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ABSTRACT : With the wide deployment of public cloud computing infrastructures, using clouds to host data query 

services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might 

be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy 

are guaranteed. Due to diversity of applications, the database services in cloud must also support storage of multi-

dimensional data. On the other hand, a secured query service should still provide efficient query processing and 

significantly reduce the in-house workload to fully realize the benefits of cloud computing. The base paper propose the 

RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data 

in the cloud [1]. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN 

queries. But kNN-R algorithm will not work effectively in high dimensional data (complex objects such as spatial, 

temporal and multimedia data). In this paper, we integrate kNN-R algorithm and the traditional concept of R-optimality 

and propose a new multi-step RI kNN-R search algorithm that utilizes lower- and upper bounding distance information 

(Ilu) in the filter step.In order to reduce the number of candidates returned from the filter step which then have to be 

exactly evaluated in the refinement step is fundamental for the efficiency of the query process. 

 

KEYWORDS: Cloud Computing, Data owner, Query Processing. 

 

I. INTRODUCTION 

 

Hosting data-intensive query services in the cloud is increasingly popular because of the unique advantages in scalability, 

cost-saving andpay for the hours of using the servers. This is an attractive feature because the workloads of query 

services are highly dynamic, and it will be expensive and inefficient to serve such dynamic workloads with in-house 

infrastructures [4]. However, because the service providers lose the control over the data in the cloud, data 

confidentiality and query privacy have become the major concerns. Adversaries, such as curious service providers, can 

possibly make a copy of the database or eavesdrop users’ queries, which will be difficult to detect and prevent in the 

cloud infrastructures. 

While new approaches are needed to preserve data confidentiality and query privacy, the efficiency of query services and 

the benefits of using the clouds should also be preserved. It will not be meaningful to provide slow query services as a 

result of security and privacy assurance. Therefore, there is an intricate relationship among the data confidentiality, query 

privacy, the quality of service, and the economics of using the cloud. We summarize these requirements for constructing 

a practical query service in the cloud as the CPEL criteria: data Confidentiality, query Privacy, Efficient query 

processing, and Low in-house processing cost. Satisfying these requirements will dramatically increase the complexity of 

constructing query services in the cloud.  Some related approaches have been developed to address some aspects of the 

problem.  

The base paper has proposedRandomSpace   Perturbation (RASP) approach toconstructing practical range query and k-

nearest-neighbour (kNN) query services in the cloud. This approach will address all the four aspects of the CPEL criteria 

and aim to achieve a good balance on them. The basic idea is to randomly transform the multidimensional datasets with a 

combination of order preserving encryption, dimensionality expansion, random noise injection, and random project, so 
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that the utility for processing range queries is preserved. The RASP perturbation is designed in such a way that the 

queried ranges are securely transformed into polyhedrain the RASP-perturbed data space, which can be efficiently 

processed with the support of indexing structures in the perturbed space. The RASP kNN query service (kNN-R) uses 

the RASP range query service to process kNN queries. The key components in the RASP framework include (1) the 

definition and properties of RASP perturbation; (2) the construction of the privacy-preserving range query services; (3) 

the construction of privacy-preserving kNN query services. 

In summary, the proposed approach has a number of unique contributions. 

1.  The RASP perturbation is a unique combination of Order Preserving Encryption [3], dimensionality expansion, 

random noise injection, and random projection, which provides strong confidentiality guarantee. 

2. The RASP approach preserves the topology of multidimensional range in secure transformation, which allows 

indexing and efficiently query pro-cessing. 

3. The proposed service constructions are able to minimize the in-house processing workload because of the low 

perturbation cost and high precision query results. This is an important feature enabling practical cloud-based 

solutions. 

For high dimensional data this kNN-R will not work efficiently as it invoke a large number of distance computations 

and, thus, do neither account for the increasing complexity of the database objects nor for the costly distance functions 

used for measuring the similarity. Hence we add multi-step query processing algorithm for kNN search using both a 

lower and an upper bound in the filter step with the above algorithm. We generalize the notion of R-optimality taking the 

distance estimations available in the filter step into account. Which produces a minimum number of candidates which 

need to be refined. This multi-step RI kNN-R algorithm is optimal [2]. 

