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Abstract: This paper presents an efficient and reliable interior point approach to obtain optimal power flow (OPF) 
problem solution. The Interior Point method (IP) is found to be the most efficient algorithm for optimal power flow 
solution. The IP algorithm is coded in MATLAB and the performance is tested on IEEE 14 bus test system with fuel 
cost minimization as objective function. It maintains good accuracy while achieving the high speed of convergence 
when compared to other known linear programming methods. The solution obtained by this algorithm proves to be 
robust to solve the OPF problem of power grid. 
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I. INTRODUCTION 

Present day commercial OPF programs can solve very large and complex power systems optimization problems in a 
relatively less time. Many different solution methods have been suggested to solve OPF problems. In a conventional 
power flow, the values of the control variables are predetermined. In an OPF, the values of some or all of the control 
variables need to be known so as to optimize (minimize or maximize) a predefined objective. The OPF calculation has 
many applications in power systems, real-time control, operational planning, long-term planning and energy 
management systems (EMSs) [1–2]. OPF continues to be significant due to the growth in power system size and 
complex interconnections [3 – 4]. For example, OPF should support deregulation transactions or furnish information on 
what reinforcement is required. OPF studies can decide the tradeoffs between reinforcements and control options as per 
the results obtained from carrying out OPF studies. It is clarified when a control option enhances utilization of an 
existing asset (e.g., generation or transmission), or when a control option is an inexpensive alternative to installing new 
facilities. Issues of priority of transmission access and VAr pricing or auxiliary costing to afford price and purchases 
can be done by OPF.  
The main goal of a generic OPF is to reduce the costs of meeting the load demand for a power system while up keeping 
the security of the system. From the viewpoint of an OPF, the maintenance of system security requires keeping each 
device in the power system within its desired operation range at steady-state. This will include maximum and minimum 
outputs for generators, maximum MVA flows on transmission lines and transformers, as well as keeping system bus 
voltages within specified ranges.  
The secondary goal of an OPF is the determination of system marginal cost data. This marginal cost data can aid in the 
pricing of MW transactions as well as the pricing auxiliary services such as voltage support through MVAR support. 
The OPF is capable of performing all of the control functions necessary for the power system. While the economic 
dispatch of a power system does control generator MW output, the OPF controls transformer tap ratios and phase shift 
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angles as well. The OPF also is able to monitor system security issues including line overloads and low or high voltage 
problems. If any security problems occur, the OPF will modify its controls to fix them, i.e., remove a transmission line 
overload [13].  
The quality of the solution depends on the accuracy of the model used. It is essential to define problem properly with 
clearly stated objectives be given at the onset. No two-power system utilities have the same type of devices and 
operating requirements. The model form presented here allows OPF development to easily customize its solution to 
different cases under study [5–8].  
OPF, to a large extent depends on static optimization method for minimizing a scalar optimization function (e.g., cost). 
It was first introduced in the 1960s by Tinney and Dommel [3]. It employs first-order gradient algorithm for 
minimization objective function subject to equality and inequality constraints. Solution methods were not popular as 
they are computationally intensive than traditional power flow. The next generation OPF has been complex as power 
systems operation or planning need to know the limit, the cost of power, incentive for adding units, and building 
transmission systems a particular load entity.  

II. OPTIMAL POWER FLOW CHALLENGES 

The demand for an OPF tool has been increasing to assess the state and recommended control actions both for off line 
and online studies, since the first OPF paper was presented in 60’s. The thrust for OPF to solve problems of today’s 
deregulated industry and the unsolved problem in the vertically integrated industry has posed further challenges to OPF 
to evaluate the capabilities of existing OPF in terms of its potential and abilities [9].  
Many challenges are before OPF remain to be answered. They can be listed as given below.  
1. Because of the consideration of large number of variety of constraints and due to non linearity of mathematical 
models OPF poses a big challenge for the mathematicians as well as for engineers in obtaining optimum solutions.  
2. The deregulated electricity market seeks answer from OPF, to address a variety of different types of market 
participants, data model requirements and real time processing and selection of appropriate costing for each unbundled 
service evaluation.  
3. To cope up with response time requirements, modelling of externalities (loop flow, environmental and simultaneous 
transfers), practicality and sensitivity for on line use.  
4. How well the future OPF provide local or global control measures to support the impact of critical contingencies, 
which threaten system voltage and angle stability simulated.  
5. Future OPF has to address the gamut of operation and planning environment in providing new generation facilities, 
unbundled transmission services and other resources allocations.  
Finally it has to be simple to use and portable and fast enough.  
 

