 

Theorem 7: Let g, g1 and g2 be any modulus functions. Then,
1 1[ , , ]( ) [ , , ]( )r r

n nf g p f gog p∆ ⊂ ∆

1 2 1 2[ , , ]( ) [ , , ]( ) [ , , ]( )r r r
n n nf g p f g p f g g p∆ ∩ ∆ ⊂ + ∆

1 1[ , , ] ( ) [ , , ] ( )r r
n nf g p f gog p∞ ∞∆ ⊂ ∆

1 2 1 2[ , , ] ( ) [ , , ] ( ) [ , , ] ( )r r r
n n nf g p f g p f g g p∞ ∞ ∞∆ ∩ ∆ ⊂ + ∆

Proof: The follows as a routine verification as of the Theorem 
6.

Theorem 8: The spaces 0[ , , ]( ), [ , , , ] ( )r r
n nf g p f g p∆ ∆ and 

[ , , , ] ( )r
nf g p ∞ ∆  are not solid in general.

Proof: To show that the spaces 
0[ , , ]( ), [ , , , ] ( )r r

n nf g p f g p∆ ∆  and 
[ , , , ] ( )r

nf g p ∞ ∆  are not solid in general, we consider the following 
example.

Let pk=1 for all k and g(x)=x with r=1=n. Then, 
( ) = ( ) [ , , , ] ( )r

k nx k f g p ∞∈ ∆  but ( ) [ , , , ] ( )r
k k nx f g pα ∞∉ ∆ when αk=(-1)k 

for all k∈ . Hence is result follows.

From above Theorem, we have the following corollary.

Corollary 9: The spaces 0[ , , ]( ), [ , , , ] ( )r r
n nf g p f g p∆ ∆  and 

[ , , , ] ( )r
nf g p ∞ ∆  are not perfect.

Theorem 10: The spaces 
0[ , , ]( ), [ , , , ] ( )r r

n nf g p f g p∆ ∆  and 
[ , , , ] ( )r

nf g p ∞ ∆  are not symmetric in general.

Proof : To show that the spaces 0[ , , ]( ), [ , , , ] ( )r r
n nf g p f g p∆ ∆

and [ , , , ] ( )r
nf g p ∞ ∆  are not perfect in general, to show this, 

let us consider pk=1 for all k and g(x)=x with n=1. Then, 
( ) = ( ) [ , , , ] ( )r

k nx k f g p ∞∈ ∆  Let the re-arrangement of (xk) be (yk) 

where (yk) is defined as follows,
{ }1 2 4 3 9 5 1 6 2 7 3 8 4 1( ) = , , , , , , 6, , 5, , 6, , 9, 0,... .ky x x x x x x x x x x x x x x

Then, ( ) [ , , , ] ( )r
k ny f g p ∞∉ ∆  and this proves the result. 
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