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Definition of Terms 
Nmorcha operator (∇N): A theoretical operator derived from the characteristics property of a sectorial polynomial (m=n) matrix 
of spherical harmonic function that operates filtration on functions with indeterminate or chaotic state!  
∇N:→f(x)∈ Θ

Threshold operation: An operation performed on operand to obtain the value of a threshold function.

Threshold gate: A logic plane where a threshold operation is performed. 

Threshold operator: A logic element that performs a threshold operation.

Threshold: The starting point for a new state or experience. 

Boundary operator: a certain element that permits transition by gradient profiling at boundary plane of a space to either divides 
of a domain.

Determinant: The characteristic value of a group of variables that ascribes peculiarity and representative attribute to the variables. 
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ABSTRACT

There are recurrent literatures to show that contractors in the  
construction industry are going insolvent.  As a crippling process, there are 
early signs leading to contractor’s insolvency.  Conflicting literatures have 
documented causes of insolvency in construction project in an irregular cali-
bration.  This paper argues theoretically that those causes can be stabilized 
calibrated with a view to establishing a threshold point or the limiting point 
beyond which a contractor becomes insolvent.  A conceptual theory was built 
on spherical harmonic polynomial for which a sector of the sphere repre-
senting an entire economic sphere was taken to represent the construction 
industry sector.  The sectors’ investigation precipitated five (5) main causes 
of insolvency from five (5) significant unethical practices.  These variables 
were subjected to an orthogonal 5 × 5 square matrix to derive a pseudodif-
ferential operator matrix with Fredholm properties narrated in Athanasiadis 
et al. and Claeys’ boundary integral problems.   The derived determinant was 
used to operate as Nmorcha operator (∇N) on the population variable that 
assumed a chaotic attribute under a normal distribution curve at the critical 
stressed boundary plane.  The Nmorcha operator(∇N) as a determinant oper-
and at the boundary point of the critical region fittered variables to the skew 
of accepted and reject domains.  The filtration operation at the boundary 
point presented a value of e2i4 representing falsification of projects financial 
status (e2) arising from poor project cost control (i4).  Beyond this point in the 
array of causes in the calibrated insolvency scale, the contractor becomes 
insolvent.
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Contractors in the construction business are gliding into insolvency or emphatically becoming insolvent.  What remains 
indeterminate is; at what point in life of the project do they become insolvent?  ASHURST sounded a tocsin that contractors’ 
insolvencies will increase from ASHURST [1] and advocated that contractors should devise an organizational metric to indicate the 
early warning signs of insolvency.  Nevertheless, contractors 100% alertness may not be a rescue option to the inevitable because, 
combating insolvency in the construction industry is almost as a helpless combat of man with climate reclamation!  The reason 
for this is that the world economic recession in the recent past came with global financial warming/depletion that necessarily will 
and still interfere with any remediation measure to combat insolvency in the real sector of the construction industry [2].

In the last 10 years, research efforts have been directed towards the investigation of the causes of insolvency amongst 
construction contractors.  Typically, Arain and Low proposed measures of minimizing impacts of variations on construction project 
as a way of avoiding insolvency [3,4].  With the same objective, Bahram offered some legal claim protection methods that can 
mitigate insolvency on risk transfer basis by insertion of express legal clauses in contract documents.  Also, the thought that 
insolvency may arise from some foundational ethical reasons inspired Wood to prescribe a friendly partnership relational model 
in construction projects [5].  More the same, the indicators given by ASHURST on early signs of contractor’s insolvency are very 
leading to the expiration of insolvency in construction contract business should contractors adhere.  Assuredly, this paper opines 
that a threshold value from the ladder (hierarchy) of causes of insolvency in construction project contracts based on calibration 
will certainly give scientific credence to combating insolvency occurrence and friction the gliding into that economic state.

A Survey of Insolvency Literature in the Construction Industry 

The concept of insolvency is not peculiar to construction sector of any economy.  As a matter of fact, insolvency is an economic 
state of an organisation that reflects the financial health status of the organisation.  The reason for its study is in an attempt to 
master its forms, its causes, its sources and its prevention.  Arain did a classical investigation on the causes of insolvency and 
unethical practices of contractors in Pakistan construction industry [6].  The investigation was conducted vide a questionnaire 
survey administered to 90 contractors.  Thirty (30) questionnaires were returned and analysed. The findings showed nineteen 
(19) speculative causes but with five (5) main causes of insolvency. The five significant causes identified in Arain were absence of 
barriers, cash flow problems poor financial control, knock-on effect and onerous conditions of contract.  The study also noted that 
these five (5) significant causes of insolvency are also intrinsically linked to unethical practices of contractors with the exception 
of absence of barriers.  This outcome collaborates earlier knowledge on the subject by [5-10] Arain, Assaf and Low, Newman, Dalla-
Costa, Lowe and Low. A significant outcome of Arain study was that construction industry should pay attention to ethical behaviour 
and good practices in order not to jeopardize the financial stability of contractors in the supply chain.  ASHURST before the Arain 
study proposed a pre-emptive measure on decimating insolvency, rather than studying the symptoms. The underlying preposition 
of the ASHURST literature is that contractors are to be vigilant to certain indicators of early warning signs of insolvency that could 
lead to financial embarrassment.  According to the study, the following are early indicators of insolvency; sub-contractors making 
demands for payments directly, contractors requesting for early/advancement to cover the cost of sub-contractors or materials, 
scarcity of work on site which is a sign of possible cash flow in the future, slow progress of work and missed date, employees 
apathy arising from none payment of wages couple with reduced labour force, disappearance of materials, persistent rumours 
of declining financial status, application for spurious claims, ailing  contractor’s account, diversion of income, court judgments 
that conveys orders of mandamus on the contractor and whether if the contractor’s parent company is showing any of these 
symptomatic signs.

However, symptoms and treatment of insolvency in construction projects need not be a laboratory science.  As a cripping 
process, reminiscence of pathological, metamorphosis, its dynamics requires empirical study before the process converges to a 
literacy zero (0) i.e. contractor’s oblivion.  A complementary study by Turner and Townsend proposed [11] a four (4) way test to show 
that a contractor is gliding to insolvency in consonance with Section 132 of the UK Insolvency Act of 1986.  These include failure 
to pay a statutory demand over a threshold, execution on a judgment is unsatisfied, inability to pay debts arising from cash flow 
deficit and value of assets are less than liabilities.  Bahram attempted a legal prescription to insolvency in construction projects 
with a review of the Perar BV vs. General Surety & Guarantee Co. Ltd.  British Law Report (BLR) 72, Case.  The outcome of that 
study was that insolvency is not a breach of contract as default, unless it is expressly provided in contract documents.  Further, 
the study reported that it is neither to the benefit of the contractor nor the client to resort to termination of contract arising from 
insolvent situation [12-18].  In the same study, it averred that there is plethora of recovery measures towards diffusing insolvency 
in contractual arrangements.  Specifically, it mentioned administrative receivership; Company Voluntary Arrangement (CVA) and 
scheme of arrangement that is subject to satisfactory compliance with statutory requirements.  Other research efforts in unison 
offered some legal protection approach but with a caveat that Employer’s termination notice must necessarily show compliance 
with contractual requirements otherwise the situation may turn beneficial by way of compensation to the contractor. As a legal 
rescue mechanism, contractors and employers should turn to the prescribed procedure of resolving termination of contract due to 
insolvency.  Appreciably, the JCT, under Clause 8 was very benevolent to both parties with Clause 8.2 conditioning that contractor’s 
termination shall not be issued unreasonably or vexatiously [19-22].  Contrary to NEC Clause 90.2 that permits employer to terminate 
for any reason he deemed fit.  On the basis of clustered research reaction, this paper argues that, there are events that culminates 
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to insolvency and seeks to investigate the threshold or the limiting point beyond which a contractor becomes insolvent. 

