
Volume 2, No. 6, June 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

REVIEW ARICLE

Available Online at www.jgrcs.info

�

© JGRCS 2010, All Rights Reserved 118

HIBERNATE TECHNOLOGY FOR AN EFFICIENT BUSINESS APPLICATION

EXTENSION

B.Vasavi
*1

, Y.V.Sreevani
2
,

G.Sindhu Priya

3

 *1 Associate Professor, Department of Computer Science and Engineering

 Hyderabad Institute of Technology and Management [HITAM], Hyderabad, A.P, India.

 vasavi.bande@yahoo.co.in
 2 Associate Professor, Department of Computer Science and Engineering

 Hyderabad Institute of Technology and Management [HITAM], Hyderabad, A.P, India

 s_vanikumar@yahoo.co.in
 3 Student, B.Tech Final Year, Department of Computer Science and Engineering

 Hyderabad Institute of Technology and Management [HITAM], Hyderabad, A.P, India

sindhupriya78@gmail.com

Abstract :This paper discusses hibernate technology as a novel and efficient means to access huge databases and also focuses on how to

implement persistent features in object-oriented system through it . It discusses currently available hibernate mapping framework in detail.

Hibernate provides support for collections, object relations, as well as complex and composite types. In addition to persisting objects,

hibernate also provides a rich query language to retrieve objects from the database, along with an efficient caching layer and Java

Management Extensions (JMX) support. Hibernate is a powerful, high-performance, feature-rich and very popular ORM solution for Java.

Hibernate facilitates development of persistent objects based on the common Java object model to mirror the underlying database structure.

This approach progresses the business performance to some extent, advances development efficiency exceedingly and obtains preferable

economical efficiency and practicability. In addition to, it compares and analyzes the database access efficiency resulted from two

mechanisms based on Hibernate and JDBC. This paper offers insight into hibernate technology its implementation and usage.

Keywords: Hibernate, HQL, ORM,, Database, SQL.

 INTRODUCTION

A major portion of the development of an enterprise

application involves the creation and maintenance of the

persistence layer used to accumulate and retrieve objects

from the database of choice [1]. Many organizations resort

to create homegrown, often buggy, persistence layers. If

changes are made to the underlying database schema, it can

be expensive to disseminate those changes to the rest of the

application. Hibernate steps in to fill this gap, providing an

easy-to-use and powerful object relational persistence

framework for Java applications. Hibernate is an object-

relational mapping (ORM) library for the Java language,

providing a framework for mapping an object-oriented

domain model to a traditional relational database. Hibernate

solves Object-Relational impedance mismatch problems by

replacing direct persistence-related database accesses with

high-level object handling functions. ORM is a piece of

software product for the representation and translation of

data between the database and the object-oriented

programming language. Hibernate is one such ORM solution

and it is an open-source project. The Hibernate 2.1

framework has won a award in 2005. Hibernate provides

support for collections and object relations, as well as

composite types. It also provides a rich query language to

retrieve objects from the database, a competent caching layer

and has Java Management Extensions (JMX) support.

Hibernate is released under the lesser GNU Public License,

which is sufficient for use in commercial as well as open

source applications. It supports numerous databases,

including Oracle and DB2, also popular open source

databases such as PostgreSQL and MySQL.

Working of Hibernate

Rather than utilizing bytecode processing or code

generation, hibernate uses runtime reflection to determine

the persistent properties of a class. The objects to be

persisted are defined in a mapping document, which serves

to describe the persistent fields and associations, as well as

any subclasses or proxies of the persistent object. The

mapping documents are compiled at application startup

time and supply the framework with necessary information

for a class [2]. In addition to it, they are used in support

operations, such as generating the database schema or

creating stub and Java source files. A Session Factory

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 119

is created from the compiled collection of mapping

documents[6]. The Session Factory provides the mechanism

for managing persistent classes and the Session interface.

The Session class provides the interface between the

persistent data store and the application. The Session

interface wraps a JDBC connection, which can be user-

managed or controlled by hibernate, and is only intended to

be used by a single application thread, then closed and

discarded.

