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INTRODUCTION
Tuberculosis (TB) is one of the most serious global health issues, the pathogenesis of which is still not clearly understood [1]. 

Emergence of multidrug resistant (MDR) and, more recently, extremely drug-resistant (XDR) Mycobacterium tuberculosis strains, 
along with TB-HIV co-infection, have become the new major challenge for TB therapy and control [2]. Anti-TB drugs, such as 
rifampin and isoniazid, were discovered in 1963, and since then, there have not been any discovery of novel, efficient anti-TB 
drugs [3]. The number of effective therapeutic targets for TB treatment is insufficient, especially for treatment of MDR-TB. Thus, 
high-throughput screening for therapeutic targets is the first and most important step for the development of novel anti-TB drugs 
and improved control of TB [4].

The cell wall of M. tuberculosis is mainly composed of capsule, mycolic acid, peptidoglycan, arabinose and intima [5]. These 
components play an important role in the processes that maintain the integrity of M. tuberculosis cell morphology, act against 
erosion by chemicals, escape host immune response, and lead to development of drug resistance and on a whole, increase 
the pathogenicity of M. tuberculosis. In this view, the M. tuberculosis cell wall-related components and biosynthesis pathways 
could be used as targets of anti-TB drugs. Traditional anti-TB drugs, such as Isonicotinic acid hydrazide (INH), target the mycolic 
acid synthesis pathway [6]. However, inadequate or interrupted treatment with INH results in INH resistance through acquisition 
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ABSTRACT
The cell wall of Mycobacterium tuberculosis plays an important role 
in pathogenesis. It is impossible to analyze the cell wall-associated 
genes one by one since lacking of functional annotation. Here, we 
performed clustering analysis of gene microarray expression data and 
acquired 33 co-expression modules by the construction of three nodes 
co-regulated networks. A total of 555 cell wall-related genes were 
predicted in the modules using a multi-factor logistic regression model 
and motif predicting analysis. The module analysis identified 15 genes 
without annotation that were also associated with the cell wall. Twenty-
five modules contained significant motifs, and genes in 10 of these 
25 modules shared a common motif. The methodological approach 
utilized herein may be applied to identification and description of other 
function-associated genes in the M. tuberculosis genome. The results of 
this study might improve understanding of the M. tuberculosis cell wall, 
and in finding new targets for anti-TB drugs.
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of mutations in inhA, ahpC, nadh, katG, or KasA in M. tuberculosis clinical isolates [7-9]. Hence, it is prudent to screen new M. 
tuberculosis cell wall-relevant genes. In addition, the components and functions of M. tuberculosis cell walls are quite complex 
and various. Traditional methods for screening M. tuberculosis cell wall genes are expensive and inefficient since they use the 
technologies of gene knockout and RNA interference to screen the potential cell wall synthesis genes or the target molecules in 
metabolism. Along with the limitations of experimental methodology, there is still no efficient technology to systematically screen 
molecules relevant to cell wall synthesis. Thus, the development of a novel approach for panoramic scanning and screening of the 
M. tuberculosis genes related to cell wall synthesis is necessary. For the above reasons, in our study, we retrieved all published 
gene microarray data for M. tuberculosis H37Rv, and established the co-regulatory networks of M. tuberculosis genes associated 
with cell wall synthesis, unknown genes and other genes by means of integration and clustering [10]. The module analysis and the 
high-throughput annotation of M. tuberculosis genes associated with cell walls provide a molecular basis for the research and 
development of novel efficient and sensitive anti-TB drugs with less harmful effects.