 

II. RELATED WORK 

 

This section presents the notations, the system architecture, and the threat model for the RASP approach, and prepares 

for the security analysis [3] in later sections. The design of the system architecture keeps the cloud economics in mind 

so that most data storage and computing tasks will be done in the cloud. The threat model makes realistic security 

assumptions and clearly defines the practical threats that the RASP approach will address. 

1.1.   Definitions and Notations 

First, we establish the notations. For simplicity, we consider only single database tables, which can be the result of 

denormalization from multiple relations. A database table consists of n records and d searchable attributes. We also 

frequently refer to an attribute as a dimension or a column, which are exchangeable in the paper. Each record can be 

represented as a vector in the multidimensional space, denoted by low case letters. If a record x is d-dimensional, we 

say x ∈Rd , where Rd   means the d-dimensional vector space. A table is also treated as a d × n matrix, with records 

represented as column vectors. We use capital letters to represent a table, and indexed capital letters, e.g., Xi, to 

represent columns.  Each column is definedon a numerical domain.  Categorical  data  columns are  allows  in  range  

query,  which  are  converted to numerical domains as we will describe in Section 3. Range query is an important type 

of query for many data analytic tasks from simple aggregation to more sophisticated machine learning tasks. Let T be 

a table and Xi,Xj, and Xk   be the real valued attributes in T, and a and b be some constants. Take the counting query 

for example. A typical range query looks like 

Selectcount (*) from T where Xi ∈ [ai, bi] and Xj  ∈ (aj , bj ) and Xk  =ak , 

which calculates the number of records in the range defined  by  conditions  on  Xi,  Xj ,  and  Xk .  Range queries 

may be applied to arbitrary number of at- tributes and conditions on these attributes combined with conditional 

operators “and”/“or”. We call each part of the query condition thatinvolves only one attribute as a simple condition. A 

simple condition like Xi   ∈ [ai, bi] can be described with two half space conditions Xi   ≤ bi   and −Xi    ≤ −ai.  

Without  loss of  generality,  we  will  discuss  how  to  process  half space conditions like Xi  ≤ bi   in this paper. A 

slight modification will extend the discussed algorithms to handle other conditions like Xi <bi and Xi = bi. kNN query 

is to find the closest k records to the query point, wherethe Euclidean distance is often used to measure the proximity. 
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It is frequently used in location-based services for searchingthe objects close to a query point, and also in machine 

learning algorithms such as hierarchical clustering and kNN classifier. A kNN query consists of the query point and 

the number of nearest neighbours, k. 

1.2. System Architecture 

We assume the cloud computing infrastructure, such as Amazon EC2, is used to host the query services and large 

datasets. Each  record  x  in  the  outsourced  database  contains two parts: the RASP-processed attributes D′   = F (D, 

K )  and  the  encrypted  original  records,  Z   = E(D, K ′ ), where K  and K ′ are keys for perturbation and encryption, 

respectively. The RASP-perturbed data D′ are for indexing and query processing. Figure1 shows the system 

architecture for both RASP-based range query service and kNN service. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.ThesystemarchitectureforRASP-basedquery services. 
 

There are two clearly separated groups: the trustedparties and the untrusted parties. The trusted partiesinclude the 

data/service owner, the in-house proxyserver, and the authorized users who can only submitqueries. The data owner 

exports the perturbed data tothe cloud. Meanwhile, the authorized users can submit range queries or kNN queries to 

learn statistics orfind some records. The untrusted parties include thecurious cloud provider who hosts the query 

servicesand the protected database. The RASP-perturbed datawill be used to build indices to support query processing. 

There are  a  number  of  basic  procedures  in  this framework: (1) F (D)  is the RASP perturbation that transforms the 

original data D to the perturbed data D′ ; (2) Q(q)  transforms the original query q to the protected form q′  that can be 

processed on the perturbed data; (3) H (q′ , D′ ) is the query processing algorithm that returns the result R′ . When the 

statistics such as SUM or AVG of a specific dimension are needed, RASP can work with partial homomorphic 

encryption such as Paillier encryption [25] to compute these statistics on the encrypted data, which are then recovered 

with the procedure G (R′). 

1.3. Threat Model 

Assumptions.Our security analysis is built on the important features of the architecture. Under this setting, we believe 

the following assumptions are appropriate. 

1. Only the authorized users can query the proprietary database. Authorized users are not malicious and will not 

intentionally breach the confidentiality.  