Theoretical Setup

The Arain study, precipitated an outcome of six (6) unethical practices correlating to five (5) significant causes of insolvency 
on a shifted like scale of 1-6 mean score. Indicating a probability space between most likely and most unlikely as shown below 
(Table 1).

1iϕ represents unethical practice, ϕe represents causes of insolvency such that absence of barriers ( 1iϕ ) as a cause of 
insolvency is likely to be originated by the unethical practice of failure to reconcile with sub-contractor’s concern (ϕe5) = 2.81.  
Generally, the Arain source and cause correlation of 6 × 5 matrix is indicated to read (Table 2).

Conceptually, two variables such as source (unethical practices (ϕei) and causes (of insolvency), ϕej  are said to be orthogonal 
if their scalar product vanishes.  A family of variables is an orthogonal system on the interval (a, b) with the weight function ω(x) 
(or distribution a(x)), if for any two distinct members of the family say (ϕeϕi) = 0.  From the Arain results, the correlates can form a 
system of orthogonal family as; 

1 1 1 2 1 5

2 1 1 4

2 1

4 1 4 2

5 1

6 1 6 5
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ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ
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Consequently, this paper idealizes a threshold estimation function for contractor’s insolvency which is a variable that takes a 
limiting value say “1” if a specified function of the argument exceeds a given threshold and ‘0’ if otherwise.  A threshold operation 
when performed on Equation (1) as an operation performed on operands say ϕ1ϕ1, ϕ1ϕ2……….. ϕ2ϕ4, ϕ2ϕ5……… ϕ5ϕ1……… ϕ6ϕ5, in 
order to obtain the value of a threshold function are therefore consistent with the vanishing properties of an orthogonal function 
[23-31].  In doing so, the space between ϕ1ϕ1…… ϕ6ϕ5,is considered a quadratically integrable space and therefore separable.  Since 
the space consist of finite elements or denumerable vectors been the length of space between each scalar combination, this 
paper deduces a threshold value as the limiting point of lim (ϕek,ϕik) = 0.

The Arain study on causes of insolvency and unethical practices using a cross-assessment table of mean item score, 
precipitated a 6 × 5 matrix with an overwhelming response determinant of delayed payment and knock-on effect as the resultant 
combinatorial cause of insolvency in Pakistan from the five (5) main identified causes of insolvency and six (6) unethical practices 
value (Table 3).

Following this calibration, this paper deduce a semblance of the scalar combination of unethical practices and insolvency 
causes to an orthogonal system of a finite sequence of ϕi,ϕe (i = 1, 2, …n,  e = 1, 2, … n) or shortly as  {ϕn (x)} with orthogonality 
property of (ϕhϕk) = 0 , h  k  noting that the zeros of the orthogonal polynomials are simple and located in the interior of the 
interval (a, b) From the Arain matrix, an orthogonal space of (ϕi1,ϕi2,ϕ5,ϕe6) wherein the threshold element for insolvency is located 
in the interior of the interval of (a, b) is consequently idealized.

Foundationally, this paper made recourse to Maxwell’s theory of poles in acknowledgement of the Bateman’s spherical 
harmonic polynomial description in a reduced form with; λ1, λ2, λ3 ‘to be independent variables, such that 

( )1/22 2 2
1 2 3r λ λ λ= + +                               (1)

and a differential operator defined as , k = 1, 2, 3

/e iϕ ϕ
 1iϕ 2iϕ 4iϕ 4iϕ 5iϕ

1iϕ 4.19 1.93 2.91 1.67 3.24

2iϕ 2.94 4.41 4.13 4.59 3.38

4iϕ 3.00 4.10 4.17 3.56 4.10

4iϕ 4.13 4.03 3.83 3.70 3.38

5iϕ 2.81 4.34 4.00 3.67 3.05

6iϕ 3.94 2.17 2.17 3.81 3.86

Table 1. Outcome of Arain (2013) study on source and cause of insolvency.
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with  =                      (2)

In consonance with Laplace’s equation and homogenous polynomial of degree n =  a + b + c multiplied by r-2n-1

wherein, for every polynomial (Hn) of degree n, the following are equivalently true;

and = 0 2 1 0. n
nH r− −∆ =

Thus, if n = a + b + c,  then, 

 ||  = ( )
2 1  2 2 2

1 2 3

nr

nH λ λ λ
− −

+ +                (3)

From this relationship, it becomes fundamental that to every homogenous polynomial of degree n, with three quantities, ⍱1, 
⍱2, ⍱3  for which, 

1
2 + 2

2 + 3
2 =0                       (4)

There corresponds a harmonic polynomial of λ1, λ2, λ3 of degree n and which in line with Hobson’s theory can be shown that, 

               (5)

S/N Causes of Insolvency ( ijϕ ) Sources of unethical practices ( eiϕ )
1. Absence of barriers Delaying of payments 
2. Cash flow problems Mishandling of sensitive information 
3. Poor financial control Improper estimating practices 
4. Knock-on effects Abuse of resources 
5. Onerous conditions of contract Failure to reconcile with sub-contractor’s concern
6. - Misrepresentation of financial status

Table 2. Insolvency causes.