Hibernate Architecture
The following Figure1and Figure 2 describes the high level

architecture of hibernate i.e. they show how hibernate uses

the database and configuration data to provide persistence

services (and persistent objects) to an application. To use

Hibernate, it requires creating Java classes that represent the

table in the database and then map the instance variable in

the class with the columns in the database. Then, Hibernate

can be used to perform operations on the database like

select, insert, update and delete the records in the table.

Hibernate automatically creates the query to perform these

operations. The Figure1describes the high level architecture

of hibernate.

 Figure 1. Basic Hibernate Architecture

 Hibernate architecture has following three main

components.

 Connection management:

 Hibernate Connection management service grant efficient

management of the database connections. Database

connection is the priciest part of database as it

requires a lot of resources of open/close the database

connection.

Transaction management:

Transaction management service provides the capability to

the user to execute more than one database statements at a

time.

Object relational mapping:

Object relational mapping is a technique of mapping the data

representation from an object model to a relational data

model. This part of the hibernate is used to select, insert,

update, view and delete the records form the underlying

table. When we pass an object to a Session.save() method,

hibernate reads the state of the variables of that object and

executes the necessary query. Hibernate is extremely good

tool as far as object relational mapping is concern, but in

terms of connection management and transaction

management, it lacks in performance and capabilities. So

usually hibernate is being used with other connection

management and transaction management tools. For

example apache DBCP is used for connection pooling with

the hibernate. Hibernate provides a lot of flexibility in usage.

It is called "Lite" architecture when we only use object

relational mapping component. While in "Full Cream"

architecture all the three component Object Relational

mapping, Connection Management and Transaction

Management are used. Hibernate architecture can be shown

in detail in the figure 2.

 Figure 2. A detailed Hibernate Architecture

����������	
����	�������	

Hibernate Query Language or HQL for short is extremely

powerful query language. HQL is much like SQL and are

case-insensitive, except for the names of the Java Classes

and properties. Hibernate Query Language or HQL for short

is extremely powerful query language. HQL is much like

SQL and are case-insensitive, except for the names of the

Java Classes and properties. Hibernate Query Language is

used to execute queries against database. Hibernate

automatically generates the sql query and execute it against

underlying database if HQL is used in the application [4].

HQL is based on the relational object models and makes the

SQL object oriented. Hibernate Query Language uses

Classes and properties instead of tables and columns.

Hibernate Query Language is extremely powerful and it

supports Polymorphism, Associations and is less verbose

than SQL. There are other options that can be used while

using hibernate [3]. These are Query By Criteria (QBC)

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 120

and Query BY Example (QBE) -using Criteria API and the

Native SQL queries.

Full support for relational operations- HQL permits

representing SQL queries in the form of objects. Hibernate

Query Language uses Classes and properties instead of

tables and columns.

Return result as Object- The HQL queries return the query

result(s) in the form of object(s), which is easy to use. This

eliminates the need of creating the object and populates the

data from result set.

Polymorphic Queries- HQL fully supports polymorphic

queries. Polymorphic queries provide query results along

with all the child objects if any.

Easy to Learn- Hibernate Queries are easy to learn and it

can be easily implemented in the applications.

Support for Advance features- HQL contains many

advanced features such as pagination, fetch and join with

dynamic profiling, Inner/outer/full joins and Cartesian

products. It also supports Projection, Aggregation (max,

avg) and grouping, Ordering, Sub queries and SQL function

calls.

Database independent- Queries written in HQL are

database independent.

UNDERSTANDING AND IMPLEMENTATION OF

HIBERNATE MAPPING

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping SYSTEM

“Hibernate_Mapping.dtd”>

<hibernate-mapping>

 <class name=”sample” table=”COMMUNICATE”>

<idname=”id”type=”long”column=”ID”><generator

class=”assigned”/> </id>

<property name=”firstName”> <column

name=”FIRSTNAME”/> </property>

<property name=”lastName”> <column

name=”LASTNAME”/> </property>

 </class>

 </hibernate-mapping>

 Hibernate mapping documents are simple xml documents

[10].