2. The client-side system and the communication channels are properly secured and no protected data records and 

queries can be leaked. 

3. Adversaries can see the perturbed database, the transformed queries, the whole query processing procedure, the 

access patterns, and understand the same query returns the same set of results, but nothing else. 

4. Adversaries can possibly have the global information of the database, such as the applications of the database, 

the attribute domains, and possibly the attribute distributions, via other published sources (e.g., the distribution of 

sales, or patient diseases, in public reports). 
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Attacker Modelling. The  goal  of  attack  is  to  recover (or  estimate) the  original data from the  perturbed data, or 

identify the exact queries (i.e., location queries) to  breach users’ privacy. According to the level of prior knowledge 

the attacker may have, we categorize the attacks into two categories. 

 Level   1:   The   attacker knows   only   the   perturbed data and transformed queries, without any other prior 

knowledge. This corresponds to the cipertext-only attack in the cryptographic set- ting. 

 Level 2:  The attacker also knows the original data distributions, including individual attribute distributions and 

the joint distribution (e.g., the covariance matrix) between attributes. In practice, for some applications, whose 

statistics are interesting to the public domain, the dimensional distributions might have been published via other 

sources. 

These levels of knowledge are appropriate according to the assumptions we hold.  

Security Definition. Different from the traditional encryption schemes, attackers can also be satisfied with good 

estimation. Therefore, we will investigate two levels of security definitions: (1) it is computationally intractable for the 

attacker to recover the exact original data based on the perturbed data; (2) the at- tacker cannot effectively estimate the 

original data. 

2. RASP: RANDOM SPACE PERTURBATION 

In this section, we present the basic definition of RAndom Space Perturbation (RASP) method and its properties. We 

will also discuss the attacks on RASP perturbed data, based on the threat model given in Section 2. 

2.1. Definition of RASP 

RASP is one type of multiplicative perturbation, with a novel combination of OPE, dimension expansion, random 

noise injection, and random projection. Let’s consider the multidimensional data are numeric and in multidimensional 

vector space1. The database has k searchable dimensions and n records, which makes a d × n matrixX. The searchable 

dimensions can be used in queries and thus should be indexed. Let x represent a d-dimensional record, x ∈ Rd.  Note 

that in the d-dimensional vector space Rd, the range query conditions are represented as half-space functions and a 

range query is translated to finding the point set in corresponding polyhedron area described by the half spaces [10]. 

The RASP perturbation involves three steps.  Its security is based on the existence of random invertible real-value 

matrix generator and random real value generator. For each k-dimensional input vector x, 

1. An order preserving encryption (OPE) scheme [3], Eope with keys Kope, is applied to each dimension of x:  

Eope(x, Kope) ∈ Rd   to change the dimensional distributions to normal distributions with each dimension’s value 

order still preserved. 

2. The vector is then extended to d + 2 dimensions as G(x)  = ((Eope(x))T , 1, v)T , where the (d + 1)th  dimension  

is always  a  1  and  the  (d + 2)th dimension, v, is drawn from a random real number generator RN G that 

generates random values from a tailored normal distributions. We will discuss the design of RNG and OPE later. 

3. The (d + 2)-dimensional vector is finally transformed to 

F (x, K = {A, Kope, RG}) = A((Eope(x))T , 1, v)T   (1) 

Where A is a (d + 2) × (d + 2) randomly generated invertible matrix with aij∈R such that there are at least 

two non-zero values in each row of A and the last column of A is also non-zero2. 

Kope and A are shared by all vectors in the database, but v is randomly generated for each individual vector.  Since the 

RASP-perturbed data records are only used for indexing and helping query processing, there is no need to recover the 

perturbed data. As we mentioned, in the case that original records are needed, the encrypted records associated with 

the RASP-perturbed records will be returned. We give the detailed algorithm in Appendix. 

Design of OPE and RNG. We use the OPE scheme to convert all dimensions of the original data to the standard 

normaldistribution N (0, 1) in the limited domain [−β, β]. β  can be selected as a value >= 4, as  the  range  [−4, 4]  

covers  more  than  99%  of  the population. This can be done with an algorithm such as the one described in [1]. The 

use of OPE allows queries to be correctly transformed and processed. Similarly, we draw random noises v from N (0, 
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1) in the limited domain [−β, β]. Such a design makes the extended noise dimension indifferent from the data 

dimensions in terms of the distributions. 

