

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14919

Graphical User Interface for Simulating

Convolutional Coding with Viterbi Decoding in

Digital Communication Systems using Matlab

Ezeofor C. J.
1
, Ndinechi M.C.

2

Lecturer, Department of Electronic and Computer Engineering, University of Port Harcourt, Rivers State, Nigeria
1

Associate Professor, Department of Electrical & Electronic Engineering, Federal University of Technology, Owerri,

Imo State, Nigeria
2

ABSTRACT: This paper presents Graphical User Interface (GUI) for simulating convolutional coding with Viterbi

decoding in digital communication system using MATLAB. Digital transmission is not free from channel impairments

such as noise, interference and fading which cause signal distortion and degradation in signal to noise ratio. These

introduce a lot of errors on the information bits sent from one place to another. To address these problems,

Convolutional coding is introduced at the transmitter side and Viterbi decoding at the receiver end to ensure consistent

error free transmission. In order to visualize the effect and evaluate the performance of the coding and decoding used,

simulation programs that encode and decode digital data were designed, written and tested in MATLAB. The generated

bit error rate (BER) is plotted against Energy per bit to noise spectral density (Eb/No) for different digital input data. It

is seen that as Eb/No increases, bit error rate decreases thereby increasing the performance of the convolutional code

rate used in the transmission channel at both end. Further analysis and discussion were made based on the MATLAB

graph results obtained.

KEYWORDS: MATLAB, GUI, Convolutional coding, BER, SNR, Viterbi decoding

I. INTRODUCTION

The main aim of a digital communication system is to transmit information reliably over a channel [1]. The channel can

be coaxial cables, microwave links, space, fiber optics etc. and each of them is subject to various types of noise,

distortion and interference that lead to errors. Shannon proves that there exist channel-encoding methods which enable

information to be transmitted reliably when source information rate R is less than channel capacity C. It is possible to

design a communication system for that channel and with the help of error-control coding such as convolutional coding,

one can achieve a very small probability of output error for that channel. As mentioned in [2], some forms of error

control encoding that are used to recover some corrupted information are discussed. Convolutional coding is one of the

channel coding extensively used for real time error detection and correction as shown in figure 1.1 [3].

Figure 1.1: Convolutional Encoder/Decoder block diagram in digital communication system [3]

Transmission

Channel
(AWGN)

Information

source

(Analog)

Source Encoder

(A/D)

Convolutional

Encoder

Digital

Modulator

(BPSK)

Information

Sink

Source
Decoder

(D/A)

Viterbi

Decoder
Digital

Demodulator

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14920

II. RELATED WORK

The related researched works are not limited to:

a. Performance Analysis of Convolutional Encoder Rate Change by Sw Bawane and W Gohoker (2014) which

explained the modified FPGA scheme for the convolutional encoder in OFDM baseband processing systems.

It shows convolutional encoder with constraint length of 9.

b. Design of a high speed parallel encoder for convolutional codes by A Msir, F Monteiro, and A Dandache

(2004). In their paper, the design of high speed parallel architectures for convolutional encoders and its

implementation on FPGA devices were done.

c. FPGA design and implementation of a convolutional encoder and a Viterbi decoder based on 802.11a for

OFDM by Y Sun, and Z Ding (2012). They carried out a modified FPGA scheme for the convolutional

encoder and Viterbi decoder based on the IEEE 802.11a standards of WLAN in OFDM based processing

systems.

III. METHODOLOGY

This research work considered convolutional encoder of (n=2, k=1, K=3) as shown in figure 3.1. The generator

polynomials for the chosen encoder are g0(D)= 1+D+D2 = 1112 or 78 and g1(D)=1+D2=1012 or 58. The generator

polynomials that would be used depend on the convolutional encoder rate being considered.

3.1. How convolutional coding is done

This can be understood using set of sequence of information bits sent serially into the ½ convolutional encoder diagram

shown in figure 3.1. Let’s look at the digitized sample input information bits k = [1111010]2 = [172]8. This would be

carried out into different stages at different clock input. The encoder first initializes its shift-register memory D=0 and

D2=0 at clock input.

