

Green and Sustainable Organic Synthesis: Advancing Environmentally Responsible Chemistry

Rafael Moreno*

Department of Medicinal Chemistry, University of Lisbon, Portugal

Editorial

Received: 02-Sep-2025, Manuscript No. jomc-25-177976; **Editor assigned:** 4-Sep-2025, Pre-QC No. jomc-25-177976 (PQ); **Reviewed:** 14-Sep-2025, QC No. jomc-25-177976; **Revised:** 20-Sep-2025, Manuscript No. jomc-25-177976 (R); **Published:** 28-Sep-2025, DOI: 10.4172/jomc.12.013

***For Correspondence**

Rafael Moreno, Department of Medicinal Chemistry, University of Lisbon, Portugal

E-mail: ananya.kapoor@du.ac.in

Citation: Rafael Moreno, Green and Sustainable Organic Synthesis: Advancing Environmentally Responsible Chemistry. *J Med Orgni Chem.* 2025.12.013.

Copyright: © 2025 Rafael Moreno, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

tion, and mechanochemistry have also contributed to greener synthesis by shortening reaction times and lowering energy consumption. Multicomponent reactions are another sustainable strategy, allowing multiple bonds to form in a single step, thereby improving atom economy and reducing waste. Advances in flow chemistry further enhance safety and scalability while minimizing chemical waste.

Despite these advancements, challenges remain in balancing sustainability with industrial feasibility. The cost of green alternatives, scalability of laboratory methods, and long-term catalyst stability require continued research and innovation. However, increasing collaboration between academia and industry is driving the adoption of sustainable practices in large-scale chemical manufacturing.

Conclusion

Green and sustainable organic synthesis represents a fundamental shift toward environmentally responsible chemistry. By integrating green chemistry principles, innovative catalytic systems, and energy-efficient technologies, chemists can significantly reduce the environmental footprint of chemical processes. While challenges persist, ongoing research and technological progress continue to improve the practicality and effectiveness of sustainable methods. The widespread adoption of green organic synthesis not only protects the environment but also supports the development of safer, more efficient, and economically viable

Introduction

Green and sustainable organic synthesis is an evolving area of chemistry that focuses on designing chemical processes that minimize environmental impact while maintaining efficiency and productivity. Traditional organic synthesis often relies on hazardous reagents, toxic solvents, and energy-intensive conditions, leading to waste generation and ecological harm. In response to growing environmental concerns and stricter regulatory requirements, green chemistry principles have been developed to promote safer, cleaner, and more sustainable chemical practices. These principles aim to reduce waste, conserve resources, and enhance the overall sustainability of chemical synthesis [1,2].

Discussion

At the core of green and sustainable organic synthesis are the twelve principles of green chemistry, which emphasize waste prevention, atom economy, the use of safer solvents, renewable feedstocks, and energy efficiency. One major approach involves replacing toxic solvents with environmentally benign alternatives such as water, ethanol, or supercritical carbon dioxide. Solvent-free reactions and solid-state synthesis further reduce solvent-related waste and hazards [3,4].

Catalysis plays a crucial role in sustainable synthesis by increasing reaction efficiency and selectivity while reducing the need for excess reagents. The use of reusable heterogeneous catalysts, biocatalysts, and metal-free catalysts has gained significant attention. Enzymes, in particular, offer high specificity and operate under mild conditions, making them ideal for environmentally friendly processes. Additionally, the development of earth-abundant metal catalysts helps reduce reliance on scarce and toxic metals [5].

Energy-efficient techniques such as microwave irradiation, ultrasonic activa-

chemical processes for the future.

References

1. Maurya S, Yadav P, Prajapati V, Gupta VK, Singh V, et al. (2021) A Phytomedicine *Catharanthus roseus*. 9:454-58.
2. Vishwakarma R, Prajapati V, Yadav RK, Fatima N, Singh V, et al. (2019) A herbal drug of vinca used as an anti-cancer agents. *Int J Curr Res* 11:7979-82.
3. Suddhasuchi Das, Sharangi B (2017) Madagascar periwinkle (*Catharanthus roseus* L.): Diverse medicinal and therapeutic benefits to humankind. *Journal of Pharmacognosy and Phytochemistry* 6:1695-1701.
4. Anonymous (2011) Plant Resources of Tropical Africa. African Ornamentals. Proposals and Examples, PROTA Foundation, Wageningen, the Netherlands.
5. Łata B (2007) Cultivation, mineral nutrition and seed production of *Catharanthus roseus* (L.) G. Don in the temperate climate zone. *Phytochemistry Reviews* 6: 403- 411.