III. OPTIMAL POWER FLOW PROBLEM 
In an OPF, the values of some or all of the control variables need to be found so as to optimise (minimise or maximize) 
a predefined objective. It is also important that the proper problem definition with clearly stated objectives be given at 
the onset. The quality of the solution depends on the accuracy of the model studied. Objectives must be modelled and 
its practicality with possible solutions.  
Objective function takes various forms such as fuel cost, transmission losses and reactive source allocation. Usually the 
objective function of interest is the minimisation of total production cost of scheduled generating units. This is most 
used as it reflects current economic dispatch practice and importantly cost related aspect is always ranked high among 
operational requirements in power systems [15].  
OPF aims to optimise a certain objective, subject to the network power flow equations and system and equipment 
operating limits. The optimal condition is attained by adjusting the available controls to minimise an objective function 
subject to specified operating and security requirements.  
Some well-known objectives can be identified as below:  
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Active power objectives  
1. Economic dispatch (minimum cost, losses, MW generation or transmission losses)  
2. Environmental dispatch  
3. Maximum power transfer  
 
Reactive power objectives  
MW and MVAr loss minimization  
General goals  
 
1. Minimum deviation from a target schedule  
2. Minimum control shifts to alleviate Violations  
3. Least absolute shift approximation of control shift  
 
Among the above the following objectives are most commonly used:  
 
(a) Fuel or active power cost optimisation  
(b) Active power loss minimisation  
(c) VAr planning to minimise the cost of reactive power support  
 
The mathematical description of the OPF problem is presented below: 
 
OPF Objective Function for Fuel Cost Minimization  

The OPF problem can be formulated as an optimization problem [10] and is as follows:  

Total Generation cost function is expressed as:  

ீܲ)ܨ   ) =  ∑ ߙ) + ߚ
ேಸ
ୀଵ ܲீ  + ܲீߛ 

ଶ )    (1) 

The objective function is expressed as: 

Min ܨ(ܲீ ) = ,ݔ)݂  (2)          (ݑ

Subject to satisfaction of Non linear Equality constraints: 

(ݑ,ݔ)݃ = 0                          (3) 

and Non Linear Inequality constraints: 

ℎ(ݑ,ݔ) ≤ 0                          (4) 

ݑ ≤ ݑ ≤  ௫              (5)ݑ

ݔ ≤ ݔ ≤  ௫      (6)ݔ

ீܲ)ܨ )  is total cost function ݂(ݔ, ,ݔ)݃ ,is the scalar objective (ݑ (ݑ = 0 represents nonlinear equality constraints 
(power flow equations), and ℎ(ݔ,   .is the nonlinear inequality constraint of vector arguments x, u  (ݑ

The vector x contains dependent variables consisting of:  
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 Bus voltage magnitudes and phase angles  
 MVAr output of generators designated for bus voltage control  
 Fixed parameters such as the reference bus angle  
 Non controlled generator MW and MVAr outputs  
 Non controlled MW and MVAr loads  
 Fixed bus voltages, line parameters  

The vector u consists of control variables including:  

 Real and reactive power generation  
 Phase – shifter angles  
 Net interchange  
 Load MW and MVAr (load shedding)  
 DC transmission line flows  
 Control voltage settings  
 LTC transformer tap settings  

The equality and inequality constraints are:  

 Limits on all control variables  
 Power flow equations  
 Generation / load balance  
 Branch flow limits (MW, MVAr, MVA)  
 Bus voltage limits  
 Active / reactive reserve limits  
 Generator MVAr limits  
 Corridor (transmission interface) limits  

Constraints for Objective Function of Fuel Cost Minimization 
The network equality constraints are represented by the load flow equations 
 
ܲ(ܸ,ߜ) − ܲீ  + ܲ = 0                  (7) 
ܳ(ܸ, (ߜ −ܳீ + ܳ = 0                (8) 

 
Where: 
 ܲ(ܸ, (ߜ = | ܸ|∑ | ܸ‖ ܻ|cos (ߜ ߜ− −߮)ே

ୀଵ       (9)                        
ܳ(ܸ, (ߜ = | ܸ|∑ | ܸ‖ ܻ|sin (ߜ − ߜ − ߮)ே

ୀଵ       (10) 
ܻ = | ܻ|∟߶                    (11) 

and load balance equation: 
∑ (ܲீ )−∑ ( ܲ)− ܲ = 0ேವ

ୀଵ
ேಸ
ୀଵ           (12) 