Stage 1: Input k =1, O/P=11

 g0(D)=1+D+D2

 g1(D)=1+D2

 Figure 3.1: ½ Rate of Convolutional Encoder [11]

 Figure 3.2a: Encoder state at stage 1

g0=1+0+0=1

g1=1+0=1

D=0 D=0 K=1

t=0 O/P=11

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14921

At stage 1, t=0: encoder takes the first input bit k=1at first clock input (from the sequence of information bits, starting

from the most significant bit) and Ex-OR it with the value found in the memory D2= 0 to get g1(D) = g(1)=1+0=1. At

the same time, takes the same input bit k=1 and Ex-OR with the values found in the memory D=0, then uses the result

and Ex-OR with the value found in memory D2=0 to get g0(D)= g(0)=1+0+0=1. The output code word would be 112

as shown in figure 3.2a. The encoder shifts k value into D and D value into D2. The new D=1 and D2=0.

Stage 2: Input k=1, O/P=01

At stage 2, t=1, encoder takes the second input bit k=1 at next clock input (from the sequence of information bits,

starting from the most significant bit) and Ex-OR it with the value found in the memory D2= 0 to get g1(D) =

g(1)=1+0=1. At the same time, takes the same input bit k=1 and Ex-OR with the values found in the memory D=1, then

uses the result and Ex-OR with the value found in memory D2=0 to get g0(D)= g(0)=1+1+0=0. The output code word

would be 012 as shown in figure 3.2b. The encoder shifts k value into D and D value into D2. The new D=1 and D2=1.

Stage 3: input k=1, O/P=10

At stage 3, t=2, encoder takes the second input bit k=1(from the sequence of information bits, starting from the most

significant bit) and Ex-OR it with the value found in the memory D2= 1 to get g1(D) = g(1)=1+1=0. At the same time,

takes the same input bit k=1 and Ex-OR with the values found in the memory D=1, then uses the result and Ex-OR with

the value found in memory D2=1 to get g0(D)= g(0)=1+1+1=1 as shown in figure 3.2c. The output code word would

be 102. The encoder shifts k value into D and D value into D2. The new D=1 and D2=1.

The process continues until stage 4 at t=3, stage 5 at t=4, stage 6 at t=5, and stage 7 at t=6 are done. After the

sequence of bits has been encoded, the encoder needs to be flushed or reset to retain its 00 state. Stage 8 and stage 9

perform encoder reset process. The output code word would be 002. Thus the encoded output sequence for the 7-bits

input sequence [1111010] is [11011010010010] plus flushing bits added as shown in table 3.1. This is done at the

transmitter’s side before it would be sent to the channel.

g0=1+1+0=0

g1=1+0=1

D=1 D=0 K=1

t=1 O/P=01

 Figure 3.2b: Encoder state at stage 2

g0=1+1+1=1

g1=1+1=0

D=1 D=1 K=1

t=2 O/P=10

 Figure 3.2c: Encoder state at stage 3

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14922

 Table 3.1: Encoder values and State Transition Table look up

Table 3.2: State Transition Table for Current & Next

States

Time t Input

bit k

m0 m1 Output

g0

Output

g1

Output

Code word

Current

State

Next

State

Output

Bits

t0=0 1 0 0 1 1 11 00 10 11

t1=1 1 1 0 0 1 01 10 11 01

t2=2 1 1 1 1 0 10 11 11 10

t3=3 1 1 1 1 0 10 11 11 10

t4=4 0 1 1 0 1 01 11 01 01

t5=5 1 0 1 0 0 00 01 10 00

t6=6 0 1 0 1 0 10 10 01 10

Flushing

bits

0 0 1 1 1 11 01 00 11

0 0 0 0 0 00 00 00 00

The convolutional encoder uses look-up tables called state transition table to do the encoding which are shown in table