S/N Combinatorial cause Scalar value
1 ϕ1ϕ4 1.67
2 ϕ1ϕ2 1.93
3 ϕ6ϕ2 2.17
4 ϕ6ϕ3 2.17
5 ϕ1ϕ3 2.17
6 ϕ5ϕ1 2.81
7 ϕ2ϕ1 2.94
8 ϕ3ϕ1 3
9 ϕ5ϕ5 3.05

10 ϕ1ϕ5 3.24
11 ϕ4ϕ5 3.38
12 ϕ2ϕ5 3.38
13 ϕ3ϕ5 3.56
14 ϕ5ϕ4 3.67
15 ϕ4ϕ4 3.7
16 ϕ6ϕ4 3.81
17 ϕ4ϕ3 3.83
18 ϕ6ϕ5 3.86
19 ϕ6ϕ1 3.94
20 ϕ5ϕ3 4
21 ϕ4ϕ2 4.03
22 ϕ3ϕ2 4.1
23 ϕ3ϕ5 4.1
24 ϕ4ϕ1 4.13
25 ϕ2ϕ3 4.17
26 ϕ3ϕ3 4.17
27 ϕ5ϕ2 4.34
28 ϕ1ϕ1 4.19
29 ϕ2ϕ2 4.41
30 ϕ2ϕ4 4.59

Table 3. Restructured arain (2013) matrix in tabular form variable of sources and unethical practices



Research & Reviews: Journal of 
Statistics and Mathematical Sciences

20Res Rev J Statistics Math Sci | Volume 3 | Issue 1 | February, 2017

and λ1 =r cos θ, λ2 = r sin θ cos ∅, λ3 = r sin θ sin ∅

Consequently, for geometric interpretation, of Equatiom (5) surface harmonic function reduction becomes zonal if m =0, 
sectorial if m = n and tesseral if 1<  m < n

From Maxwell’s result, this paper, took η= (αk, βk, γk), k =1,2,…..,n as unit vectors which defines points on the unit-sphere as 
poles-such that surface harmonic of degree n with poles ηk defined by;

                (6)

For the special case of ρ   = 2, h (n, ρ) = (n + 1)2

This paper assumed Y  to be a vector with four components as Y= (y1, y2, y3, y4)   and =η
ρ
Y , ρ = ||Y||

The following vectors are introduced  

U= (i – its, -its – is, -t+s, 1 = ts)

Y = (i-Tσ ,-iT – Iσ , -T+σ , 1 + Tσ )

So that it becomes;

(U, U) = (Y, Y)= 0, ( ,  U Y  ) = 2 (1 + tr) (1+ sσ )                  (7)

From Equation (7), it shows that all (n + 1)2 polynomials, ( ),  k l
nH Y  defined by

( ), 

, 0

(  ,  )   
n

n k l k l
n

k l

n
H t s

k=

 
=  

 
∑U Y Y

                          (8)

are harmonic polynomial is degree n.

Consequently, this paper note that

( ) ( ) ( ) ( ) ( )
1 2

2 2,        ,
1

nn n
S S d

nη

πη η η
−

Ω Ω =
+

U Y U Y

and therefore the surface harmonics,

( ) ( ), ,  k l n k l
n nS Hη ρ −= Y

Form an orthogonal set of h (n, 2) = (n+1)2 of linearly independent surface harmonics, where,

( ) ( )1 1 1 1

2

1 1    

, , 0                         
2 /

1
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k k or l l

k l k l k k or l l
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l kn

S S
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Ω

Accordingly from Eqn (8), this paper reduces the polynomial conditionalities to; , ,( ) ( 1) ( )k+k l n k n l
n n

lS Sη η− −= −

To derive the components of , k l
nS  this paper introduced the following units,

a = y4 + iy1, b = y3 – iy2, c = -y3 – iy2, d = y4 - iy1

Then, 
1
2    ( )ad bcρ = = −Y , , )(U Y = + bs + (c + ds)t,

So that, consistently from Eqn (8), this paper derive that,

( ), 

0

 ( ) ( )  
n

k l l n k k
n

l

H s a bs c ds−

=

= + +∑ Y

And

( ) ( )0, 1 11  ( ) ( )    
2

k l n k k
nH a bs c ds s ds

iπ
+ − − −= + +∫Y                   (9)

By substituting,
σ  = -s(bc – ad) /bd,

2 2 2 2 2 2
0 1 4 1 2 3 4/ ( ) ( ) / ( )ad c ad bc y y y y y yσ = − = + + + +

So that expressing a, b, c, d in terms of yi yields

( ) ( ) ( )
( )

0( 1),
1 1

0

3 24 1
0 0

0

1
 ( / ) 1

2
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l d
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Arising therefrom, the following precipitates;

( ), ,    (  )k l n k l
n nS Hη ρ −= Y

 ( ) 4 1 3 21 ( ) ( )k n k l k ln k
i i

l
η η η η− − −− 

= − − − 
 

                 (11)

2 2
2 1 4 1 4 1 3 2 4 1 3 2( 1, 1 1; 1; )  ( 1) ( ) ( ) ( 1) ( ) ( )k n k l k l k n k l k lF n n k l i i i iχ η η η η η η η η η η− − − − − −− − + − − + − = − − − = − − −  

( ), 2 2 2 2
1 3 2 4 1(    )n k l k lχρ η η η η− − − + − − provided n < k + l

Similarly,

( ), , 1 ( 1)
4 1 3 2       ( )  ( 1) ( ) ( )k l n k l n n k i n i k

n nS H k i iη ρ η η η η− − − + − −= = − − −Y                (12)

2 2
4 1(1 , 1, 1 1;  )

2 1
n l k nF − + + − + +χ η η  

Ditto;

( ), , 1
4 1 3 2     ( )  ( 1) ( ) ( )k l n k l n k i n i k

n nS H i iη ρ η η η η− − + − −= = − − −Y                    (13)

(1 , ) 2 2 2 2
3 2 4 1X ( )k n i k

n l
+ − −

− +++ρ η η η η  where ( , )
m
α βρ denotes a purely Jacobi polynomial

Derivatively, if this paper associate cause of insolvency (ϕe) and unethical practices (ϕi) to two vectors with four components 
each and letting Y be a vector with the components; 

1 1 4 4 1 2 3 3 2

2 2 4 4 2 3 1 3 1

3 3 4 4 3 1 2 2 1

4 4 4 1 1 2 2 3 3

  
  
  

w y z y z y z y z
w y z y z y z y z
w y z y z y z y z
w y z y z y z y z

= + − + 
= + − − 
= + − + 
= − − 

                                                     (14)

where Yizi = ϕeϕi

With the introduction of quaternions, into Eqn (14) it reduces to w4 + iw2 + iw3 + kw1 = (z4 + iz2 + iz3 + kz1)(y4 + iy2 + iy3 + ky1) 
where 1, i, j, k are fundamental coefficients.  Then from the addition theorem;

( ) ( ) ( )
2

, , ,
2 2 2

0

  
n

k l k m m l
n n i n e

n

H H Hϕ ϕ
=

=∑Y                                                              (15)

The matrix of the output of Eqn (14) becomes 

, 
2[ ( )]k l

n eiH ϕ                       (16)

where k denotes the rows and I denotes the columns for which k = m, l = n and m = n in this study and recursively gives the 
determinant;

2 2 2 2 (2 1)
1 2 3 4( )n ny y y y ++ + +                    (17)

which is in tandem with Eqn (2) ditto Zi’s  with characteristic roots  2
1 2, , 0,1 , , m n m

nm zλ λ − = …  where 1 and 2 the roots of the 
association given by

,
0

,
a b

c d
λ

λ
−

=
−

Study Objective 

To identify a threshold point on a calibrated insolvency scale by threshold operation been an operation performed on 
operands in order to obtain the value of a threshold point through a threshold gate.  This point on the calibration scale is the point 
beyond which a contractor turn’s insolvent.