The Inequality constraints representing the limits on all variables, line flow constraints are as: 
 
ܸ  ≤ ܸ ≤ ܸ ௫ ,   i=1, 2,....., N         (13) 
ܲீ  ≤ ܲீ  ≤ ீܲ௫,   i=1, 2,.....,NG      (14) 
ܳீ ≤ ܳீ ≤ ܳீ௫,         i=1,2,....,ܰீ  (15)  
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௫ܫ௩ܭ−  ≤ ܸ − ܸ ≤ ௫ܫ௩ܭ , i=1,2,..., ܰ    (16)    Where i, j are the nodes of line ݈ 
௫ܫఋܭ− ≤ ߜ − ߜ ≤ ௫ܫఋܭ ,  i=1,2,..., ܰ   (17)     Where i, j are the nodes of line ݈ 
ܵ ≤ ܵೌೣ       i=1,2,..., ܰ          (18) 
ܶ  ≤ ܶ ≤ ܶ ௫        i=1,2,..., ܰ      (19) 
 ߜ ≤ ߜ ≤ ,..., ௫       i=1,2ߜ ܰ      (20) 
 

IV. INTERIOR POINT METHOD 
It has been found that, the projective scaling algorithm for linear programming proposed by N. Karmarkar is 
characterized by significant speed advantages for large problems reported to be as much as 12:1 when compared to the 
simplex method. Further, this method has a polynomial bound on worst-case running time that is better than the 
ellipsoid algorithms. Karmarkar’s algorithm is significantly different from Dantzig’s simplex method. Karmarkar’s 
interior point rarely visits too many extreme points before an optimal point is found. In addition, the IP method stays in 
the interior of the polytope and tries to position a current solution as the “center of the universe” in finding a better 
direction for the next move. By properly choosing the step lengths, an optimal solution is achieved after a number of 
iterations. Although this IP approach requires more computational time in finding a moving direction than the 
traditional simplex method, better moving direction is achieved resulting in less iteration. In this way, the IP approach 
has become a major rival of the simplex method and has attracted attention in the optimization community. The Interior 
Point Method [10] is one of the most efficient algorithms. The IP method classification is a relatively new optimization 
approach that was applied to solve power system optimization problems in the late 1980s and early 1990s and as can be 
seen from the list of references [11]. The Interior Point Method (IPM) can solve a large scale linear programming 
problem by moving through the interior, rather than the boundary as in the simplex method, of the feasible reason to 
find an optimal solution. The IP method was originally proposed to solve linear programming problems; however later 
it was implemented to efficiently handle quadratic programming problems. It is known as an interior method, since it 
finds improved search directions strictly in the interior of the feasible space as shown in Fig.1.  

 

Fig.1. Polytope of a two – dimension feasible region. 

The basic ideas involved in the iteration process of Interior Point Method as proposed by N. K.Karmarkar [12], are 
given below. In order to have a comprehensive idea of the optimisation process, the difference between the simplex and 
interior point methods is described geometrically. Consider an interior path, described by xi, as shown in Fig.1. In the 
simplex method the solution goes from corner point to corner point, as indicated by xi. The steepest descent direction is 
represented by c. The main features of the IPM as shown in Fig.1 are:  
1) Starting from an interior point, the method constructs a path that reaches the optimal solution after little iteration 
(less than the simplex method).  
2) The IPM leads to a “good assessment” of the optimal solution after the first few iterations. This feature is very 
important, because for each linearization of the original formulation an exact result of Quadratic Programming problem 
is not imperative. Normally it is enough to obtain a point near the optimal solution because each QP sub problem is 
already an approximation of the original problem.  
The interior point method starts by determining an initial solution using Mehrotra’s algorithm, to locate a feasible or 
near-feasible solution. There are two procedures to be performed in an iterative manner until the optimal solution has 
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been found. The formal is the determination of a search direction for each variable in the search space by a Newton’s 
method. The lateral is the determination of a step length normally assigned a value as close to unity as possible to 
accelerate solution convergence while strictly maintaining primal and dual feasibility. A calculated solution in each 
iteration to be checked for optimality by the Karush – Kuhn – Tucker (KKT) conditions, which consist of primal 
feasibility, dual feasibility and complementary slackness.  
 