Here are some important elements of the mapping file:

1. <hibernate-mapping> element: The first or root element

of hibernate mapping document is <hibernate-mapping>

element between the <hibernate-mapping> tag class

element(s) are present [3].

2. <class> element: The <class> element maps the class

object with corresponding entity in the database. It also tells

what table in the database has to access and what column in

that table it should use. Within one <hibernate- mapping>

element, several <class> mappings are possible.

3. <id> element: The <id> element is unique identifier to

identify and object. In fact <id> element map with the

primary key of the table in our code <id name="id"

type="long" column="ID" > primary key maps to the ID

field of the table COMMUNICATE. The attributes of the id

element are:

 a) Name: The property name used by the persistent

class.

 b) Column: The column used to store the primary key

 value.

 c) Type: The Java data type is used.

 d) unsaved-value: This is the value used to determine if a

 class has been made persistent. If the value of the id

 attribute is null, then it means that this object has not

 been persisted.

4. <generator> element: The <generator> method is used

to generate the primary key for the new record. Here is some

of the frequently used generators.

 a) Increment - This is used to generate primary keys of

 type long, short or int that are unique only. It should not

 be used in the clustered deployment environment.

 b) Sequence - Hibernate can also use the sequences to

 generate the primary key. It can be used with DB2,

 postgreSQL , Oracle, SAPDB databases.

 c) Assigned - Assigned method is used when application

 code generates the primary key.

5. <property> element: The property elements define

 standard Java attributes and their mapping into database

 schema. The property element supports the column child

 element to specify additional properties, such as the index

 name on a column or a specific column type.

Configuring Hibernate

Hibernate can be configured by creating a property file

named hibernate properties in the src directory and adding

its path to the application's classpath. This file consists of the

properties used by Hibernate to connect to database[11],

generate schema, and obtain other database-specific

information. To reflect changes in the underlying database

into the whole application, only values of the properties in

this file need to be modified. Model 1 shows a simple

example. Most of these properties are self-explanatory. To

set up MySQL Database in the configuration file i.e.

hibernate.cfg.xml.Considering database running on the

localhost. So, create the database ("hibernate tutorial") on

the MySQL server running on local host.

Model 1: A simple example of hibernate properties file:

hibernate.connection.driver_class =

COM.ibm.db2.jdbc.app.DB2Driver

hibernate.connection.url = jdbc: db2: inventory

hibernate.connection.username = db2admin

hibernate.connection.password = Taman

hibernate.dialect = cirrus.hibernate.sql.DB2Dialect

Hibernate also can be configured by using a simple XML

file named hibernate.cfg.xml, which exists inside the src

directory. This file's structure is very similar to hibernate

properties and has the same functionality. This shown as

example

in the following model.

Model 2: Example of a simple hibernate.cfg.xml

<? xml version="1.0"?>

 <!DOCTYPE hibernate-mapping SYSTEM

“Hibernate_Mapping.dtd”>

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 121

<hibernate-mapping>

<calss name=”sample” table=”COMMUNICATE”>

<id name=”id” type=”long” column=”ID”><generator

class=”assigned”/> </id>

<property name=”firstName”> <column

name=”FIRSTNAME”/> </property>

<property name=”lastName”> <column

name=”LASTNAME”/> </property>

</class>

 </hibernate-mapping>

Building an Application with Hibernate

We can build a application by adhering to the following

steps.

• Creating mapping documents.

• Generating stub Java classes for persistent objects.

• Generating database schema.

• Preparing code to initialize and run Hibernate in an

appropriate place .

These steps are explained in the following sections.