METHODS OF RESEARCH
This paper reviewed the existing literatures on contractors’ insolvency in construction projects and zeroed the investigation 

to the causes and sources of insolvency.  This study mirrored the Arain investigation on causes of insolvency arising from some 
unethical practices amongst contractors in the Pakistan construction industry as a control “experiment”.  The Arain study identified 
5-causes of insolvency originating from 6-unethical practices.  As replication logic to test the validity of that outcome, a similar 
investigation was conducted on the Nigerian construction industry sector in this paper.  The investigation was done using a survey 
design method with 108 questionnaire soliciting information on causes of insolvency arising from some certain sharp or unethical 
practices of contractors.  The respondents (sample size) was derived from a population of 150, made up of professional Civil 
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Engineers, M &E Engineers, Builders, Quantity Surveyors and Architects in public, private and contracting organizations using a 
sample size formula of; 

( ) ( )2 2 2    1  (1 )S N a Nχ ρ ρ χ ρ ρ= − ÷∂ − + −  

S = sample size being sought.
2
 = Table value for chi-square at 1 degree of freedom at the desired alpha level 0.05 = 3.841; 0.01 = 6.64

N = Population size.
 ρ = The population proportion usually 0.05 for maximum sample.

 ∂  = Degree of accuracy designed, expressed as a proportion (usually 0.05).

81 questionnaires were returned with 67 suitable for analysis indicating a response rate of 75%.  The questionnaire was 
structured in sections in relation to the objective of the study.  An open ended system of questioning was used in achieving this 
aim reflecting a 5-point likert scale with the following ordinate value 

5: Very high, 4: High, 3: Moderate, 2: Low,  1 : Very low

The mean score method of analysis which usually represents the average value of all factors associated to a specific inquiry 
was employed.  The justification for the use of mean item score instrument for analysis was in consonance with the opinion of 
Egwunatum, citing Atsar and Ogunsemi that the instrument is prevalent amongst construction management researchers and 
reported its use by Kulugara, Ling and Akintoye.  Usually arithmetic mean is employed unless otherwise a condition for application 
is giving.  A pool of several types of mean item score exists viz; Arithmetic mean, Geometric mean, Harmonic mean and weighted 
mean.  This study applied the weighted mean score, which involves assigning numerical weight (i.e. ordinal value) to respondents’ 
ratings of factors with respect to severity.  The weighted mean was computed from Rogers as; 

1 1 2 2

1 2

Weighted Mean  n n

n

w x w x w x
w w w

+ …+
=

+ +…+
 x1, x2 … xn represents factors under evaluation. 

w1, w2, … wn  represents the weightings of the factors that translate to

w1 = number of respondents who answered Very Low. 

w2 = number of respondents who answered Low. 

w3 = number of respondents who answered Moderate.

w4 = number of respondents who answered High. 

w5 = number of respondents who answered Very High.

The mean score values of five (5) main causes of insolvency originating from five (5) main unethical practices that might 
have been the source of the cause of insolvency in Nigerian construction industry was precipitated in matrix form to show a 
multinomial scalar combination in Table 2, and a calibrated scale by ranking shown in Table 3.  This was against the Arain study 
of the Pakistan construction industry that gave six (6) unethical practices from five (5) significant causes.  This paper resorted 
to transition operator (see Equations 1 and 2 for recourse) that skews distribution variables to regions permissible only to them 
by theorizing a characteristic value for the distribution, been the distribution determinant from the ϕeϕi distribution matrix as the 
skew Eigen vector.  The transition from a critical point (i.e. a threshold to a rejection region) requires that an operand operates at 
the boundary domain to govern the filtration process.  Krall had demonstrated that such process exist with stieltjes differential – 
boundary operators using the uniform limit of Picard-like approximations [µλ(s, t)] that can give the limit of an integration of say an 
m = n or 5 × 5 matrix illustrated in:

This context as; ( )

1 1 1 5

2 2

3 5

4 1

5 1 4 3

 e i

e i e i
e i

e i
e i

e i e i

λµ ϕ ϕ

……… 
 ……… …… 
 = ……………
 

………… 
 …… …… 

 .

Arising from Table 2, a matrix determinant value was computed from Eqn 16, that corresponds to an operator been the 
characteristic property of the matrix responsible for the skew distributing gradient of ϕeϕi distribution.  This property shows 
symmetric relation to the coercivity properties of combined boundary integral investigation carried out by Spence on high-frequency 
scattering of variables in distributive fields.  This paper considered the ϕeϕi values as normally distributed having been subjected 
to a normality test and a chaotic state occasioned by their transition attempts to accept or reject domain. An investigation as to 
why certain values are restricted at the critical plane of a normal distribution made a logical appeal that bears semblance to a 
threshold gate.  On this basis, the adaptation of the boundary point/critical plane of a geometrically concave normal distribution 
as threshold gate shows congruency to the Feischl, Feischl, Werndland, and Kita and Fausmann conditions of Adaptive Boundary 
Element Methods which ab initio restrains variables transition to regions.  Most values of ϕeϕi will be impeded by operator filtration 
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from entering the rejection region, except exceeding the transient threshold of the transition gradient operator that performs the 
threshold operation of filtration at the threshold gate as a replica of mixed impedance transmission boundary.  Congruency of this 
preposition has been demonstrated in Costabel on Boundary integral operators on Lipschitz Domains and Bernardi, Costabel, 
Dauge and Girault on continuity properties of the Inf-Sup Constants for divergence in conservative spaces (Figure 1).

Accordingly, this paper deduce a threshold operation performed on ϕeϕi distribution in order to obtain a threshold value at 
the boundary of a critical plane using the distribution characteristic value (determinant) of ϕeϕi computed from Equatio (16) as an 
operand that permits the transition of variables by gradient filtration at the critical plane of the normal curve when operated on 
at point   2 x σ+  been the threshold gate/boundary. This process shows congruency with typical mixed impedance transmission 
problems which has been given exhaustive narration and applicability in Athanasiadis and obtained an adaptive logic license for 
it with recourse to Claeys “Quasi-local multitrace boundary integral formulation” process.  This filtration process is affirmed to be 
consistent with the replication logic of the “Maxwell’s demon” which is an imaginary creature to whom Maxwell assigned the task 
of operating a door in a partition dividing a volume containing gas at uniform temperature.  The door is usually opened by the 
demon to enable fast molecules to move (say) from left to right through a partition. In this way, without expenditure of external 
work, the gas on the right could be made hotter than before and that on the left made cooler.  The probable value of the threshold, 
det (∇*), operator on [ 2 ]x   + σ  as a boundary point correlated to the introduction of quaternion in Equation (14, 15) and fitted to 
the calibration on Table 4 to deduce the threshold value of insolvency as an insolvent point (Figure 2).

Paper Structure 

Section 1, gave an insight and exposed the issue and problems of insolvency in construction projects.  