RESULTS AND DISCUSSION
Cell wall-related modules in M. tuberculosis

Microarray data for M. tuberculosis H37Rv were downloaded from the NCBI database (as of May 2013), which totaled 2863 
microarrays of 43 series. These microarrays were related to DNA methylation (n=15), Drug action on tuberculosis (n=1076), 
Growth and Growth condition to M. tuberculosis (n=758), infection (n=910), gene mutation (n=78) and regulating factors (n=21) 
(Table S1). A total of 727 genes that were annotated in the Gene Ontology database (www.geneontology.org) were utilized 
as “seed” genes, and processed for cluster analysis by means of hierarchical clustering, K-means clustering and integrated 
clustering (Table 1). Based on the results of hierarchical clustering, every module contained a large number of genes, and 
the largest module contained 342 genes. This method decreased the discrimination of gene functions, although hierarchical 
clustering revealed the interaction between genes [11]. On the contrary, based on K-means clustering, the genes associated with 
cell walls were scattered in 201 modules. This method had higher discrimination, but was less clear regarding the interaction 
between genes [12]. Considering the outcomes of these two methods, integrated clustering was performed based on both K-means 
clustering and hierarchical clustering (detailed in Materials and Methods). Using this integrated cluster analysis, we identified 163 
modules, to which all the known cell wall-associated genes were allocated. Statistical analysis demonstrated that 33 of the 163 
modules were closely associated with cell wall synthesis, which contained a total of 555 genes. The correlation of these modules 
was calculated by Pearson correlation coefficient, and the integrated clustering results were visualized with Cytoscape software 
version 3.0.2. The results of GO and Pfam analysis illustrated that these genes correlated significantly with several biological 
processes, such as pathogenesis and response to stimulation (Figure 1), which were consistent with the function of the cell wall 
in M. tuberculosis pathogenesis. These results showed a better discrimination of the integrated cluster analysis since at most 49 
genes were contained in one module and at most 16 genes were associated with the cell wall. 

Total number of 
modules

No. of modules containing 
cell wall-associated genes

Maximum No. of 
genes in one module

Significantly related 
modules

Maximum No. of cell wall-
associated genes in one module

K-means cluster 308 201 54 24 19
Hierarchical cluster 308 131 342 29 70
Integrated cluster 163 163 49 33 16

Table 1. Cluster analysis of Mycobacterium tuberculosis H37Rv gene expression

The yellow spots represent the known Mycobacterium tuberculosis genes associated with cell walls. The red spots represent candidate genes. 
The lines represent the relationships between genes. The thickness of the lines represents the strength of correlation.

Figure 1. Cell wall-related modules in Mycobacterium tuberculosis. 
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Multi-factor logistic regression analysis of cell wall related modules

A multi-factor logistic regression was used to analyze the correlation between observations and several factors due to 
polygenic co-effect of M. tuberculosis cell wall functions [13]. Each factor was evaluated by means of multi-factor linear regression 
equations [14]. After that, we analyzed the significance of GO-results using multi-factor logistic regression analysis (Figure 2), and 
constructed a predictive model (detailed in Materials and Methods).
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Figure 2. Significant items (number of genes) associated with cell wall. 

We randomly chose 126 genes from the 727 known cell wall-associated genes, and 128 genes from the 1703 known genes 
not associated with the cell wall to perform verification. Our predictive model identified 125 of the 126 cell wall-associated genes 
with an accuracy 99.2%, while 122 of the 128 non-cell-wall-associated genes were correctly determined, the accuracy of which 
was about 95.3%. So we utilized this predictive model to identify the genes in the 33 cell wall-associated modules described 
above; 120 of the 197 annotated genes were found associated with cell wall (Table S2).

Motif analysis of cell wall-related modules

The 33 modules associated with the cell wall were subjected to motif analysis using BOBRO software [15]. As a result, 25 
modules were found to contain significant motifs whereas genes in 10 of these 25 modules shared a common motif (Figure 3). In 
addition, these motifs were located at several sites, and the number of motifs before operons was different, which was in accord 
with the general law of the distribution of motifs.

According to the results of motif prediction, 15 genes without annotation in the 10 modules were associated with cell 
wall. In particular, module 5 included three cell wall-associated genes (Rv2005c, Rv3132c, Rv3133c) and one unknown gene 
(Rv0082). Using DOOR2 (http://csbl.bmb.uga.edu/DOOR/), we found that the four genes in module 5 were regulated by three 
operons (NO.7810, NO.8253, NO.8521), which had a common motif sequence of CGGCGTCG. This revealed the relationship 
between Rc0082 and the function of the cell wall. In addition, CAAT-box located at 70~100 bps, demonstrated the accuracy 
of the upstream motif prediction. The cell wall-related genes, Rv1440 and Rv0702, in module 13 were also identified as cell 
wall-associated genes through the model analysis. These two genes shared common transcription factors with other cell wall-
associated genes in module 13. Therefore, we assumed that Rv1440 and Rv0702 were closely related to cell wall function. It is 
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remarkable that Rv0702 is a part of the Rv0702~Rv0710 gene cluster, whose expression was associated with ribosome proteins 
as we showed by using the KEGG pathway analysis tool (http://www.genome.jp/kegg/) (Figure 4).

