

 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)
 On 21st& 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2144

Hadoop File System with Elastic Replication

Management: An Overview
Mamatha S R

#1
, Saheli G S

#2
, Rajesh R

#3
,

*
Arti Arya

#4

#
 Department of MCA, PESIT Bangalore South Campus, Bangalore, India

ABSTRACT— This paper gives an overview of

how Hadoop File System manages massive data

as well as handles small files. As data is ex-

ponentially pouring in from all sides in all do-

mains, it has become a necessity to manage and

analyze such huge amount of data to extract

useful information. This huge amount of data

is technically termed as Big Data, which in turn

falls under Data Science. Currently a lot of

research is going on how to handle such vast

pool of data. The Apache Hadoop is a soft-

ware framework that uses simple programming

paradigm to process and analyze large data

sets(Big Data) across clusters of computers.

The Hadoop Distributed File System(HDFS) is

one such technology that manages the Big Data

efficiently. In this paper, an insight of

”how HDFS handles big as well as small

amount of data” is presented, reviewed and

analyzed. As a result, summarized limitations

of existing sys- tems are described in the paper

along with the future scope of it.

KEYWORDS—Hadoop, Hadoop Distributed

File System, Small files, Elastic Replication

Man- agement System, Big Data.

I. INTRODUCTION

Data is getting accumulated from all directions, all do-

mains and in all dimensions, whether its the field of

science, technology, public health-care, sports, enter-

tainment, business or any other potential area. The

amount of data has become multi-folds in last few

years. The term ”Big Data” came into existence some-

where in 1999 by Bryson. But during that time 300GB

of data was termed as big. There is no specific quan-

tification of big data. Nowadays, generally data run-

ning into petabytes (105 bytes or 1000 terabytes) and

exabytes (1018 bytes or 1000 petabytes) is termed as

big.This data is knowledge mine, provided knowledge

is churned out of it efficiently. For churning this data,

one needs efficient data handling techniques. As data

is exploding, so normal traditional ways of confronting

this data are not efficient. To overcome this problem,

some technologies have emerged in last few years to

handle this big data. One such technology is Hadoop.

Storage, Management and Processing capabilities of

Big Data are handled through HDFS, MapReduce[1]

and Apache Hadoop as a whole.

Apache Hadoop is an open-source software framework

that supports data-intensive distributed applications.

Hadoop was derived from Google’s MapReduce and

Google File System (GFS)[2].The Hadoop framework

transparently provides both reliability and data mo-

tion to applications. Hadoop implements a computa-

tional paradigm named MapReduce, where the appli-

cation is divided into many small portions of work,

each of which may be executed or re-executed on any

node in the cluster[11]. In addition, it provides a dis-

tributed file system that stores data on the computer

nodes, providing very high aggregate bandwidth across

the cluster. Both map/reduce and the distributed file

Hadoop File System with Elastic replication Management: An Overview

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2145

system are designed so that node failures are

automatically handled by the framework [2][3]. It

enables applications to work with thousands of

computation-independent computers and petabytes of

data. The en- tire Apache Hadoop ”platform” consists

of the Hadoop kernel, MapReduce and Hadoop

Distributed File Sys- tem(File system designed for

storing very large files with streaming data access

patterns, running on clus- ters of commodity hardware

[4]), as well as a num- ber of related projects

including Apache Hive, Apache HBase, and others [5].

The important characteristics of Hadoop are:

• Partitioning of data

• Computations across many hosts

• Executing application computations in parallel

close to their data.

The rest of the paper is organized as follows: In Section

2, the general architecture of HDFS is discussed. Sec-

tion 3 throws light on Elastic Replication Management

System. In Section 4, small files handling by HDFS is

discussed. Conclusion is presented in section 5.