3.2. With this, the encoder knows the current and next states during operation.

3.2 How Viterbi decoding is done

Viterbi decoding uses trellis diagram to decode convolutional encoded data at the receiver’s end. It has the encoding

knowledge of convolutional encoder and that enable it to perform its decoding. Two forms of Viterbi decoding are hard

and soft decision Viterbi decoding. Hard decision Viterbi decoding also known as Soft Input Viterbi decoding

technique (SIVD) uses a path metric called the hamming distance metric to determine the survivor path and the decoder

output through the trellis. Soft decision Viterbi decoding calculates the distance between the received symbol and the

probable transmitted symbol and determine its output. That is, if transmitted coded bit is 0, Euclidean distance is,

 = = (2.1)

If transmitted coded bit is 1, Euclidean distance is = = (2.2)

NEXT STATE, IF

CURRENT

STATE

INPUT =0; INPUT =1;

00 00 10

01 00 10

10 01 11

11 01 11

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14923

Table 3.4: Input, output & Received bits with Errors

 The terms 2, , and are common in both the equations they can be ignored. The simplified Euclidean distance is,

 = +y and = -y. (2.3)

Let’s assume that at the receiver, the bits were [11011010010110]. Error would be detected at t=5 as shown in the table

3.4.

The table 3.4 comprises of the encoder input, encoder output, and assumed received bits with error marked in red

colour. The Trellis diagram drawn for the 7-bits input stream [1111010] is in figure 3.4 for each time tick based on the

example considered.

From the trellis diagram in figure 3.4, S0 to S3 represents state of the encoder, the hamming distance of state 0 through

state 3 are calculated thus:

At t0

Moving from state 00 to state 00, the output = 00 and the received bits =11, the hamming distance = 2

Moving from state 00 to state 10, the output = 11 and the received bits =11, the hamming distance = 0. Therefore the

shortest hamming distance is chosen and that is 0. At t0, HD=S2=0

At t1

Hamming distance S0= S0+S0 =2 +1 =3

Hamming distance S1= S0-S2 +S2-S1= 0+2 =2

Hamming distance S2= S0-S0 +S0-S2= 2+1 =3

Hamming distance S3= S0-S2 +S2-S3= 0+0 =0
At t1, HD=S3=0

At t2

Hamming distance S0=3+1=4 or 0+2+1=3; 3 (the highest is discarded while the least chosen)

Hamming distance S1= 2+1+0=3 or 0+0+2=2;2

Hamming distance S2= 2+1+1=4 0r 0+2+1=3;3

Hamming distance S3= 2+1+2=5 or 0+0+0=0;0

At t2, HD=S3=0

At t3

Hamming distance S0=0+2+1+1=4 or 0+0+2+1=3;3

Hamming distance S1= 0+2+1+0=3 or 0+0+0+2=2;2

Hamming distance S2= 0+0+2+1=3 or 0+2+1+1=4;3

Hamming distance S3= 0+2+1+2=5 or 0+0+0+0=0;0

At t3, HD=S3=0

At t4

Hamming distance S0=0+0+2+1+1=4 or 0+0+0+2+1=3;3

Hamming distance S1= 0+0+2+1+2=5 0r 0+0+0+0+0=0;0

Hamming distance S2= 0+0+2+1+1=4 or 0+0+0+2+1=3;3

Time t0 t1 t2 t3 t4 t5 t6

Encoder Input 1 1 1 1 0 1 0

Encoder

Output

11 01 10 10 01 00 10

Received

(assumed)