Creating Mapping Documents

Mapping documents are XML documents used to define

the persistent objects and contain information about an

object's persistent fields, associations, subclasses, and

proxies, if any [3]. One mapping document is created for

each persistent object and saved in a file with the name

class_name.hbm.xml, where class_name is the name of the

object's class. Model 3 and Model 4 gives an example of

mapping document Event.hbm.xml. The mapping

documents are compiled at application start-up to provide

hibernate with information about the persistent objects'

corresponding classes, their respective structures, to which

database table should they be mapped, and how. Hibernate

also uses these mapping documents to generate

corresponding database schema and stub Java classes for the

persistence layer, using inbuilt utilities called SchemaExport

and CodeGenerator respectively.

Model 3: An example of mapping document Event.hbm.xml

<! DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 2.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-

2.0.dtd">

 <Hibernate-mapping>

 <class name="com.myPackage.myApplication.Event"

table="EVENTS">

 <id name="id" column="uid" type="long">

 <generator class="increment"/>

 </id>

 <property name="date" column="event_date"

type="timestamp"/>

<property name="title" column="event_title"

type="string"/>

</class>

</hibernate-mapping>

 Generating Stub Classes

 This task becomes simpler after mapping documents are

 created. Stub classes can be created by using Hibernate's built-

 in utility CodeGenerator by executing a simple command.

 Command's syntax is given below:

 java -cp classpath

net.sf.hibernate.tool.hbm2java.CodeGenerator: options

mapping files.

 Provide appropriate values for the class path, options, and

 mapping files parameters. Model 4 shows the stub file

 generated using the mapping document given in model 3.

Model 4: Stub Classes

package com.myPackage.myApplication;

public class Event {

 private String title;

 private Date date;

 private Long id;

 Event(){ }

 public Long getId() {

 return id;

 }

 private void setId(Long id) {

 this.id = id;

 }

 public Date getDate() {

 return date;

 }

 public void setDate(Date date) {

 this.date = date;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

}

Generating Database Schema
Mapping files in hand, it’s time to generate the database

schema [7]. Hibernate ships with the SchemaExport utility

that will create the schema necessary for the mapping

documents. This utility may be run from the command line

or from an build script to connect to the database and

create the schema, or to export the schema to a file. To

generate database schema using Hibernate's SchemaExport,

execute the following command after substituting

appropriate values for parameters:

java -cp classpath

net.sf.hibernate.tool.hbm2ddl.SchemaExport options

mapping_files.

Provide appropriate values for the classpath, options, and

mapping_files parameters. Figure 3 shows the schema

generated using the mapping document given in model 3.

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 122

Figure 3: Graphical representation of schema as per Model 3

Initializing and Running Hibernate

To initialize and run hibernate, the following steps are to be

taken [8]:

• Inside an appropriate class, instantiate and populate the

desired object to be persisted.

• Obtain the net.sf.hibernate.SessionFactory object using

the net.sf.hibernate.cfg.Configuration object at the start of

the application.

• Open net.sf.hibernate.Session by calling the

openSession() method on the SessionFactory object.

• Save the desired object and close the Session.

Model 5 shows how to implement the steps described above

using a simple class. Now, the application is complete and,

when executed, saves the desired objects to the underlying

database and makes them persistent.

Model 5: A class for initializing Hibernate and making

objects persistent.

package com.myPackage.myApplication;

import net.sf.hibernate.SessionFactory;

import net.sf.hibernate.HibernateException;

import net.sf.hibernate.Transaction;

import net.sf.hibernate.cfg.Configuration;

public class EventManager {

public static void main(String[] args) {

 // Instantiate and populate object to be persisted

 Event ev = new Event();

 ev.setDate("22/6/2011")

 ev.setTitle("Hibernate startup ");

 try {

 //Start Hibernate

 Configuration cfg = new

 Configuration().addClass(Event.class);

 SessionFactory sf = cfg.buildSessionFactory();

 //Open Session

 Session sess = sf.openSession();

 } catch (HibernateException e) {

 e.printStackTrace();

 }

 //Save Product and close Session

 Transaction t = sess.beginTransaction();

 sess.save(ev);

 t.commit();

 sess.close();

 }

}

CREATING THE SESSION FACTORY

The SessionFactory stores the compiled mapping documents

specified when the factory is created. Configuring the

SessionFactory is fairly straightforward as shown in figure 4.