II. ARCHITECTURE OF HADOOP DISTRIBUTED FILE

SYSTEM (HDFS)

An HDFS cluster[11] has two types of node operating

in a master-worker pattern: a name- node (the master)

and a number of datanodes (workers). The namenode

manages the filesystem namespace and stores the

filesystem meta-data.[4]

The HDFS namespace is a tree structure of files and

directories that are represented on the Namenode with

the help of Inodes. Inodes record attributes such as,

permissions, modification and access time, namespace

and disk space quotas. HDFS stores the entire space

in RAM. An HDFS client who wants to read a file

contacts the Namenode for location of the data blocks

and then reads block content from Datanode that is

close to HDFS client. While writing data, the client

requests Namenode to select a suite of three Datanodes

(typically three, but user selectable file-by-file) to host

block replica. The client writes data to Datanode in

a pipeline fashion. HDFS is designed in such a way

that, it has a single Namenode for each cluster and

this cluster can have thousand of Datanodes and ten

thousand of HDFS clients per cluster. This single

Datanode executes multiple application concurrently.

Datanode in HDFS stores the application data in

the form of files. The file content is split into large

blocks and each block is independently replicated at

multiple Datanodes. This block is represented by two

files in the local host’s native filesystem. The first

file contains the data itself and the second file is the

block’s metadata. During boot-up Datanode connects

to the Namenode to perform a Handshake, which

verifies the Namespace ID and the software version

of the Datanode. The Datanode automatically shuts

down, if either does not match with the Namenode.

Datanodes send Heartbeat message to the Namenode

to check the availability of block replicas and confirm

the operation of Datanode. In the absence of heart-

beat, Namenode considers the Datanode to be out of

service and block replicas hosted by that Datanode to

be unavailable.

In addition to this, Heartbeat also carry information

about total storage capacity, fraction of storage in use

and the number of data transfer currently in progress,

which are used for Namenode space allocation and

load balancing decisions. Namenode does not directly

call Datanodes, it uses replies to heartbeats to send

instructions to Datanodes.

Figure 1: HDFS Architecture[12].

III. ELASTIC REPLICATION MANAGEMENT

SYSTEM

HDFS is a Distributed file system, that stores large

volume of data(Big Data) across clusters of computer

reliably and transfers these data sets to variety of

applications at a higher bandwidth and provides

higher performance and availability by replicating the

data blocks(typically 3 replicas). The demand for

data popularity changes drastically over time. To get

the better performance and higher disk utilization,

the HDFS replication policy should be elastic(flexible)

and adaptable to data popularity.

ERMS(Elastic Replication Management System) uses

complex event processing engine that categorizes the

real-time data types(hot/cold data) and depending

on this, it increases the replication factor for hot

Hadoop File System with Elastic replication Management: An Overview

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2146

data(frequency of accessing the data will be more)

and removes these extra replicated data blocks, when

data cools down(cooled data - frequency of accessing

data will be less) and uses erasure codes to deal with

cold data.

Depending on the accessing pattern and popularity of

data in HDFS, it can be classified into 4 types: hot

data, cold data, cooled data and normal data. Hot

data is also called as popular data, where the data not

only accessed concurrently, but also intensity of data

access will be more. Once, when the concurrent access

and intensity of data access drops down, such data is

termed as Cooled data.

The Data that are occasionally accessed are called as

Cold data. Rest all data in HDFS are Normal data.

The popularity of data will be at peak at the time

when the data is created newly(fresh). As the time

goes by, the popularity nadirs(slows down). The

process of data is as follows: Once, the data is created,

it will be termed as hot data because the requests for

such data will be more from applications. When these

requests are processed and completed, it becomes

cooled. And then, it becomes normal data. If they are

accessed occasionally, the data will become cold. The

process of data can be shown in the below diagram,

how the accessing and popularity changes as the time

goes by.

Data nodes. This triplication policy is well suited

in terms of high performance and reliability across

clusters of computers. It also ensures that data will

be available all the time and fault tolerance during

data or disk failures. However, there are 2 drawbacks

in this policy:

First, since hot data is requested by many distributed

applications simultaneously, this policy does not hold

good. In other words, when request numbers are more

than three replicas, some of them have to access the

data remotely and may compete for the same replica.