11 01 10 10 01 01 10

Errors

(assumed)

 x

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14924

Hamming distance S3= 0+0+2+1+0=3 or0+0+0+0+2=2;2

At t4, HD=S1=0

At t5

Hamming distance S0=0+0+0+2+1+1=4 or 0+0+0+0+0+1=1;1

Hamming distance S1= 0+0+0+0+2+0=2 or 0+0+0+2+1+2=5;2

Hamming distance S2= 0+0+0+0+0+1=1 or 0+0+0+2+1+1=4;1

Hamming distance S3= 0+0+0+2+1+0=3 or 0+0+0+0+2+2=4;3

At t0, HD=S2=1

At t6

Hamming distance S0=0+0+0+0+0+1+1=2 or 0+0+0+0+2+0+1=3;2

Hamming distance S1= 0+0+0+0+0+1+0=1 or 0+0+0+2+1+0+2=5;1

Hamming distance S2= 0+0+0+0+2+0+1=3 or 0+0+0+0+0+1+1=2;2

Hamming distance S3= 0+0+0+0+0+1+2=3 or 0+0+0+2+1+0+0=3;3

At t0, HD=S1=1

At this stage, the decoder would detect that error occurred at state 1 at time t=5.

3.3 Branch and Path Metrics Computation

The path and branch metrics for all the states from 0 to 3 can be calculated as shown in equation 3.1 through equation

3.12. The movement from one state to another is clearly stated in indicated in figure 3.5.

Figure 3.4: Trellis diagram for decoding transmitted 7 input bits message

0

 2

0

1

1

2

1

1

1

1

0

2

1

1

1

0

2

1

2

0

1

1

1

0

2

1

1

1

2

0

1

1

0

2
S0

S1

S2

S3

 t0=11 t1=01 t2=10 t3=10 t4=01 t5=01 t6=10

11 01 10 10 01 00 10

Received bits

Output bits

 00

 01

 10

 11

 00

 01

 10

 11

 00

 01

 10

 11

 00

 01

 10

 11

 00

 01

 10

 11

 00

 01

 10

 11

 00

 01

 10

 11

 00

 01

 10

 11

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14925

i. State 00 can be reached from two branches

(a) State 00 with output 00. The branch metric for this transition is,

= + (2.4)

(b) State 01 with output 11. The branch metric for this transition is,

 = + . (2.5)

The path metric for state 00 is chosen based which is the minimum out of the two.

 = min (,) (2.6)

The survivor path for state 00 is stored in survivor path metric.

ii. State 01 can be reached from two branches:
 (c) State 10 with output 10. The branch metric for this transition is,

 = + (2.7)

 (d) State 11 with output 01. The branch metric for this transition is,

 = + (2.8)

The path metric for state 01 is chosen based which is the minimum out of the two.

 =min (,) (2.9)

The survivor path for state 01 is stored in survivor path metric.

iii State 10 can be reached from two branches:
 (e) State 00 with output 11. The branch metric for this transition is,

 = + (2.10)

=min(,)

=min(,

)

=min(,

)

=min(,) = +

Figure 3.5: Branch and path metrics block diagram

= +

= +

= +

= +

= +

= +

= +

00

01

10

11

00

01

10

11

i-1 i

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14926

Table 3.5: Accumulated Metric Value for State 0 to State 3

 (f) State 01 with output 00. The branch metric for this transition is,

 = + (2.11)

The path metric for state 10 is chosen based on which is the minimum out of the two.

=min (,). (2.12)

The survivor path for state 10 is stored in survivor path metric.

iv. State 11 can be reached from two branches:
(g) State 10 with output 01. The branch metric for this transition is,

 = + (2.13)

(h) State 11 with output 10. The branch metric for this transition is,

 = + (2.14)

The path metric for state 11 is chosen based which is the minimum out of the two.

 =min (,) (2.15)

The survivor path for state 11 is stored in survivor path metric.

3.4 How does Viterbi detect error and correct them during decoding

Viterbi decoder always has knowledge of coding tactics used by the convolutional encoder before it can decode any

information bits. The encoder detects error by comparing the output symbol from the received bits at the receiver’s side.

When the bits symbol is the same, it detects no error but when they are not the same, it detects error. It corrects the

error based on the coding information values stored and that makes it intelligent.
The accumulated metrics for the full 7-bit message at each time t (plus two flushing bits) are listed in table 3.5.