Section 2, identified the trend of research efforts towards resolving or mitigating insolvency in construction projects and the 
attendant gaps created by the research.  

For instance;

1. ASHURT proposed organizational sensitivity to early warning signs and alarms. 

2. Turner and Townsend proposed a 4-way test of identifying insolvent situation.

3. Bahram proposed legal recovery measures and claim protection methods towards diffusing insolvency to mitigate 
insolvency on risk transfer basis. 

4. Arain and Low proposed minimizing variation orders to stern the tide of insolvency

5. Wood prescribed friendly relational model in the form of mutual commitment to offset insolvency.

6. Arain identified several causes of insolvency amounting from some unethical practices of contractors. 

In line with the objective of this paper, no effort has been made in terms of research to identify a contractor’s insolvent point 
amid the series of causes.

Section 3, attempts a logical description of the method employed to achieve the objective of identifying the point at which 
a contractor becomes insolvent.  This was done by treating the economic sphere of Nigeria as a spherical harmonic polynomial 
and took a sector of the sphere as construction industry sector.  Did a field investigation on the sector thereafter subjected the 
result to a rank order and performed a threshold operation on the variable to identify the threshold point of becoming insolvent. 

Section 4, presented the results of the field survey and showed contrast or correlation with existing knowledge.

Section 5, presented the findings from the analysis of the field survey with respect to the theoretical framework.

Basic Assumption of Variables Chaotic State 

This paper typifies its construct of a chaotic state to the Vieru general definitions of chaos for continuous and discrete-time 
processes.  Vieru posited that let Ù( ) ∈a aø  be a family of continuous functions, mapping a metric space (Θ, d1) into a metric 
space (Λ,d2) and depending on a parameter a, whose values are called initial conditions. Let, (Ω, d0) be the metric space of initial 

Threshold gate 

Critical region 

Figure 1. Constants for divergence in conservative spaces.
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conditions. . This paper will more often assume Θ and Λ are either connected sets or everywhere dense parts of connected sets. 
In discrete processes, this paper will only assume Θ has at least one cluster point (usually ∞). This paper will consider continuous 
processes and more often assume (Θ, d1) is a path-connected metric space. However, our definitions still hold for metric spaces 
that are not path-connected. The restrictions contained in our definitions drop by themselves if the set of paths in the metric space 
(or in its considered subsets) is empty.

This paper will call the elements of Ω points, while the elements of the domain È of the functions ψa will be called moments, 

Categories Classification No. %

Academic qualification of respondents

Asso. Bachelor/ND 21 31.34
HND 19 28.36
B.Sc. 17 25.37
M.Sc. 9 13.43
Ph.D 1 1.49

Professional qualification of respondents

NSE 25 37.31
NIQS 21 31.34
NIOB 12 17.91
NIA 9 13.43

Type of Organization

Contracting 23 34.32
Consulting 19 28.36

Government office 17 25.37

Corporate client 7 10.44

Number of projects executed over the last 10 years

0-5 18 26.87
6-10 16 23.88

11-15 12 17.91
16-20 11 16.42

Above 20 10 14.92

Construction experience of respondents in years

0-5 17 25.37
6-10 16 23.88

11-15 12 17.91
16-20 12 17.91

Above 20 10 14.92

Age of establishment

5-15 6 8.96

16-20 54 79.10

21-25 3 4.48

26-30 2 2.99
Above 30 2 2.99

Source: Field Survey 2015

Table 4. Summary of demographic information of respondents.

 
 
 
 
 
 
 
 
 
 
 
     𝑥𝑥 − 3𝜎𝜎 𝑥𝑥− 2𝜎𝜎  𝑥𝑥 − 𝜎𝜎       𝑥𝑥     𝑥𝑥 + 𝜎𝜎   𝑥𝑥 + 2𝜎𝜎 𝑥𝑥 + 3𝜎𝜎
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Distribution mean and standard deviation (Where distribution mean;  = standard deviation of the distribution).
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even if Θ may not necessarily be a subset of R. 

In this article, this paper will not consider cases in which Θ  and Ωare sets of fractal dimension. Since there is no possible 
confusion, this paper will designate d0 (x, y), d1(z, t) and d2 (u, v) by |x – y|, |z – t| and |u – v|.  Regarding the normal distribution 
continuum, this paper subjected the entities of the distribution been   ϕeϕi variables to the Vieru chaotic state for continuous field 
by idealizing a mapping metric space by an Nmorcha operator as: 

∇N:→f(x)∈ Θ 

RESULTS AND DISCUSSION
The outcome of the result showing a multinomial combination values of ϕi unethical practices (ϕi) and causes of insolvency 

(ϕe) as ϕeϕi

i5 = cash flow problem                              ei = payment delays 

i4 = Poor cost control                              e2 = falsification of financial status

i3 = Onerous conditions of contract  e3 = Abuse of resources

i2 = Knock-on effects                              e4 = Inaccurate estimating practices 

i1 = Absence of barriers                              e5 = Irreconcilable contractor’s concern 

( )
3.67 2.59 3.29 3.18 3.45
3.58 3.10 3.52 3.40 2.59
3.09 4.50 4.09 3.13 2.33
3.65 3.20 4.12 3.85 3.41
3.68 3.62 3.89 3.73 2.80

e i   µ ϕ ϕλ

 
 
 
 
 

= 
 
 
 
 
 

On the basis of Eqn (16) our ( ),
2
k  l
n ei H ϕ    value read as det (∇*) yielded 0.5252.

Recursive applications

In this study, this paper associated more appropriately the Nigerian economy as a closed sphere to a spherical harmonic 
polynomial and from Maxwell’s theory of poles on spherical polynomial, a geometric interpolation showed that spherical sections 
from Equation (5) reduces the sphere to a sector when m = n, zonal when m = 0 and tesseral when 1 < m < n (see Equation 
5).  The Nigerian construction industry sector became a consequence of Equation (5) from the spherical economy.  The sector 
(construction industry) is burdened with having to determine the cause(s) of contractor’s insolvency emanating from some 
unethical practices.  Field survey result from Table 5, yielded five (5) significant causes of insolvency arising from five (5) unethical 
practices i.e.(ϕeϕi)= (5, 5).  The sector’s result by status of Equation (5) conditionalities yield a scalar combinatorial value of ϕeϕi 
in matrix form of order 5 × 5 that precipitated 25 combinatorial variables (Table 6).