Second, this policy does not hold good for cold data

also. Since, the intensity of accessing such data is very

less, thereby increases the overhead cost on storage

management and network bandwidth.

Figure 3: Architecture of Triplication policy in HDFS.

Figure 2: Data Popularity. It shows how the popularity of the data

changes as time progresses.

A. Triplication Policy

Generally, HDFS replicates 3 blocks of

data(Triplication policy) and will be stored in

B. About ERMS

ERMS(Elastic Replication Management System) is

one way to overcome these problems. It increases

the replicas for hot data whenever it is necessary by

distributing them reasonably across the data nodes

for load balancing and reducing the default replication

factor(typically less than three replicas) for cold data

by using erasure code technique, so that, management

cost will be reduced and provides high availability and

performance.

Erasure code is based on the RAID software(redundant

array of independent disks), which focuses on provid-

ing the high reliable storage with least storage cost.

C. Active and Standby nodes

ERMS introduces an active/standby storage paradigm,

that uses the engine called complex event process-

ing(CEP) to differentiate real-time data types, and

provides an elastic replication policy for different types

Hadoop File System with Elastic replication Management: An Overview

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2147

of data[13].It uses a technique called Condor, which is

used to increase the replicas for hot data in standby

nodes, and removes these extra replicas once when the

data cools down. As data becomes cold, erasure codes

are used to save the storage management (Removing

extra replicas) and network bandwidth. In addition,

keeping all the nodes active, might require extra

energy to be consumed. However, this model allows

the extra nodes to be resided in standby nodes, so

that it does not require any extra energy to be used.

Generally, in a HDFS environment, the active nodes

will always be busy. To tackle the sudden increase in

requests for hot data, ERMS activates the standby

nodes and places all the extra replicas at these nodes.

When active nodes are busy, the standby nodes play a

vital role by initiating itself to service the requests in

place of active nodes.

Figure 4: Active and Standby Nodes

D. ERMS Architecture

ERMS Architecture is made up of number of compo-

nents, which are arranged in three different levels.

The Data Judge module, uses the log file from the

HDFS clusters and uses CEP to differentiate the real-

time data types(hot/cold data). After differentiating

the real-time data, the manager level of ERMS uses

the Condor to schedule the replication manager tool

and erasure coding tool to manage the replicas of

data. HDFS is the basic storage appliance where all

the audit log files and replicas are stored.

Thus from this technique, the Replication factor can

be dynamic in real time, which reduces the overhead

cost of storage management in terms of replicas and as

well as the provides high availability and performance.

IV. SMALL FILES IN HDFS

HDFS is expert in handling large files of data, but

dealing with small files is inefficient, a large number

of small files occupies large amount of system memory

and even accessing small files is hundred times more

than accessing large files. So repository and manag-

ing massive small files in HDFS is a practical problem.

The reasons for handling small files are:

1. Even though HDFS is basically designed for ac-

cumulating large files, it also retrieves small files

of lower efficiency. Small files send request to Na-

menode several times in which Namenode has a

greater overhead and even file addressing cost is

high. Due to this, original intention of HDFS will

be infringed.

2. Memory usage of data node and Namenode will

be very high as the DataNode will store file block

in memory and the small file occupy a file chunk.

To solve the small file problem, method of file merger

is used.

1. HAR (Hadoop Archive)[9] tool is used, but this

method occupied large amount of disk resources.

2. Another method is to add a small file processing

module in the original HDFS system which when

small file arrives will be directly delivered to pro-

cessing module.

Due to the drawbacks of these two methods a novel

approach to handle small files is introduced, which will

not change the present HDFS system but improves

its efficiency while handling small files. Retrieval and

fetching of small files is done by an engine which builds

the file index and file process procedure.