Current

states

PREVIOUS STATES

(PREDECESSORS)

Current

states

t0 t1 t2 t3 t4 t5 t6

State 002 0 0 0 1 1 1 1

State 012 0 0 2 3 3 3 3

State 102 0 0 0 1 1 1 1

State 112 0 0 2 3 3 3 2

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14927

3.5. Traceback Unit

Once the survivor path is computed +K-1 times (N is the number of output and K is the constraint length), the

decoding algorithm can start trying to estimate the input sequence. Thanks to presence of tail bits (additional K-1 zeros),

it is known that the final state following Convolutional code is State 00. So, start from the last computed survivor path

at index +K-1 for State 00. From the survivor path, find the previous state corresponding to the current state. From

the knowledge of current state and previous state, the input sequence can be determined from the given table. Continue

tracking back through the survivor path and estimate the input sequence till index = 1 and the states selected when

tracing the path back through the survivor paths is shown in table 3.6.

IV. RESULT AND DISCUSSION

The graphical user interface designed in MATLAB is as shown in figure 4.1. Simulation was run for ½ Convolutional

codes with different input messages. Error performance analysis is checked by plotting bit error-rate versus energy per

bit to noise power spectral density (Eb/No) for AWGN channel. Soft decision Viterbi decoding offers better

performance results than hard decision Viterbi decoding. As the number of input message increases, Convolutional

coding and decoding performs better. BER of 10
-5

 was taken for both hard and soft decision and the transmitting power

for soft decision is 6dB while that of hard is 8dB. Also the coding gain of soft decision decoding is greater than hard

decision decoding which proved that soft decision decoding is always at least 2dB better responses as to compare to

hard decision decoding. Thus to achieve the same BER; the soft decision decoding will require a lower signal to noise

ratio, that is, lower transmitter power compared to its counterpart. More explanations were done on each of the plotted

graph.

Time t0 t1 t2 t3 t4 t5 t6

State

002

0 2 3 3 3 3 1

State

012
0 0 2 2 2 0 2

State

102
0 0 3 3 3 3 1

State

112
0 0 0 0 0 2 3

Table 3.6: States selected when tracing the path back

http://www.ijirset.com/
http://www.dsplog.com/2009/01/04/convolutional-code/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14928

Now using the simulation GUI interface, different digit numbers were entered but only 350 bits information is shown in

figure 4.1.

The 80000 bits message was encoded and decoded in MATLAB and the graph of BER ranging from 10
0
 to 10

-6
 versus

Eb/No ranging from 0dB to 12dB plotted as shown in figure 4.2.

If Eb/No is further increased to 9.5dB, the BER of Soft Decision Viterbi Decoding (SDVD) decreases faster than Hard

Decision Viterbi Decoding (HDVD). The coding gain of both can be calculated thus; Taking the measure at BER =10
-4

The Coding gain for HDVD = SNRuncoded - SNRhdvd = 9.5dB – 6.8dB= 2.7dB

Coding gain for SDVD = SNRuncoded - SNRsdvd = 9.5dB – 4.8dB = 4.7dB

Therefore Coding gain of SDVD – Coding gain of HDVD = 4.7dB - 2.7dB = 2dB

Another 1050000 bits message was encoded and decoded and the output graph plotted is shown in figure 4.3.

Figure 4.2: 80000 bits message; Graph of BER VS Eb/No

Figure 4.1: Coding and decoding Information message of 350 digit number displays

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14929

From the graph shown in figure 4.3, it is seen that as the Eb/No is increased from 0 to 12dB, the BER of Soft Viterbi

decoding (SDVD) decreases faster than Hard Viterbi decoding (HDVD) during decoding . This means that increase in

Eb/No reduces the bit error rate of the signal thereby introduces less error in the transmission systems. Take a look at

Eb/No equal to 9.5dB in figure 4.3, the coding gain of both of hard and soft Viterbi decoding can be calculated thus;

Taking measurement at BER =10
-5

Coding gain for HDVD = SNRuncoded - SNRhdvd = 9.5dB – 6.8dB= 2.7dB

Coding gain for SDVD = SNRuncoded - SNRsdvd = 9.5dB – 4.8dB = 4.7dB

Therefore Coding gain of SDVD – Coding gain of HDVD = 4.7dB - 2.7dB = 2dB

Therefore, the soft Viterbi decoding performs better than the Hard Viterbi decoding in decoding convolutional coded

bits.