OPF Problem Formulation by Primal — Dual Interior Point Method 
As has been mentioned, the objective function considered in this paper is to minimize the total production cost of 
scheduled generating units. OPF formulation consists of three main components: objective function, equality 
constraints, and inequality constraints [16-17].  
 
An OPF problem is generally formulated as per Eq. (1) – (6).  

Objective Function  

The objective function is given by Eq. (2) and is reproduced below. 

ீܲ)ܨ ) =  ∑ ߙ) + ߚ
ேಸ
ୀଵ ܲீ  + ܲீߛ 

ଶ  ) 

Equality Constraints  

The equality constraints are active/reactive power flow equations.  

Nonlinear equations can be linearized by the Taylor’s expansion using 

൬∆ܲ(ܸ, (ߜ
∆ܳ(ܸ, ൰(ߜ =  ൬ܬଵଵܬଶଵ

ଶଶܬଵଶܬ 
൰ ቀ∆ߜ∆ܸ ቁ 

Where ൬ܬଵଵܬଶଵ
ଶଶܬଵଶܬ 

൰ is the Jacobian matrix. 

Transmission loss (PL) can be directly calculated from the power flow.  

Inequality Constraints  

The inequality constraints consist of generator active/reactive power limits, voltage magnitude limits, and transformer 
tap position limits. 

Solution Algorithm 

The PDIPM method is started by arranging a primal quadratic programming problem into a standard form as:  

Minimize ଵ
ଶ
ݔ்ܳݔ +  (21)      ݔ்ܿ

Subject to ݔܣ = ݔ ,ܾ ≥ 0     (22) 

Eq. (21) can be transformed into the corresponding dual problem having the form. 

Maximize 
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− ଵ
ଶ
ݔ்ܳݔ + ்ܾܹ                 (23) 

Subject to –ܳݔ + ݓ்ܣ + ݏ = ܿ, 

ݏ ≥ 0     (24) 

ݔܣ = ݔ ,ܾ ≥ 0 (Primal feasibility)   (25) 

ݔܳ– + ݓ்ܣ + ݏ = ݏ  ,ܿ ≥ 0  (Dual feasibility)                      (26) 

ܺܵ݁ =  (27)       (Complementary Slackness) ݁ߤ

Where 

ߤ = (ೖ)ௌೖ


                        (28) 

From the KKT conditions Eq. (25-27), the directions of translation are calculated using the Newton’s method which 
yields the following system Eq. 


ܣ 0 0
−ܳ ்ܣ ܫ
ܵ 0 ܺ

൩ 
݀௫

݀௪

݀௭
 = 

ݔܣ −ܾ
ݔܳ− + ݓ்ܣ + ݏ − ܿ

ܺܵ݁ − ݁ߤ
        (29) 

The right hand side of Eq. (29) is so-called slackness vectors and can be assigned to new variables as 

ݐ = ܾ −            (30)ݔܣ

ݑ = ݔܳ + ܿ − ݓ்ܣ −       (31)ݏ

ݒ = ݁ߤ − ܺܵ݁         (32) 

From Eq. (29) – (32), we have 

௫݀ܣ = ݐ                    (33) 

−ܳ݀௫ + ௪்݀ܣ + ݀௦ = ݑ            (34) 

ܵ݀௫ + ܺ݀௦ = ݒ                 (35) 

Combining and rearranging Eq. (34) and Eq. (35) gives 

−݀௫ + (ܵ + ܺܳ)ିଵ்ܺ݀ܣ௪ = (ܵ + ܺܳ)ିଵ(ܺݑ −  )              (36)ݒ

With Eq. (33) and Eq. (36), a dual search direction can be derived a 

݀௪ = ܵ)ܣ] + ܺܳ)ିଵ்ܺܣ]ିଵ − ܵ)ܣ] + ܺܳ)ିଵ(ܺݑ − (ݒ +  ]    (37)ݐ
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The equation for a primal search direction can be derived from Eq. (36). 

݀௫ = ( ܵ +ܺܳ)ିଵ[ܺ(்݀ܣ௪ − (ݑ +  ]                                               (38)ݒ

With the primal search direction and Eq. (35), a slack search direction can be obtained by 

݀௫ = ܺିଵ(ݒ − ܵ݀௫)        (39) 

To find appropriate step lengths while keeping the primal and dual problem feasible, Eq. (40) – Eq. (43) are used. 