All of the mappings are added to an instance of

net.sf.hibernate.cfg.Configuration, which is then used to

create the SessionFactory instance.

Configuration cfg = new Configuration()

addClass(example.Player.class)

addClass(example.Team.class);

SessionFactory factory = cfg.buildSessionFactory();

Figure 4: Session Factory Mapping

The Configuration class is only needed for the creation of

the SessionFactory and can be discarded after the factory is

built. Instances of Session are obtained by calling

SessionFactory.openSession(). The logical lifecycle of a

Session instance is the span of a database transaction. The

SessionFactory can also be configured using an XML

mapping file, placed in the root of

your classpath [8]. The evident advantage to this approach is

that your configuration isn’t hardcoded in the application.

INTERCEPTORS IN HIBERNATE

Hibernate provides an ORM solution for persisting and

querying data in the database. A Hibernate application can

be structured in a way such that certain methods can be

made and to be invoked when a particular life-cycle event

occurs. Not always the API in a software/product will

completely satisfy the application needs and requirements.

Hibernate is no more away from this [9]. Therefore,

Hibernate API is designed in such a way to provide

pluggable framework through the concept of Interceptors. In

a multi-tiered application, the situation for the inclusion of

Interceptors can happen at any level. It can happen at the

Client level, Server level and even at the persistence level.

Imagine an application is saving employee records in a

database and now the application mandates to display to the

Database admin about the history of inserts and updates.

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 123

A simple general overview of the logic looks like the

following,

- Insert/Update the records in the Database

- During Insert/Update, maintain the log information in a

file as we can see, the maintenance of this logging

information should happen whenever an insert/update goes

to the Database. Such a logger interceptor can be easily

plugged into the application with minimal code change

because of the flexible design of hibernate.

Types of Interceptors
Based on their scope, Interceptors in hibernate can fall under

two categories. They are,

• Application-scoped Interceptors

• Session-scoped Interceptors

Application-scoped Interceptor

An application can contain one or more database sessions

represented by the Session interface. If an application is

configured to use Global Interceptors, then it will affect the

persistent objects in all the sessions. The following code

configures a global interceptor.

SessionFactory sessionFactory =

configuration.buildSessionFactory();

Session session1 = sessionFactory.openSession();

Employee e1, e2 = null;

// Assume e1 and e2 objects are associated with session1.

Session session2 = sessionFactory.openSession();

User u1, u2 = null

//Assume u1 and u2 objects are associated with session1.

A global-scoped interceptor can be set to an application by

calling the Configuration.setInterceptor(Interceptor) method.

In the above code, we have two different session objects

'session1' and 'session2'. Let us assume that e1 and e2

Employee objects are associated with session 'session1' and

u1 and u2 are the user objects associated with session

'session2'. The applied application-scoped interceptor would

have affected all the objects (e1, e2, u1 and u2), even though

they are in different sessions.

Session-scoped Interceptor

A session-scoped interceptor will affect all the persistent

objects that are associated with that particular session only.

The following code shows how to configure a session-

scoped interceptor.

Configuration configuration = new Configuration();

SessionFactory sessionFactory =

configuration.buildSessionFactory();

MyInterceptor myInterceptor = new MyInterceptor();

Session session1 =

sessionFactory.openSession(myInterceptor);

Employee e1, e2 = null;

// Assume e1 and e2 objects are associated with session

'session1'.

MyAnotherInterceptor myAnotherInterceptor = new

MyAnotherInterceptor ();

Session session2 =

sessionFactory.openSession(myAnotherInterceptor);

User u1, u2 = null;

// assume u1 and u2 objects are associated with session

'session2'.

From the above code, we can infer that a session-scoped

interceptor can be set by calling the method

SessionFactory.openSession(Interceptor). In the above code,

we have two different session objects 'session1' and

'session2' being configured with Interceptors MyInterceptor

and MyAnotherInterceptor respectively. So, e1 and e2

objects will be affected by MyInterceptor, whereas u1 and

u2 objects will be affected by MyAnotherInterceptor.