 
The rectangles represent motif locations. The base-pair sequences represent the motifs. The cluster numbers represent the modules in which 
the motifs exist.

Figure 3. Landscape of motifs in ten cell wall-related modules.

 
The red subunits represent the proteins expressed by the Rv0702~Rv0710 gene cluster. The pink subunits represent the ribosomal proteins in 
Mycobacterium tuberculosis. The blue subunits represent the proteins unassociated with ribosomes.

Figure 4. Schematic view of the ribosome subunit proteins.

Previous studies demonstrated that genes involved in the synthesis of ribosome proteins also participate in the synthesis of 
cell wall [16], and the restriction of the function of genes associated with cell wall synthesis can change the structure of ribosomes 
[17]. Hence, genes associated with cell wall synthesis also play an important role in ribosome synthesis. In addition to the above 
findings, the genes, Rv0702, Rv0706, Rv0707, and Rv0709, in module 13 not only were close in proximity, but also shared the 
same operon, No. 7948. Other genes regulated by operon No. 7948 contained 33 modules in all, including Rv0703, Rv0704, 
Rv0705, Rv0708, and Rv0710. Furthermore, it was verified that Rv0706 and Rv0707 were associated with M. tuberculosis cell 
wall. Together with the characteristics of prokaryotic genic expression, we believe that genes in the modules regulated by operon 
No. 7948 might be associated with M. tuberculosis cell wall.

MATERIALS AND METHODS
Collection and mining of data

Gene microarray data for strain H37Rv of M. tuberculosis were downloaded from NCBI (www.ncbi.nlm.nih.gov/gds). After 
selection, 2710 H37Rv microarrays of 43 series were retained. Owing to the different probe number of several microarrays from 
different companies, we unified the genes in different microarrays according to the M. tuberculosis gene number and names 
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published by KEGG database in 2013; missing items were represented as NA. We further standardized the microarray data by 
means of min-max procedure as follows: the 5% largest and 5% smallest data in every microarray were given the same maximum 
value or minimum value, respectively, to remove the effect of extreme values. The values ranged from 1 (min) to 100 (max). A 
total of 727 M. tuberculosis genes were selected through GO analysis.

Cluster analysis

A 3994 × 2710 matrix was built using the standardized microarray data. The rows of the matrix represented the expression 
of each gene under 2710 conditions, and the columns represented the expression of each condition for every gene. The 
cluster analysis was performed using the bioinformatics toolbox of Matlab software. During hierarchical clustering, we used the 
Spearman function to calculate correlation. The complete function was best for calculating the linkages within clusters. Finally, 
the correlation function was used to calculate correlation in K-means clustering.

Construction of co-expression networks and predicitive model

Every gene in the same module had a certain correlation. To display the correlation, we calculated Pearson correlation 
coefficients for each pair of genes in every module. A positive co-expression was one with an R-value greater than 0.90, while 
negative co-expression was indicated by an R-value less than -0.90 (Usadel et al.). A co-expression network was constructed using 
Cytoscape software version 3.0.2.

Multi-factor logistic regression analysis

Highly significant cell wall-associated items (P<0.01) were selected in the GO database, and a multi-factor logistic regression 
analysis model was constructed using those items as dependent variables. To verify the sensitivity and specificity of the multi-
factor logistic regression model, 126 genes were randomly chosen among 727 cell wall-associated genes and 128 genes of 1703 
genes not associated with cell wall. We marked the items, which had the dependent variables in the annotations, with 1. Then, 
by the theory of logic regression, the gene was not associated with M. tuberculosis cell wall if all of the results were 0. This model 
was used to predict cell wall-associated the genes in the 33 modules.