From Equation (16), the matrix determinant value of Table 5, was computed by MATLAB ver. 6.0 to be det (∇*)= 0.5252.  The 
methodology specified the subjection of values of Table 5 to normality test for which they were associated to normal distribution 
estimation.  The estimation behaviour of variables under a normal distribution treatment is shown to be at interval of; 3x + σ  to 

3x + σ  i. e.,

A value derived by the operation of det (∇*) on 2x + σ  of a normal distribution will naturally represents a threshold which 
depicts a critical point of transition to rejection region. This paper’s methodology have posited that such point have been 
correlated to boundary recourse problems highlighted in Athanasiadis et. al. mixed impedance transmission problems.   A recall 
of Athanasiadis invoked Γ(j)(x,ω) and Γ(j)(x) as matrices of fundamental solutions of the differential operator of elasto-oscillations 
and its principal homogenous part by A(j)(∂,ω). The explicit expression of these matrices are given formulae (A1) and (A2) where 

e iö / ö  e5ö  4eϕ 3eϕ 2eϕ 1eϕ

e1ö  3.67 2.59 3.29 3.18 3.45

e2ö  3.58 3.10 3.52 3.40 2.59

e3ö  3.09 4.50 4.09 3.13 2.33

e4ö  3.65 3.20 4.12 3.85 3.41

e5ö  3.68 3.62 3.89 3.73 2.80

Table 5. Mean score value on causes of insolvency arising from unethical practices of contractors) with m = n rank (m).
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the material parameters, the density   and the Lame constant λ and µ are to be replaced by j 
j λj and µj, respectively. Evidently, the 

columns of the matrix Γ(j)(x,ω) satisfy the Sommerfeld-Kupradze radiation conditions, and we have the following standard general 
integral representation formulae for solution vectors.

( ) ( ) ( ) ( ) ( )
331 01 1

1 0 0,and p p  locu  W  u  W SK  
   ∈ Ω ∈ Ω Ω∩

( ) ( ){ }( )( ) ( ) ( ) ( ){ }( )( ) ( ) ( ){ }( )( ) ( ) ( ) ( ){ }( )( )
( ) ( )1

1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 3

1

,(
0 \
u x in W u x V T u x W u x V T u x
     in

 Ω+ − + − − + − = 
Ω 

( ) ( ){ }( )( ) ( ) ( ) ( ){ }( )( ) ( ) ( )

3
00 0 0 0 0

0 0 0
0

0 \

,

     in
 W u x V T u x

u x in 

 Ω− − + − = 
Ω



where ( )j
kV  and ( )j

kW  are, respectively, the single and double layer potentials over the surface Sk associated with the fundamental 
matrix  Γ(j)(x−y,ω) of the differential operator  A(j)(∂,ω) 

  

The aforementioned representation formulae remain true in the case of Lipschitz domains as well.  We will employ the 
following notation for the boundary integral operators generated by the layer potentials

Unranked calibration Prepotency of Variable in ranked calibration 

( )ei jiµ ϕ X ( )ei jiµ ϕ X

e1 i5 3.69 e3 i4 4.50
e1 i4 2.59 e4 i3 4.12
e1 i3 3.29 e3 i3 4.09
e1 i2 3.18 e5 i3 3.89
e1 i1 3.45 e4 i2 3.85
e2 i5 3.58 e5 i2 3.73
e2 i4 3.10 e1 i5 3.69
e2 i3 3.52 e5 i5 3.68
e2 i2 3.40 e4 i5 3.65
e1 i1 2.59 e5 i4 3.62
e3 i5 3.09 e2 i5 3.58
e3 i4 4.50 e2 i3 3.52
e3 i3 4.09 e1 i1 3.45
e3 i2 3.13 e4 i1 3.41
e3 i1 2.33 e2 i2 3.40
e4 i5 3.65 e1 i3 3.29
e4 i4 3.20 e4 i4 3.20
e4 i3 4.12 e1 i2 3.18
e4 i2 3.85 e3 i2 3.13
e4 i1 3.41 e2 i4 3.10
e5 i5 3.68 e3 i4 3.09
e5 i4 3.62 e5 i4 2.80
e5 i3 3..59 e1 i4 2.59
e5 i2 3.73 e2 i1 2.59
e5 i1 2.80 e3 i1 2.33

= 3.4184  = 1.244

Table 6. Prepotency of variable in ranked calibration.
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Mapping properties and jump relations of these operators are described.  Recall that the operators ( )j
kK  and ( )j

kH   are mutually 
adjoint singular integral operators, while ( )j

kH  and ( )j
kL  weakly singular and singular integro-differential operators, respectively.   

In that paper, they showed that direct scattering (either for chaotic or indeterminate states) problems for homogenous and 
non-homogenous layered obstacles in a linearly elastic conditions often results to mixed impedance transmission in as steady state 
oscillation.  In a typical homogenous isotropic field synonymous to the normal distribution space, potential conscription method 
was employed or drafted to reduce the mixed impedance transmission problem to an idealized boundary pseudo-differential 
operator that lives on the interface between layers which in this case is the layer separating the accept domain from the reject 
domain in the normal distribution space as a proper sub-manifold of an homogenous (causes of insolvency) space.  Their results 
confirmed the unique existence of original mixed impedance transmission problems oscillatory states.  With the establishment 
of such obstructive transmission problem, a chaotic interpolation by collision curves with different boundary conditions colliding 
at a confluence resulted to as smoother (operator) diffuser.  The smoother (operator) diffuser portends the conquest of stress 
vectors underlying the asymptotic behaviour of collision curves at planes of intersection.  On the basis of their hybrid or non-local 
approach, an abstraction was made of reducing mixed transmission problem to an equivalently functional variational equation 
having a sesquililinear form idealized to be living at the plane of a boundary point in a colliding and transmission state that is 
coercive in nature.  

Further, the paper introduce the boundary operators generated by the single and double layer potentials. For the boundary 
integrals (pseudo-differential) operators generated by the layer potentials, the paper employed the following notations:

The boundary operators H and L are pseudo-differential operators or order -1 and 1, respectively, while the operators K and 
K  are mutually adjoint singular integral operators – pseudo-differential operators of order 0. 

The paper employed the same notation for the electrostatic potentials constructed by the matrix ( )Ã x y−  and the corresponding 
boundary operators. The main ideas for the generalization to the scale of Bessel potential and Besov spaces are based on the 
duality and interpolation technique and are described using the theory of pseudo-differential operators on smooth manifold 
without boundary.

Theorem 1:  Let S be ∞  - smooth and 1 < p < ∞  < t < ∞  and s ∈

The operators 

are continuous.

If S is Lipschitz, then the operators

are continuous 

Theorem 2:  Let S be ∞  - smooth and 1 < p < ∞  < t < ∞  and g ( )
1 3

,
p

p tB S− 
 

, h ( )1
2

3
1

, .p tB S− ∈     Then

{V(g)+ = {V(g)}- = Hg on S,

( ) ( ){ }
1
3 ,  2  T n V g K g

−±  
∂ = + 

 
 on S 

( ){ }
1
32  W h K h

−±  
= ± + 

 
 on S 

( ) ( ){ } ( ) ( ){ } ,   ,  T n W h T n W h
± −

∂ = ∂ = Lh on S 

The same relation holds for a Lipchitz boundary S and p = t = 2 
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Theorem 3: (i) Let S be ∞  - smooth and 1 < p <∈  < t < ∈  and s ∈  .  The operators ( ) ( ) ( )3 3 31 1
. , ,s s s

p p t p tH S B S B S+ +      →       

( ) ( ) ( ) ( )
1 1

3 3 3 3
3 3

. ,2 2  :   ,s s s s
p p p t p tK K H S H S B S B S

− −         ± + ± + → →         


( ) ( ) ( ) ( )3 3 3 31 1
. , :   ,s s s s

p p p t p tL H S H S B S B S+ +        → →         
are continuous Fredholm operators with zero index. The principal homogenous symbol matrices of these operators are 
nondegenerate.  Moreover, the principal homogeneous symbol matrices of the operators –H and L are positive definite 

(ii) If S is Lipschitz, then the operators are continuous Fredholm operators with zero indexes.