Design Scheme for Engine of Small File:

The small file engine processor uses Reactor Multipro-

cessor I/O, which process many request task. This

engine has 2 components:

a) Small files written and merger

b) Small file read and separation[10]

a) Small files written and merger - This component

establishes a TCP server using local port to com-

plete the file merger tasks. Then service waits for

the small file merger request that uses the observer

pattern and the events gets registered on listening

socket.

Once the request arrives, the listening socket state

gets changed and the service adds the file index

to the head of small file immediately which later

Hadoop File System with Elastic replication Management: An Overview

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2148

Figure 5: Writing Small files and Merger.

forms a new small file, and will be delivered to a

file wait queue. A new file wait queue(FWQ) is

created, which adds the new file to this queue.

Threads are allocated to read files from FWQ,

which is thread-safe. Here multiple small files ,

merge to form a new file chunk and each merger

calculates the current file block size. Once the files

are merged it is added to the FWOQ(File Write

Operation Queue)and from FWOQ files will be

taken to HDFS and files are written here. Even

the writing process uses multiple threads.

b) Small file read and separation - This compo-

nent establishes a TCP server which accom-

plishes file separation task .Then service waits for

the small file write request.Once the request ar-

rives ,the multiple threads get merge file from

HDFS and adds to queue FRWQ(File Read Write

Queue).The file block will be read from FRWQ

and will be split into many individual small files.

These files will be flung into FCT(File Cache Ta-

ble) which is implemented using Hash Table. Here

small file index is the key,and the file content is the

value. The files get retrieved from FCT. Abstain-

ing files which are not retrieved from FCT for long

time can be done by using LRU replacement algo-

rithm. Hash table (FAT) will be procedure created

to record the access times of files.

Figure 6: Reading Small files and Separation.

The engine, which is applied on HDFS system, can

even be used to other distributed file system.

A. Novel Indexing Scheme for handling

small files in HDFS

Large file storage and maintenance is efficiently done by

HDFS. NameNode is responsible to manage all the files

stored in HDFS. This is done by storing metadata of all

files in the main memory of NameNode. Storing large

number of small files is a constraint on HDFS main

memory. HDFS does not correlate the files and hence

does not provide any prefetching mechanism [6]. The

paper surveyed further proposes a solution to improve

the storage and management efficiencies of small files in

HDFS, based on the concept of Extended Hadoop Dis-

tributed File System (EHDFS by Dong et al.)[7]. The

concept behind EHDFS is to bind interrelated small

files into a large file, which reduces the metadata foot-

print on NameNode. The small files can be accessed by

using an indexing mechanism. The efficiency of han-

dling small file requests is achieved by providing file

and index prefetching mechanisms based on interrela-

tionships between files. This will reduce the burden on

Name Nodes main memory that is created due to large

number of metadata requests.

Small Files Problem:

When a single Name Node stores metadata of all the

files in its main memory, it becomes a bottleneck to

manage such a huge amount of small files. A small

file is usually defined in terms of size, if it is relatively

lesser than the HDFS block size[6]. This issue is known

as the small files problem[8]. The small files problem

can be better understood with the following explana-

tion.

The complete metadata set is stored in main memory

of Name Node for faster access. Each data block has

its own metadata. If the file size is greater than the

block size, then the metadata volume stored is sub-

stantiated. When in fact if the file size is smaller than

the block size, each file occupies a block and for large

number of small files, the extent of metadata stored is

remarkably huge. This can be better understood with

an illustration. Let us assume that, the metadata for

each file block in main memory takes about 150 bytes.

Consequently, for a 1GB file, divided into 16 64MB

blocks, 2.4KB of metadata is stored. While, for 10500

files of size 100KB each (total of 1GB), about 1.5MB

metadata is stored[6][8]. Thus, though a good amount

of small files occupy minimum space in file system, its

corresponding metadata consumes a great magnitude

of main memory in Name Node. Additionally, access-

ing and managing such large amount of files creates

Hadoop File System with Elastic replication Management: An Overview

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2149

congestion in Name Node, thus results in poor perfor-

mance of HDFS.