Motif analysis

A total of 33 modules associated with cell walls were analyzed using BOBRO software [18]. BOBRO is accurate motif prediction 
software focused on the features of prokaryotic genomes, which uses the algorithms of motif closures and graph theory. It is 
based on the hypothesis that the internal genes might be regulated by the same transcription factors and prokaryotic regulatory 
regions [19]. Upstream 300-bp DNA sequences were selected as regulatory regions, and the conservative sites were searched 
upon the regulatory regions, used as candidate regulatory motifs. The significant motifs were selected utilizing the characteristics 
of transcriptional regulation motif sequences.

Statistical analysis

The significances were analysed using hypergeometric distribution, and P-values less than 0.01 were considered statistically 
significant. Correlation was calculated using the Pearson correlation coefficient, and Chi-square test was used to analyze the 
discrepancy between the three clusters.

ACKNOWLEDGEMENTS
This work was supported by National Natural Science Foundation of China (61303084 and 81271897), Specialized 

Research Fund for the Doctoral Program of Higher Education of China (20110061120093), China Postdoctoral Science 
Foundation (20110491311 and 2012T50285, Foundation of Jilin Provincial Health Department (2011Z049), Foundation of 
Jilin Province Science and Technology Department (20130522013JH and 20140414048GH) and the Norman Bethune Program 
of Jilin University (No. 2012219). We also thank the Medjaden Bioscience Limited for editing and proofreading this manuscript.

REFERENCES
1. Dutta NK, et al. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 2010; 201: 1743-1752. 

2. Cohn DL, et al. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD Global Surveillance 
Project. International Union against Tuberculosis and Lung Disease. Clinical infectious diseases: an official publication of 
the Infectious Diseases Society of America 1997; 24 1: S121-130. 

3. Brigden G, et al. Principles for designing future regimens for multidrug-resistant tuberculosis. Bulletin of the World Health 
Organization 2014; 92: 68-74. 

4. Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2003; 
83: 91-97. 

5. Vilcheze C, et al. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces 
accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. Journal of bacteriology 2000; 182: 
4059-4067. 



e-ISSN:2320-3528
p-ISSN:2347-2286

29RRJMB | Volume 5 | Issue 3 | September, 2016

6. Bergler H, et al. Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem 1994; 
269: 5493-5496. 

7. Wilson TM and Collins DM. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. 
Molecular microbiology 1996; 19: 1025-1034. 

8. Wade MM, et al. Accurate mapping of mutations of pyrazinamide-resistant Mycobacterium tuberculosis strains with a 
scanning-frame oligonucleotide microarray. Diagnostic microbiology and infectious disease 2004; 49: 89-97. 

9. Yu SX and Shi J. Segmentation given partial grouping constraints. IEEE Trans Pattern Anal Mach Intell 2004; 26: 173-183. 

10. Vermunt JK. K-means may perform as well as mixture model clustering but may also be much worse: comment on Steinley 
and Brusco (2011). Psychol Meth 2011; 16: 82-88; discussion 89-92. 

11. Baltar VT, et al. A structural equation modelling approach to explore the role of B vitamins and immune markers in lung 
cancer risk. Eur J Epidemiol 2013; 28: 677-688. 

12. Barrett T, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic acid Res 2013; 41: 991-995. 

13. Galagan JE, et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 2013; 499: 178-183. 

14. Fu LM. Machine learning and tubercular drug target recognition. Curr Pharm Des 2014; 20: 4307-4318. 

15. Usadel B, et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell 
Environ 2009; 32: 1633-1651. 

16. Shannon PT, et al.  RCytoscape: tools for exploratory network analysis. BMC Bioinformatics 2013; 14: 217. 

17. Do JH and Choi DK. Clustering approaches to identifying gene expression patterns from DNA microarray data. Mol Cells 
2008; 25: 279-288. 

18. Li G, et al. A new framework for identifying cis-regulatory motifs in prokaryotes. Nucleic Acids Res 2011; 39: e42. 

19. Ma Q, et al.  An integrated toolkit for accurate prediction and analysis of cis-regulatory motifs at a genome scale. 
Bioinformatics 2013; 29: 2261-2268.