IMPLEMENTATION FOR TESTING HIBERNATE

APPLICATION

Now we are ready to write a program to insert the data into

database. We should first understand about the hibernates

Session. Hibernate Session is the main runtime interface

between a Java application and hibernate [7]. First we are

required to get the hibernate Session. SessionFactory allows

application to create the hibernate Session by reading the

configuration from hibernate.cfg.xml file. Then the save

method on session object is used to save the contact

information to the database.

session.save(communicate)

Here is the code of First Example1.java

package roseindia.tutorial.hibernate;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.cfg.Configuration;

public class FirstExample {

public static void main(String[] args) {

Session session = null;

try{

// This step will read hibernate.cfg.xml and prepare hibernate

 for use

SessionFactory sessionFactory = new

Configuration().configure().buildSessionFactory();

session =sessionFactory.openSession();

//Create new instance of Communicate and set

values in it by reading them from form object

System.out.println("Inserting Record");

Communicate contact = new Communicate();

contact.setId(3);

contact.setFirstName("jasmine");

contact.setLastName("Rao");

contact.setEmail("jasmine_74@yahoo.com");

session.save(contact);

System.out.println("Done");

Retrieving Persistent Classes

If you know the primary key value of the object that you

want to retrieve, you can load it with the Session.load()

method[6]. This method is overloaded to offer support for

standard classes and BMP entity beans. To retrieve a

persistent class without knowing its primary key value, you

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 124

can use the Session.find() methods. The find () method

allows you to pass an HQL (Hibernate Query Language)

statement and retrieve matching objects as a java.util.List.

The find () method has three signatures, allowing you to pass

arguments to JDBC-like “?” parameters as a single

argument, named parameters, or as an Object[].

Deleting Persistent Classes
Making a persistent object transient is accomplished with the

Session.delete () method. This method supports passing

either a specific object to delete or a query string to delete

multiple objects from the database.

// method 1 – deleting the Player.

session.delete(player);

// Example 2 – deleting all of the Players with a salary

greater than 4 million

session.delete(“from player in class example.Player where

player.annualSalary > 4000000”);

It’s important to note that while the object may be deleted

from the database, your application may still hold a

reference to the object. Deleting an object with collections of

objects, such as the Team’s set of Players, can cascade to

child objects by specifying cascade=”delete” for the set

element in the mapping document.

Collections

 Hibernate can manage the persistence of object collections

[5], whether they are Sets, Maps, Lists, arrays of objects or

primitive values. It also allows a different form of collection

called a “bag”. A bag can be mapped to a Collection or List,

and contains an unordered, unindexed collection of entities

[6]. Bags can contain the same element many times.

Additional semantics supported by implementing classes,

such as Linked List, are not maintained when persisted.

Another note is that the property of a collection must be the

interface type (List, Map, Set). This is because, in order to

support lazy collections, hibernate uses its own

implementations of the List, Map or Set interfaces. When

accessing a lazily initialized collection, it’s important to

remember that a Session must be open, or an exception will

be thrown as given below.

Session session = factory.openSession();

Team team = (Team) session.find(“from team in class

example.Team where

team.city = ?”, cityName, Hibernate.STRING).get(0);

Set players = team.getPlayers();

session.close();

Player p = (Player) players.get(0); // exception will be

thrown here

The exception is thrown because the Session needed to

populate players was closed prematurely. Because of the

potential for this bug, hibernate defaults to non lazy

collections. However, lazy collections should be used for

performance reasons.

Performance Considerations

Fortunately this functionality doesn’t come at much of a

performance cost. The hibernate website claims that its

“overhead is much less than 10% of the JDBC calls,” and

our experience in deploying applications using hibernate

supports this. Hibernate can make multiple optimizations

when interacting with the database, including caching

objects, efficient outer join fetching and executing SQL

statements only when needed [9]. It is difficult to achieve

this level of sophistication with hand-coded JDBC.