The   design   of   such   an   extended   data   vector (Eope(x) T, 1, v) Tis to enhance the data and query confidentiality. 

The use of OPE is to transform large-scale or infinite domains to normal distributions, which address the distributional 

attack. The (d + 1) th homogeneous dimension is for hiding the query content. The (d + 2)th dimension injects random 

noise in the perturbed data and also protects the transformed queries from attacks. The rationale behind different 

aspects will be discussed clearly in later sections. 

2.2. Properties of RASP 

RASP has several important features. First, RASP does not  preserve  the  order  of  dimensional  values  be- cause of 

the matrix multiplication component, which distinguishes itself from order preserving encryption (OPE) schemes, and  

thus does not  suffer from the distribution-based attack[1].  An OPE scheme maps a set of single-dimensional values to 

another, while keeping the value order unchanged. Since the RASP perturbation can be treated as a combined 

transformation F (G(Eope (x))),   it  is  sufficient to show that F (y) = Ay does not preserve the order of  dimensional 

values, where y  ∈  Rd+2   andA  ∈  R(d+2)×(d+2) [1].  Second, RASP does not preserve the distances between records, 

which prevents the perturbed data from distance-based attacks [6]. Because none of the transformations in the RASP: 

Eope, G, and F preserves distances, apparently the RASP perturbation will not preserve distances. Similarly, RASP does 

not preserve other more sophisticated structures such as covariance matrix and principal components [7]. Therefore, the 

PCA-based attacks such as [8], [9] do not work as well. Third, the original range queries can be transformed to the 

RASP perturbed data space, which is the basis of our query processing strategy. A range query describes a hyper-cubic 

area (with possibly open bounds) in the multidimensional space. In Section 5, we will show that a hyper-cubic area in 

the original space is transformed to a polyhedron with the RASP perturbation. Thus, we can search the points in the 

polyhedron to get the query results. 

3. Multi-step kNN Query Processing 

Let D be a database of objects and dist be a distance function on these objects.For a given query object q and a given 

positive integer k ∈N
+
, a k-nearest neighbour (kNN) query on a database D retrieves the objects in D that have the k 

smallest distances to q, formally 

Definition 1: (kNN query, kNN-distance). For a query object q and a query parameter k ∈N, a kNN query in D returns 

the smallest set NN
D
(q, k)⊆ Dthat contains (at least) k objects from D, for which the following condition holds: 

∀o ∈NN 
D
 (q, k), ∀o’ ∈ D−NN

D
(q, k):dist(q, o) <dist(o’, q) 

 

 
Fig. 2. Multi step query processor. 

 

The multi-step kNN search method is the algorithm proposed in [11]. It uses a lower-bounding distance estimation LB 

in the filter step which is always lower or equal to the exact distance, i.e. for any query object q the lower bounding 

property holds. 

∀o ∈D:LB(q, o) ≤ dist(q, o) 
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Generalizing the Definition of Optimality: 

As indicated above, the algorithm presented in [11] uses only a lower bounding distance estimation in the filter step. 

However, it is in general sensible to use additional information, in particular an upper bounding filter distance. An 

upper bounding filter distance estimation UB is always greater or equal to the exact distance, i.e. for any query object q 

the following upper bounding property holds: 

∀o ∈D : UB(q, o) ≥ dist(q, o). 

 

Using also an upper bounding filter distance yields several important advantages: First, besides pruning true drops with 

the lower bound we can additionally identify true hits using the upper bounding filter distance. Second, the storage 

requirements of the kNN algorithm can be significantly reduced. Third, the filter step is the fact that those true hits, 

identified already in the filter step, can be immediately reported to the user. 

 

III. RASP RANGE-QUERY PROCESSING 

Based on the RASP perturbation method, we design the services for two types of queries: range query and kNN query. 