ߙ = minቆ−
௫ೕ
ೖ

ௗೣೕ
ೖ ቇ |݀௫ೕ

 < 0       (40) 

ߙ = minቆ−
ௌೕ
ೖ

ௗೞೕ
ೖ ቇ |݀௦ೕ

 < 0       (41) 

௫ߙ
 = min(ߙ  )              (42)ߙ,

ߙ = ௫ߙ0.99
                             (43) 

An updated solution can be computed by Eq. (44) – (46). 

ାଵݔ = ݔ +  ݀௫               (44)ߙ

ାଵݓ = ݓ + ݀௪ߙ              (45) 

ܵାଵ = ܵ +  ݀௦                 (46)ߙ

Algorithm for PDIPM 

The PDIPM algorithm applied to the OPF problem is summarized step-by-step as follows. 

Step 1: Read relevant input data. 
Step 2: Perform a base case power flow by a power flow subroutine. 
Step 3: Establish an OPF model. 
Step 4: Compute Eq. (30) – (32). 
Step 5: Calculate search directions with Eq. (37) – (39). 
Step 6: Compute primal, dual and actual step-lengths with Eq. (40) – (43). 
Step 7: Update the solution vectors with Eq. (44) – (46). 
Step 8: Check if the optimality conditions are satisfied by Eq. (25) – (27) and if μ ≤ ε (ε =0.001 is chosen). 
If yes, go to the next step. Otherwise go to step 4. 
Step 9: Perform the power flow subroutine. 
Step 10: Check if there are any violations in Eq. (15) and Eq. (19). If no, go to the next step; otherwise, go to step 4. 
Step 11: Check if a change in the objective function is less than or equal to the prespecified tolerance. If yes, go to the 
next step; otherwise, go to step 4. 
Step 12: Print and display an optimal power flow solution. 
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V. OPF TEST CASE: - IEEE 14 BUS TEST SYSTEM 

In this study, the standard IEEE 14-Bus 5 Generator test system is considered to investigate effectiveness of the 
proposed method. The IEEE 14-bus system has 20 transmission lines [14]. The single line diagram is shown in Fig.2. 

 

Fig. 2. IEEE 14-Bus test System 

The values of fuel cost coefficients are given in Table 1. The total  load demand of the system is 259 MW and 5 -
Generators should share load optimally. 

Table 1: Generator Fuel Cost Coefficients 

 

 

Table 2: Generator Operating Limits 

 

(Minimum or Maximum Generation limits of Generators are presented in Table 2) 

Table 2: Generation limits of Generators 
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VI. OPF RESULTS  
CPU Computational Time= 0.29 seconds 

Total Generation Cost = 8081.53 $/hr 

Table 3.1 OPF Solution: Generation Schedule 

Parameter OPF Solution by IP 
Method (MW) 

PG1 194.33 
PG2 36.72 
PG3 28.74 
PG6 11.20 
PG8 8.50 

 Table 3.2 Voltage Magnitude and Incremental Costs at Different Buses. 

 
 
Bus 
No. 

 

 
Voltage at 
different 
Buses (in 

p.u) 
 

Bus Incremental Costs 
 

Lambda 
P($/MW-hr) 

 

Lambda 
Q($/MVAR-

hr) 
 

1 1.060 36.724 -0.094 
2 1.041 38.360 - 
3 1.016 40.575 - 
4 1.014 40.190 0.120 
5 1.016 39.661 0.208 

 
6 1.060 39.734 - 
7 1.046 40.172 0.120 
8 1.060 40.170 - 
9 1.044 40.166 0.196 
10 1.039 40.318 0.309 
11 1.046 40.155 0.228 
12 1.045 40.379 0.212 
13 1.040 40.575 0.353 
14 1.024 41.198 0.571 

 

VII. CONCLUSION 

In this paper, primal dual interior point algorithm(PDIP) is used to solve the optimal power flow problem in  power 
systems. The OPF problem is formulated as a linear optimization problem with equality and inequality constraints in 
power systems. The minimization of fuel cost is considered as objective function. This approach was successfully and 
influentially performed to find the optimal settings of the control variables of test system(IEEE 14 bus). The simulation 
results proved the robustness of the PD interior point method to solve the OPF problem. The effectiveness of this 
algorithm is demonstrated on IEEE 14 bus system.  
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