The design is based on the concept of Extended

Hadoop Distributed File System (EHDFS)[7], which

renders two significant services that are as follows, an

enhanced indexing mechanism and prefetching of in-

dexing information. In the EHDFS approach, the small

files problem can be potentially vanquished using 4

techniques.

They are :

• File merging,

• File mapping,

• Prefetching and

• File extraction.

Figure 7: Small file handling operations

When a large number of small files are to be managed

by HDFS, the performance of the system would be at

stake and also it imposes a large amount of metadata

footprint on the Name Node. The paper discussed and

reviewed so far proposes a solution that can handle

the small files problem efficiently using the concept of

EHDFS. In this technique, a large number of small files

can be merged into a single file and it also provides

a mechanism of prefetching certain file metadata in

order to improve the efficiency. The four mechanisms

namely, File merging, File mapping, Prefetching and

File extraction are carried out in a systematic manner

to facilitate the File read and Write operations. Hence

it can be concluded that the use of EHDFS principle

improves the efficiency of accessing small files and also

reduces the metadata footprint on the Name Nodes

main memory.

V. CONCLUSION

In this paper, the Hadoop file system is discussed ex-

plaining how it handles big files as well as small files

efficiently. ERMS plays a major role in handling hot

data by distributing the data across the nodes. Us-

ing ERMS replication factor becomes dynamic in real

time that helps in reducing the overall cost of storing

the data in terms of replicas. Also, Extended HDFS

can handle the small files that are available in large

numbers efficiently. This technique merges the small

files into one large file that can be handled by EHDFS

easily. Also, four mechanisms, namely File merging,

File mapping, Prefetching and file extraction are car-

ried out in a systematic manner to facilitate file read

and write operations. So, overall this paper discusses

in detail about how Hadoop File System manages both

big files and small files efficiently.

REFERENCES

[1] map/reduce. http://wiki.apache.org/hadoop/ MapReduce.

 [2] Apache Hadoop. http://en.wikipedia.org/

wiki/Apache_Hadoop.

[3] Hadoop Overview. http://hadoop.apache.org
[4] Hadoop: The Definitive Guide,by Tom White, Published by

O’Reilly Media 2012 edition

[5] Hadoop-related projects at hadoop.apache.org.
[6] Chandrasekar S, Dakshinamurthy R, Seshakumar P G,

Prabavathy B, Chitra Babu. ”A Novel index- ing scheme for

efficient handling of small files in hadoop distributed file
system”.In proc. of IEEE Internatioal Conf. on Computer

Communication and Informatics, Jan 04-06, 2013, Coimbatore,

In- dia.
 [7] B.Dong, J.Qin, Q.Zhong, J. Li,Y.Li. ”A Novel approach to

improving the efficiency of storing and accessing small files on

hadoop”.In Proc. of IEEE International Conference on Services
Computing, Miami, Florida, USA, July 2010.

[8] Tom White, ”The small files problem” http:

//www.cloudera.com/blog/2009/02/ the small files problem,
2009.

[9] Hadoop archives, http://hadoop.apache.org/

common/docs/current/hadoop_archives.html.

[10] Yang Zhang,Dan Liu. ”Improving the Efficiency of Storing
for Small Files in HDFS”. In Proc. of

2012 International Conference on Computer Sci- ence and Service

System, Nanjing, China.
[11] http://search-hadoop.com/jd/hcommon/org/

apache/hadoop/mapreduce/Cluster.html

[12] http://hadoop.apache.org/docs/stable/
hdfs_design.html

[13] Zhendong Cheng,Zhongzhi Luan, You Meng, Yi- jing Xu,

Depei Qian Sino, Alain Roy, Ning Zhang.
”ERMS : An Elastic Replication Management System for HDFS”.

In Proc. of IEEE Interna- tional Conference on Cluster

Computing Work- shops, sept 24-28 2012, Beijing, China.

Hadoop File System with Elastic replication Management: An Overview

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2150