This section will dedicate to range query processing. We will first show that a range query in the original space can be 

transformed to a polyhedron query in the perturbed space, and then we develop a secure way to do the query 

transformation. Then, we will develop a two-stage query processing strategy for efficient range query processing. 

a. Transforming Range Queries 

Let’s look at the general form of a range query condition. Let Xi be an attribute in the database. A simple condition in 

a range query involves only one attribute and is of the form “Xi   <op>ai”, whereaiis a constant in the normalized 

domain of Xi andop ∈ {<, >, =, ≤, ≥, =} is a comparison operator. Forconvenience we will only discuss how to 

processXi <ai, while the proposed method can be slightlychanged for other conditions. Any complicated rangequery 

can be transformed into the disjunction of a set of conjunctions. Again, to  simplify  the  presentation we  restrict our 

discussion to a single conjunction condition ∩i=1 Ci , where  Ci    is  in  form  of  bi     ≤  Xi    ≤  ai. Such a 

conjunction condition describes a hyper-cubic area in multidimensional space. 

According to three nested transformation in RASP F (G (Eope(x))), we will transform the original hyper-cubic area to 

another hyper-cubic area in the OPE space. 

Let y= Eope (x)   and ci= Eope (ai).  A simplecondition Yi≤ cidefines a half-space.  With  theextended dimensions zT    

= (yT , 1, v),  the half-space can be represented as wT z  ≤ 0, where w is a d + 2 dimensional vector with  wi    = 1, 

wd+1    = −ci,  andwj  = 0 for j = i, d + 1.  

 

Fig. 3.R-tree index. Fig. 4.Illustration of the two-stage processing algorithm. 

Finally, let u = Az, according to the RASP transformation. With this representation, the original condition is 

equivalent to  

wTA−1u≤0                               (3) 

In the RASP-perturbed space, which is still a half- space condition. However, this half-space condition will not be 

parallel to the coordinate - these trans- formed conditions together form a polyhedron (as illustrated in Figure 4. The 

query service will need to find the records in the polyhedron area, which is supported by the two-stage processing 

algorithm. 
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b. A Two-Stage Query Processing Strategy with Multidimensional Index Tree  

With the transformed queries, the next important task is to process queries efficientlyand return precise results to 

minimize the client-side post-processing effects. A commonly used method is to use multi- dimensional tree indices to 

improve the search performance.  However, multidimensional tree indices are normally used to process axis-aligned 

“bounding boxes”; whereas, the transformed queries are in arbitrary polyhedra, not necessarily aligned to axes. In this  

Fig. 5. Procedure of KNN-R algorithm 

section, we propose a two-stage query processing strategy to handle such irregular-shape queries in the perturbed space. 

MultidimensionalIndex Tree.Most multidimensional indexing algorithms are derived from R-tree like algorithms 2], 

where the axis-aligned minimum bounding region (MBR) is the construction block for indexing the multidimensional 

data. For 2D data, an MBR is a rectangle. For higher dimensions, the shape of MBR is extended to hyper-cube. Figure 3 

shows the MBRs in the R-tree for a 2D dataset, where each node is bounded by a node MBR. The R-tree range query 

algorithm compares the MBR and the queried range to find the answers. 

The Two-StageProcessing Algorithm.The transformed query describes a polyhedron in the perturbed space that 

cannot be directly processed by multi-dimensional tree algorithms. New tree search algorithms could be designed to use 

arbitrary polyhedron conditions directly for search.  However, we use a simpler two-stage solution that keeps the 

existing tree search algorithms unchanged. At the first stage, the proxy in the client side finds the MBR of the 

polyhedron (as a part of the submitted transformed query) and submit the MBR and a set of secured query conditions 

{Θ1 , . . . , Θm } to the server. The server then uses the tree index to find the set of records enclosed by the MBR. The  

MBR  of  the  polyhedron  can  be  efficiently founded  based  on  the  original  range.  The original query condition 

constructs a hyper-cube shape. With the described query transformation, the vertices of the hyper cube are also 

transformedto verticesof the polyhedron. Therefore, the MBR of the vertices is also the MBR of the polyhedron [13]. 

Figure 4 illustrates the relationship between the vertices and the MBR and the two-stage processing strategy. 