( ) ( )
3 31 1

2 2 :    ,s sH H s H s
−   

→   
   

( ) ( )
3 31 1

1/3 2 22   :    ,s sK H s H s
− −−    

± + →   
   

( ) ( )
3 31 1

1/3 2 22   :    ,s sK H s H s−    
± + →   

   
 

( ) ( )
3 31 1

2 2 :    ,s sL H s H s
−   

→   
   

Moreover, there exist positive constants Ck, k = 1, 2, 3, 4, such that, 

( ) ( )
( )3 31 1

2 2

31
2 2 2

1 2
  

,    |  |   for all   ,
s s

s
H s H s

h Hh s C h C h h H s
− −

−

   
   
      

 
〈 − 〉 ≥ − ∈ 

 

( )
( )

( )3 31 0
2

31
2 2 2

3 4  
 

,    |  |   for all g   ,
s

s

sH s
H s

Lg g s C g C g H s
−

   
  

  

 
〈 − 〉 ≥ − ∈ 

 

where the symbol ., . s〈 〉 denotes the duality brackets between the adjoint spaces.

( )
31

2  ,sH s
− 

 
 

 and ( ) ( ) ( )
3 3 31 1 1

2 2 2 ,     ,s s sH s T H s H s
− −     

→     
     

 is a compact operator. 

(iii) The following operator equalities hold in appropriate function spaces 
2¢ ¢

1/3 2 1/3 ,   ,   4  ,  4  K H HK L K K L L H K HL K− −= = =− + =− +

Here, we recall some results from the theory of strongly elliptic pseudo-differential equations of manifolds with boundary 
in Besse potentials and Besov spaces, which are the main tools for providing existence theorems for mixed boundary, boundary 
transmission and crack problems by the potential methods.  

Let M C∈∞   be a compact, n-dimensional, non-self-intersecting manifold with boundary ∂ M C∈∞ and let A be a strongly 
elliptic N × N matrix pseudo-differentials operator of order v ∈ on M.  Denote by ( ) x,  ξS the principal homogenous symbol 
matrix of the operator A in some local coordinate system (x ∈  ∂ M, ξ  n \ {0})..

Let nλ (x), … nλ  (x) be the eigenvalues of the matrix ( ) ( )1[  x, 0, , 0, 1 ]  x, 0, , 0, 1 , −… + … −  S S  x ∈  ∂ M and introduce the notation 

( )], 1, , .j x j Nλ = …  Here, the branch in the logarithmic function In ζ  is chosen with regard to the inequality

. Because of the strong ellipticity of A, we have the strong inequality -1/2 < ( )j xδ  < ½ for x ∈  M, j = 1,2, … N.  
Note that the numbers do not depend on a particular choice of the local coorrodinate system at a fixed pint . In the particular 
case, when 

 
is a positive definite matrix for every x ∈  M and ξ  { } ( )\  0 ,  we have n

j xδ  = 0 for j =1, … N because all the 
eigenvalues (x) (j = 1, … N) are positive numbers for any  x ∈  M.

Consequently, the Fredholm properties of strongly elliptic pseudo-differential operators on manifolds with boundary are 
characterized by the following theorem.

Theorem 4: Let S ,1 p ,1    t∈ < < ∞ ≤ ≤∞   and let A be a strongly elliptic pseudo-differential operator of order v∈   that is, 
there is a positive constant C0, such that Re 

Then, the operators

( ) ( ) ( ) ( ). .  :      , 
N NN Ns s v s s

p p p t p tA H M H M B M B M−        → →        
 

are Fredholm with zero index if 

( ) ( )1 1
2 x , 1 x , 1 

1  sup x inf xv
p j p jM j NM j N

δ δ
∈∂ ≤ ≤∈∂ ≤ ≤

− + < − < +

Moreover, the null spaces and indicates of the operators (C1) are the same (for all values of the parameter [ ] 1, )t∈ +∞
provided that and satisfy the inequality (C2)

Claeys in 2016, studied quasi-local multirace boundary formulation process, also recall here well-established results on 
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boundary formulation process wherein the paper showed that the most fundamental trace space we can introduce consist in the 
multi-trace space, the Cartesian product of local traces

We endow each ( )jΓ with the norm ||(v, q)||  := 
( ) ( )

1 1
2 2

1
2

2 2

H H
|| ||

j j

v q
Γ − Γ

 
 +
 
 

and equip 
 
with the norm naturally 

associated with the cartesian product

( ) ( ) ( )( )n0

1
22 2

0(|| u || || |: |nu u∑ ΓΓ += +… 

For u = (u0, …, un) 
1. We write  for the duality paring between   and . In the sequel, we shall repeatedly 

refer to the continuous operator  defined by ( ) ( ) ( )0: , , )nu uγ γ γ= …  where  should be 
understood as the set of u 1

locL  ( d ) such that  for all. j. We also need a bilinear duality paring for and   
we opt for the skew-symmetric version

This particular choice is well adapted to the ensuing analysis. Note that under the paring [[ , ]], the space 
 
is its own 

topological dual, and it is easy to show, using the duality between  and  that the pairing [[ , ]] induces an isometric 
isomorphism between  

 
and its dual , equivalent to the inf-sup condition.

( ) ( )

[ ]
( ) ( )

inf sup

ÓÓ

,  
1

u
∈∈

   =
Σ Σ

uu

u o

v


 

Next we introduce the sol called single-trace space that consists in collections of traces that comply with transmission 
conditions. This space can be defined by

Where ( )clos Σ  refers to the closure with respect to the norm of . By construction, this is a closed subspace of . Note 
also that a function x … ×   satisfy the transmission codntiiosn of (1), if and only if

. In particular, u  then . In the sequel, we will use this space to enforce transmission conditions.

According to Claey, the function ( )kg χ  refers to the injective or ingoing Green’s kernel associated to the Helmholtz operator 
+ 2k∆ + . For each subdomain,  for any (v, q ) ∈  and any  x  d \  define the potential operator

The operator j
kG  maps continuously  into H1 x H1 \ ).  In particular, G j

k  can be applied to a pair of traces 
of the form ( ) j vγ= . This potential oeprator can be used to write a representation formula for solution to homogenous Helmholtz 
equation.

