Health Hazards of Organic Solvents
Shiva kumar S1* and Subhashini D2

1Department of Chemistry, National Institute of Technology Warangal, Telangana, India
2Department of Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India

ABSTRACT
Organic solvents are one of the most trivialized hazards. They are used for a million purposes in chemical reactions. Almost every organic solvent is health hazard if swallowed or inhaled more than the listed quantity. Most of the organic solvents are skin irritants if came contact with the skin. Some of the regularly used organic solvents are Acetone, Acetonitrile, Cyclohexane, and Ethanol, Methyl alcohol, Toluene and xylene. Scientists, research's and workers in Commercial industries and research institutes use above mentioned organic solvents on regular basis May have occupational subjection. People living near the commercial industries may have environmental subjection when they come in contact with poisoned water, soil and air. The above mentioned solvents on a constant exposure badly affect the function of central nervous system (CNS). The Impact will be based on the Concentration of the solvent and duration of exposure and the toxicity of the solvent. Signs and symptoms suggestive of CNS involvement range from headaches, tiredness, and dizziness to behavioural changes, unconsciousness, and death.

DISCUSSION
Of all common organic solvents few like Acetone, Acetonitrile, Cyclohexane, Ethanol, Methyl alcohol, Toluene and xylene make top of the list due to their very hazardous nature [1-15].

Acetonitrile toxicity

Acetonitrile is a harmful substance that has unfriendly wellbeing impacts and can prompt Death. Human introduction happens by inward breath of acetonitrile vapours or by the retention of the fluid or vapour through the skin and eyes. Acetonitrile obstructs the lessening of oxygen required for cell breath and in this manner prompts cytotoxic anoxia. The potential for acetonitrile danger relies upon the sum, course, time and recurrence of exposure; intense indications are typically stomach torment, writhing’s, worked breathing, shortcoming, obviousness and redness in the skin and eyes. With delayed presentation, the liver, lungs, kidneys, and focal sensory system may be influenced. Since acetonitrile has not been indicated reason growth in rodents and does not bring about quality transformation, its cancer-causing potential in people is relied upon to be low. Then again, this data is questionable on the grounds that in male rats, a positive pattern for liver tumor development was affirmed. Moreover, an increment of the frequency of basophils was watched, which may speak to a preneoplastic impact [16-18]. It is critical to specify that acetonitrile is promptly consumed by the lungs and the gastrointestinal tract and is in this way immediately appropriated all through the body. Therefore, if introduction happens, this substance must be quickly expelled from the body, and the methods for detoxification ought to be begun promptly in light of the fact that quick backing is conclusive for the treatment achievement. All in all, the most ideal approach to anticipate acetonitrile harmfulness is to maintain a strategic distance from...
acetonitrile introduction. This obliges the utilization of individual defensive gear and cleanliness and additionally alert in taking care of, transport and stockpiling. With these routines, the utilization of acetonitrile without danger to human wellbeing is conceivable.

Toluene toxicity

The CNS \[19-25\] is the primary target organ for toluene toxicity in both humans and animals for acute and chronic exposures. The individuals exposed to toluene for longer durations suffer CNS disorders and narcosis showing following symptoms Headache, Nausea, and drowsiness. Exposure at higher concentrations result Cardiac arrhythmia. CNS depression has been observes on periodic exposure of toluene at higher concentrations. Symptoms include drowsiness, Haemorrhage, ataxia, tremors, cerebral atrophy, nystagmus, and impaired speech, hearing, and vision. Later studies also revealed prolonged subjection to toluene causes irritation of the upper respiratory tract and eyes, sore throat, dizziness, mild effects on liver, headache, and difficulty with sleep \[26-30\].

CNS disorders, CNS dysfunction, Attention deficit disorders, musculoskeletal abnormalities, renal tubular acidosis and developmental disability were observed in the children of pregnant women exposed to toluene. However, these studies were confounded by exposure to multiple chemicals \[31-38\]. Paternal exposure increased the odds ratio for spontaneous abortions \[39\]. An increased incidence of spontaneous abortions was reported among woman occupationally exposed to toluene.

Xylene toxicity

Xylene is a toxic aromatic hydrocarbon widely used pharmaceutical industries and research agencies as solvent. Xylene threshold limit value in the working environment is 100ppm. Xylene vapour is absorbed rapidly through the lungs, and xylene liquid and vapour are absorbed slowly through the skin.95% of the absorbed xylene is metabolised in the liver to MHA (Methyl Hippuric acid) and 70 to 80% of metabolites are excreted in the urine so the levels of excreted metabolites of xylene serves as indicators of presence of xylene inside the body. Xylene at higher concentrations inside the body has narcotic effects, resulting neuropsychological and neurophysiological dysfunction along with Respiratory tract impairment to the normal functions \[40-52\]. More prolonged exposure of xylene associated with leukopenia, anaemia and thrombocytopenia, chest pain with ECG abnormalities, cyanosis and dyspnea, in addition to CNS symptoms \[53-54\]. Extended submission of xylene also affects liver size, liver enzymes, visual abstraction, and auditory memory. Regular biochemical cycles were changed and consequential increases in some serum bile acids may mirror early liver damage \[55-70\].

REFERENCES