At the second stage, the server uses the transformed halfspace conditions to filter the initial result. In most cases of tight 

ranges, the initial result set will be reasonably small so that it can be filtered in memory by simply checking the 

transformed half-space conditions. However, in the worst case, the MBR of the polyhedron will possibly enclose the 

entire dataset and the second stage is reduced to a linear scan of the entire dataset. The result of second stage will return 

the exact range query result to the proxy server, which significantly reduces the post-processing cost that the proxy 

server needs to take. It is very important to the cloud-based service, because low post-processing cos requires low in-

house investment. 
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i 

IV. KNN QUERY PROCESSING WITH RASP 

Because the RASP perturbation does not preserve distances (and distance orders), kNN query cannot be directly 

processed with the RASP perturbed data. In this section, we design a kNN query processing algorithm based on range 

queries (the kNN-R algorithm). As a result, the use of index in range query processing also enables fast processing of 

kNN queries 

Overview of the kNN-R Algorithm 

 

 

 

 

 

 

 

 

 

Fig. 6. Illustration of kNN Algorithm when k=3 

The original distance-based kNN query processing finds the nearest k points in the spherical range that is centered at the 

query point. The basic idea of our algorithm is to use square ranges, instead of spherical ranges, to find the approximate 

kNN results, so that the RASP range query service can be used.  There are a number of key problemsto make this work 

securely and efficiently. (1)  How to efficiently find the minimum square range that surely contains the k results, 

without many interactions between the cloud and the client? (2) Will this solution preserve data confidentiality and 

query privacy? (3) Will the proxy server’s workload increase? To what extent? 

The algorithm is based on square ranges to approximately find the kNN candidates for a query point. Figure 6 illustrates 

the range-query-based kNN processing with two-dimensional data. The Inner Range is the square range that contains at 

least k points, and the Outer Range encloses the spherical range that encloses the inner range. The outer range surely 

contains the kNN results (Proposition 2) [1] but it may also contain irrelevant points that need to be filtered out. 

The kNN-R algorithm consists of two rounds of interactions between the client and the server. Figure 5 demonstrates 

the procedure. (1) The client will send the initial upper-bound range, which contains more than k points, and the initial 

lower-bound range, which contains less than k points, to the server. The server finds the inner range and returns to the 

client. (2) The client calculates the outer range based on the inner range and sends it back to the server. The server 

finds the records in the outer range and sends them to the client. (3) The client decrypts the records and find the top k 

candidates as the final result. 

a. FindingInner Rangewith RASP Perturbed Data 

Algorithm 4 gives the basic ideas of finding the compact inner range in iterations. There are two critical operations in 

this algorithm: (1) finding the number of points in a square range and (2) updating the higher and lower bounds. 

Because range queries are secured in the RASP framework, the key is to update the bounds with the secured range 

queries, without the help of the client-side proxy server. As discussed in the RASP query processing, a range query 

such as S
(L)

  is encoded as the MBR
(L)

  of its polyhedron range in the perturbed space and the 2(d+2)dimensional 

conditions. yT Θ(L) y ≤ 0 determining the sides of the polyhedron, and each of the d + 2 extended dimensions gets a 

pair of conditions for the upper and lower bounds, respectively. 
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The problem of binary range search is to use the higher  bound  range  S
(high)

 and lower bound range S
(low)

  to derive 

S
(mid)

. When all of these ranges are secured, the problem is transformed to (1) deriving Θi fromΘi and Θi; and (2) 

derivingMBR (mid) fromMBR (high) andMBR (low). The following discussion will be focused on the simplified 

RASP version without the OPE component, which will be extended with the OPE component (Proposition 3) [1]. 

As we have mentioned, the MBR of an arbitrary polyhedron can be derived based on the vertices of the polyhedron. A 

polyhedron is mapped to another polyhedron after the RASP perturbation. Concretely, let a polyhedron P has m vertices 

{x1, . . . ,xm}, which are mapped to the vertices in the perturbed space: {y1, . . . , ym}. Then, the upper bound and 

lower bound of  dimension j of  the  MBR  of  the  polyhedron in the perturbed space are determined by max{yij , i =1 . 

. . m} and min{yij , i = 1 . . . m}, respectively. 

Let the j-th dimension of M BR(L)  represented as [s
(L)

j,min   , S
(L)

j,max],  where s
(L)

j,min   = min{yij    , i = 1 . . . m}, S
(L)

j,max 

=  max{yij   (high)       , i   =  1 . . . m}.  Now we choose the MBR
(M I D)

 as follows: for j-th dimension we use [(s
(L)

j,min   + 

s
(H)

j,min)  /2,  (S
(L)

j,max + S
(H)

j,max)/2] (Proposition 4)[1]. 