Claey paper went ahead to propose that the operator Kj maps continuously into  . Moreover, 
for any, 

 
 with k ≠  j, we have the following properties 

i.  ( ).  j jKγ  =  u u

ii.  

iii. 

The particular treatment that was proposed relied on integral operators for the treatment of junction point. 0 will refer to a 
Green kernel of an Helmholtz equation i.e. we will assume that it satisfies  in d  in the sense of distributions, 
for some λ∈  . The choice of λ  can be decorrelated from the wave numbers Kj coming into pay in (1).  So the Green kernels 0  
and   are independent 

The paper also consider a function \{0}) such that 0 coincides with 0  in a neighborhood of 0.  It is important to 
note that, the kernel ( )x  shares the same singularity at x = 0 as ( )x

 (x).  Except in a neighborhood of 0, the paper does not 
impose that ( )x  satisfies any particular equation.  It does not a priori need to be the Green kernel of any equation.  In addition, 
the  may be chosen so as to admit a bounded support located closely around  x  = 0.  For any (v, q)   set 

Because the kernel   only differs from a Green’s kernel up to a smooth factor, the operators Kj satisfy many remarkable 
properties inherited from standard potential operators.  Consequently, they satisfy a symmetry property and jump formula 
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Accordingly, transmission operators proposed in Claey’s paper recognizes a fortiori, for writing transmission conditions, that 
would seem desirable to use Q only at junction points, and use the operator  anywhere else on . In this section, the paper 
presents the construction of an operator  similar to , but involving the operator Q in fixed arbitrarily small neighborhoods of 
junction points. Define

By definition, these are the points adjacent to at least three subdomains.  For 2 d =    it consists in a finite set of points, 
and for 3d =   it consists in a finite union of Lipschitz curves.  For > 0 define | dist The paper 
supposes that ε is chosen small enough to guarantee that

The paper consider a ∞  cut-off function  : dψ →  such that ( )xψ = 1 for ò  and x ∈= 0, and x ∈   and define
2 : 1  χ ψ= − . In particular χ vanishes over a neighborhood of junctions points.  

In the sequel, for any 
 

, the paper will denote . And the paper adopt a similar 

notation.  This implies that  and also . Following this, the paper defined the continuous 

operator  by  

Recalling the establishment of such boundary conditions, this paper abstracted a filtration operator from a similar Stefan-
Boltzman chaotic process and idealizes transition attempts by variables to domains permissible by a transition operator filtrating 
from acceptance to rejection region, as a threshold gate.  This paper have given concise and correlated narration of such filtration 
process in physical sciences (thermodynamics) as exemplified theoretically in Maxwell’s demon and mathematically that it exist by 
the works of Spence et. al. (2015) on coercivity properties of boundary integral in distributive fields, Costabel (2016) on Boundary 
operators in Lipchultz domains, Bernadi et al. in 2016 studied on continuity properties of divergence in conservative fields and 
backward stretch to Krall in 1974, on Stieltjes differential-boundary operators.  These studies in unison have corroborated and 
shown congruency with this paper preposition of boundary adaptation and formulation on filtration parameter.  On the basis of 
these, this paper idealized a transition operator responsible for skewing the chaotic { } e iϕ ϕ distribution been an operator 
(Nmorcha) that governs the permissible filtration process that is reminiscence of Maxwell’s demon. The determinant of Table 
5 matrix been the characteristic value responded to this task of an operand which is required to operate at the boundary of the 
critical region of a normal distribution to derive a threshold value by operating on  point (critical point) i.e. 

det 
 
Threshold value                  (18)

Such value is extrapolated from the calibrated scale or fitted to show a corresponding combinatorial value of source and 
cause of insolvency as the limiting point of a contractor from becoming insolvent.  This is in conformity with the test statistics of 
critical value which separates the critical (or rejection) region from the acceptance region.

This geometrically corresponds to single tail (right or left) evaluation as;

So that Figure 3 gives Z > Zα 

Figure 4 gives Z < - zαρ−  with }Z Zα> critical region at level of sig. α Accordingly, combining Figure 3 and Figure 4 gives a 

two (2) tail test critical region at      
2 2

Z z or Z zα α
> < −

Derivably, the critical value which corresponds to a boundary point is the threshold value, whose test was conducted at 5% 
significant level by Equation (18) to give 3.1025 ≅  3.10 (Figure 5). 

 
 

 
 
 
                             Z = 0                        Zα 
 

Figure 3. Right tail test (This geometrically corresponds to single tail (right or left) evaluation).
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Graph 1. Calibration scale. 

When this value is fitted on the insolvency calibration scale, it corresponded to e2i4 which implies that with other leading 
factors giving rise to insolvency, (Graph 1) that are tolerable, a contractor will slip into becoming insolvent when he starts 
falsification of the projects’ financial status (e2) arising from poor project cost control (i4).

CONCLUSION
A sectors’ matrix determinant from Maxwell’s theory of poles on spherical harmonic polynomial, conscripted the idea 

that the construction industry sector of any spherical economy requires the determination of insolvent point of a contractor 
in construction projects by thought experiment, mind’s eye and model and model base reasoning. The result of the sectors’ 
investigation precipitated five (5) main causes of insolvency from five (5) main causes and five (5) significant unethical practice 
yielded combinatorial variables of ijth combinations to ‘n’ values. Those values were subjected to the normal distribution test for 
consistency. On successful normality test, the variables were conscripted into a chaos field in the normal distribution space.  The 

Figure 4. Left tail test (This geometrically corresponds to single tail (right or left) evaluation).
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Figure 5. Rejection region.
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chaos experienced in the space was governed by the space potential that tends to analyse variable by gradient transmission 
to accept or reject domain, otherwise without such potentiation entity, variables would remain in the tolerable domain. It is the 
conjecture of this paper that variables in the reject domain are not there by accident nor in the accept domain. Consequently, model-
based reasoning, mind’s eye and thought experiment led this investigation to idealize a plane at the boundary between accept or 
reject domain. Such boundary existence has been acknowledged greatly in the works of Athanasiadis, et al. Claey, Spence, etc. 
By introspecting on Maxwell, James Clark’s work on thermodynamic demon, this paper moved to propose an Nmorcha operator 
at the accept or reject boundary plane of the normal distribution space responsible for the filtration of variables into either divide.  
The precipitated five (5) significant unethical practice and five (5) main causes of insolvency in matrix form yielded a characteristic 
determinant as pseudo-differential operator that operates on all the variables chaotically distressed at the boundary plane of 
accept or reject. This operator at this joint filters variables by gradient transmission to either divide. This process resulted in e2i4 
variable on the insolvent point of contractors which on a metric calibration presented falsified project’s financial status and poor 
project cost control as the point of an insolvent contractor. 

Recommendations

This paper moved from a thought experiment to idealize a fitting point on a calibrated insolvency scale to identify insolvent 
point of contracts.  Clearly project management investigation should harness the construction economics theory of this paper to 
understand when contractors become insolvent.
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