V. CONCLUSION

The objective of this paper work is to design and program MATLAB graphical User Interface for simulating ½ rate

convolutional encoder with Viterbi decoder. The encoding process was demonstrated using a (2, 1, 3) convolutional

encoder and decoding process demonstrated also using a hard decision Viterbi decoder and a soft decision Viterbi

decoder. Different graphs of BER against Eb/No were plotted to check the number of errors that would be reduced

within the transmitting powers ranging from 0dB to12dB. As was seen from the simulation graph results obtained in

figure 4.2 and figure 4.3, the performance of convolutional coding with Viterbi decoding was greatly improved by the

smaller code rate used.

REFERENCES

[1] Shannon, C. E., “A Mathematical Theory of Communication”, Bell Syst. Technology. J., Vol. 27, pp.379- 423, 623-656, 1948.

[2] Bossert M, “Channel Coding for Telecommunications”, New York, NY: John Wiley and Sons, 1999.

[3] Clark, G. C., Jr., Cain, J. B., “Error-Correction Coding for Digital Communications”, Plenum Press, New York, 1981.

[4] Bernard S., “Digital Communications-Fundamental and Applications”, 2nd Edition, New Jersey Prentice Hall, 2001.

[5] Benedetto S. G. Montorsi, “Design of parallel concatenated convolutional codes”, IEEE Transactions on Communications, vol. 44, 1996.

[6] Berrou C., Glavieux A., Thitimajshima P., “Near Shannon Limit Error-Correcting Coding and Decoding:
Turbo Codes”, in Proceedings of the International Conference on Communications, (Geneva, Switzerland), pp. 1064–1070, 1993.

[7] Blahut R. E, “Theory and practice of error control codes”, Reading, Massachusetts: Addison-Wesley Publishing Company, 1983.

[8] Chase D., “A class of algorithms for decoding block codes with channel measurement information”, IEEE Trans. Inform. Theory, vol. IT-
18, no. 1, pp. 170–182, 1972.

[9] Elias P., “Coding for noisy channels”, International Convention Record (Part IV), pp. 37-46, 1955.

Figure 4.3: BER Vs EbNo graph plot of 1050000 information bits

http://www.ijirset.com/

 ISSN: 2319-8753

International Journal of Innovative Research in Science,

Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

 Volume 3, Issue 7, July 2014

Copyright to IJIRSET www.ijirset.com 14930

[10] Forney G. D., “Convolutional codes with algebraic structure” IEEE Trans. Inform. Theory, IT-16, pp. 720-738, 1970.
[11] Gallager R. G, and Elias P., “Introduction to Coding for noisy channels”, in The Electron and the Bit, J. V. Guttag, Ed. Cambridge, MA:

EECS Dept., MIT Press, pp. 91–94, 2005.

[12] MacKay D., “Good error correcting codes based on very sparse matrices”, IEEE Trans. Information Theory, pp. 399, 1999.
[13] Ming-Bo .L.,“New Path History Management Circuits for Viterbi Decoders”, IEEE Transactions on Communications, vol. 48, pp. 1605-

1608, 2000.

[14] Morelos-Zaragoza R. H, “The art of error correcting coding”, John Wiley & Sons, ISBN 0471495816, 2002.

[15] Shaina S., Ch. Kranthi, Faisal Bala, “Performance Analysis of Convolutional Encoder and Viterbi Decoder Using FPGA” International

Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 6, December 2012.

[16] Viterbi A. J., “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm”, IEEE. Transaction of
Information Theory, vol. IT-13, pp. 260-269, 1967.

[17] Wicker S. B., “Error Control Systems for Digital Communication and Storage”, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

http://www.ijirset.com/