Including the OPE component.The results onΘ
 (mid)

 and MBR
(M I D)

 can be extended to the RASP scheme with the 

OPE component. However, due to the introduction of the order preserving function fi (), the middle point may not be 

strictly the middle point, but somewhere between the higher bound and lower bound. We use “between” (btw) to 

denote it. Specifically, if Xi < h and Xi < l are the corresponding conditions for the higher and lower bounds. Let the 

condition for the “between” bound be Xi < b that satisfies fi 
(b)

 = (fi 
(h)

 + fi 
(l)

)/2.  According to the OPE property, we 

have l < b < h, i.e., the corresponding range is still between the lower range and higher range. Therefore, the same 

binary search algorithm can still be applied. 

b. RIlu-optimal Multi-step kNN-R Search 

The state-of-the-artmulti-step k-nearest neighbour (kNN) search algorithms are designed touse only a lower bounding 

distance estimation for candidate pruning. The generalized the traditional concept of R-optimality and introduce the 

notion of RI-optimality depending on the distance information I available in the filter step is described in [2]. It 

describes multi-step kNN search algorithm that utilizes lower- and upper bounding distance information (Ilu) in the 

filter step. Furthermore, it show that, in contrast to existing approaches, proposed solution is RIlu - optimal. The 

Algorithm in [2] shows the pseudo-code of this method.The algorithmiteratively reduces the candidate set, where in 

each iteration it identifies truedrops, true hits and/or refines a candidate for which the query predicate cannotbe 

determined without the refinement.This method uses the lower bound and upper bound sent by the client (RI-Optimal 

k-NN Algorithm). 

Now we propose an algorithm which uses the inner bound obtained from the kNN-R algorithm. The inner bound which 

is also called as lower bound is calculated in section 6. Algorithm 1 will return the S
 (mid)

value which will be used in the 

proposed algorithm as lower bound dmin.  

 

TheRIlu-optimal Multi-step kNN-R algorithm starts with the initialization of the incremental ranking on theused index 

according to the lower-bounding distances of all objects. Then, the first k candidates are fetched from the ranking 

sequence into the candidate list (Step 1). In order to detect which candidate must be refined, we use two variablesdmin 

and dmax generating a S
(mid)

 and an upper-bounding distance estimation of the exact k-NN distance, i.e. dmin ≤ 

nnk−dist(q,D) ≤ dmax. The basic idea of our algorithm is that we can use this restriction of the exact k-NN distance in 

order to identify those candidates c with LB (q, c) ≤ nnk−dist (q, D) ≤UB (q, c) which must be refined due to Lemma 

1[2]. Furthermore, as the stop criterion of the main loop, we initialize the variable dfnextreflecting the lowerbounding 

distance of the top element of the ranking sequence to q. 

In the main loop, we first update the variables dmin, dmax and dfnext as depicted. Then, we fetch the next candidate o from 

the ranking sequence into the candidate set candidates, if dmin ≥ df next holds (Step 2). This condition guarantees that 

we fetch only the next candidate from the ranking query if the variable dmin does not guarantee the conservative 

estimation of the exact k-NN distance any more. This ensures the RIlu-optimality of the algorithm and guarantees that 

our algorithm does not produce unnecessary candidates. Then, the lower-bounding distance estimation of the newly 

fetched candidate must lie on the new dmin value after the update of the dminvariable. Hence, the fetch candidate either is 

a true hit or covers the exact kNN-distance, and thus, must be refined. This guarantees, that our algorithm is optimal 

w.r.t. the number of fetches from the ranking sequence which in turn is responsible for the optimality according to the 
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number of index accesses. Let us note, that our fetch routine additionally hands over the actual dmax value to the ranking 

query method. This allows us to proceed the exploration of the index only when necessary and to cut the priority queue 

according to dmax in order to decrease the size of the queue. After fetching a new candidate, we have to update the 

variables dmin, dmaxand dfnext in order to keep the consistency of the used distance estimation variables.Step 3 of the 

algorithm identifies the hits and drops according to the dminand dmax values. Obviously, all candidates c with UB (q, c) 

<dmincan be returned immediately as hits and all candidates c’\ with LB (q, c_) >dmaxcan be pruned. Next, if the number 

of received results plus the remaining number of candidates are greater than k and if the condition df next ≤ dmaxholds, 

then we refine the next candidate (Step 4). The first condition indicates whether it is still necessary to refine a 

candidate. The reason for this condition is, that, if the remaining candidates definitely must belong to the query result 

because there are no concurrent candidates available any more, we can stop the refinement and immediately report the 

remaining candidates as hits. If both conditions hold, the algorithm refines a candidate c with LB (q, c) ≤dmin and dmax ≤ 

UB (q, c).  

 

As mentioned above, this procedure guarantees the RIlu-kNN-R optimality of this algorithm. If dfnext> dmax, i.e. the top 

element of the ranking sequence can be pruned as true drop or if there are no more candidates left, the main loop stops. 

In the following, we show that our algorithm RI kNN-ROptimal is (1) fetch optimal in the number of fetches from the 

ranking sequence, (2) correct, and (3) RIlu-optimal. Let us note, that fetch optimal corresponds to a minimal number of 

disk accesses of the underlying index on which the ranking sequence is computed when using access optimal ranking 

query algorithms. 

 

In summary, assuming that a lower- and upper-bounding filter distance is available for each processed object, our novel 

multi-step kNN-R algorithm is correct, requires the minimal number of index page accesses, optimal w.r.t. the number 

of refinements required to answer the query and protected. 

 

V. CONCLUSION 

We propose the RASP perturbation approach to hosting query services in the cloud, which satisfies the CPEL criteria: 

data Confidentiality, query Privacy, Efficient query processing, and Low in-house work- load. The requirement on low 

in-house workload is a critical feature to fully realize the benefits of cloud computing, and efficient query processing is 

a key measure of the quality of query services. 

RASP perturbation is a unique composition of OPE, dimensionality expansion, random noise injection, and random 

projection, which provides unique security features. It aims to preserve the topology of the queried range in the 

perturbed space, and allows to use indices for efficient range query processing. With the topology-preserving features, 

we are able to develop efficient range query services to achieve sub- linear time complexity of processing queries. We 

then develop the kNN query service based on the range query service. As it was practically proved that kNN-R will not 

work efficiently for high dimensional data as it requires require a lot of distance computations. So, we used the inner 

bound obtained in kNN-R algorithm as the lower bound in RI kNN-R Optimal Algorithm and proposed a new algorithm 

called RI kNN-R Optimal. As this algorithm uses both lower and upper bound it does not produce unnecessary 

candidates and will be more effective on high dimensional data. 
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Algorithm 1(K, δ)-Range Algorithm 
 
procedure (K, δ)-RA NG E(L1 , Lm, k, δ) 
high ← Lm, low ← L1; 
while high − low ≥ E do 
mid ← (high + low)/2; 
num ← number of points in S(mid) ; 
ifnum  ≥ k&&num  6 k + δ then 
                     Break the loop; 
else if num> k + delta then 
high ← mid; 
else 
low ← mid; 
end if 
end while 
return S(mid) ; 
end procedure; 
 
 
Algorithm 2RIkNN-R(QueryObjectq, Integer k, DBIndex I) 
 

// Step 1: Initialization 
SortedList result; 
SortedList candidates; 
initialize ranking on I w.r.t. lower bounding distance approximation; 
fetch the first k objects from ranking and add them to candidates; 
dmin = value returned from algorithm 1; 
dmax = kth smallest upper bound of the elements in candidates; 
df next = lower bounding distance of the next element in ranking; 

do { 
update dmin, dmax, and df next; 
// Step 2: Fetch a candidate 

ifdmin ≥df next then 

fetch next object from ranking →candidates; // only if dmax ≥df next 

updatedmin, dmax, and df next; 
// Step 3: Identify true hits and true drops by using dmin and dmax 

for all c ∈candidates do 

if UB(q, c) < dmin then add c to result; 
ifLB(q, c) > dmax then prune c; 

// Step 4: Refine a candidate 

if|results|+|candidates| > k ∨df next ≤dmax then 

for all c ∈candidates with LB(q, c) ≤dmin ∧dmax ≤UB(q, c) do 

ifdist(q, c) ≤nnk−dist(q, result) then add c to result; 

else 
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add all remaining c ∈candidates to result; 

} while (df next ≤dmax ∨ |candidates| >0) 

return result; 
 

 

 