 ADVANTAGES AND DISADVANTAGES OF

HIBERNATE

Hibernate is better than plain JDBC: You can use hibernate

which generates the SQL very easily and then automatically

executes the necessary SQL statements [10]. This saves a lot

of development and debugging time of the developer.

Writing JDBC statement, setting the parameters, executing

query and processing the result by hand is plenty of work.

Hibernate will save all tiresome efforts.

Mapping of Domain object to relational database:

Hibernate maps your domain object with the relational

database [3]. Now you can concentrate on your business

logic rather than managing the data in the database.

Light weight database-independent ORM solution

Layered architecture: Hibernate is layers architecture and

you can use the components as per your application need.

JPA Provider: Hibernate can work as JPA provider in JPA

based applications.

Standard ORM: Hibernate is standard ORM solutions and it

also supports JPA.

Database Independent: Hibernate is database independent

and you can use any database of your choice.

Caching Framework: There are many caching framework

that works with Hibernate. You can use any one in your

application to improve the performance of your application.

Disadvantages of Hibernate

Lots of API to learn: A lot of effort is required to learn

Hibernate. Not so easy to learn hibernate easily

Debugging: Sometimes debugging and performance tuning

becomes difficult.

Slower than JDBC: Hibernate is slower than pure JDBC as

it is generating lots of SQL statements in runtime

Not suitable for Batch processing: It sensible to use pure

JDBC for batch processing.

CONCLUSION

This paper has illustrated an introduction to what hibernate

can do. The analyses how hibernate delivers a high

B.Vasavi et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,
�

© JGRCS 2010, All Rights Reserved 125

performance, open source persistence framework

comparable to many of its open source and commercial

counterparts. Developers utilizing Hibernate can greatly

reduce the amount of time and effort needed to code, test,

and deploy applications. Hibernate is a powerful, high-

performance, feature-rich and very popular ORM solution

for Java along with mapping objects to a database. As

discussed above hibernate also provides advanced data query

and retrieval services through HQL, efficient caching, and

other optimization techniques with useful built-in utilities for

coding and schema generation. This automats the generation

of a persistent layer to a large extent and hence, helps in

relieving the developer up to 95% of common persistence

related coding.

REFERENCES:
 [1] Beginning Hibernate: from novice to professional,

 jefflinwood .

[2] http://www.devarticles.com.

[3] http://www.mindfiresolutions.com.

[4] Professional Hibernate (programmer to

 programmer),Ericpugh .

[5] http://www.apress.com.

[6] Java Persistence with Hibernate Second Edition of

 Hibernate in Action Christian Bauer and Gavin King.

[7] http://www.yangdaoqi.info.

[8] Hibernate in Action, Christian Bauer and Gavin King.

[9] Spring Persistence with Hibernate, AhmadSeddighi.

[10] Web development with java:using Hibernate,jsps and

 servlets,TimDowney.

[11] JBoss as 5 developments, Francescomarchoni.

�

�

Authors:	

��

�

1. Vasavi Bande is M.Tech in Computer Science from

Jawaharlal Nehru Technological University, A.P., India. She

has vast experience in Computer Science and Engineering area

pertaining to academics and industry related real time projects.

She is presently working as Associate Professor in Department

of Computer Science and Engineering, Hyderabad Institute of

Technology and Management, Hyderabad [HITAM], A.P,

India. She has presented many papers to her credit at National

and National conferences. She has presided over as judge to

many Paper Presentations and Technical Quizzes. She has

authored 4 research papers and are published in reputed and

indexed International Computer Science Journals. She has

guided 20 Students of Master degree in Computer Science and

Engineering in their major projects. She is bestowed with the

Editorial Member on five International Journals Boards and is

nominated as Reviewer to three International Journals. Her

area of research includes TIBCO; Cloud computing, Network

Security, Image Processing, Data Mining, Web Technologies

and Emerging Technologies. She can be reached at:

vasavi.bande@yahoo.co.in

2. Y.V.Sreevani Graduated in AM.I.E.T.E. from

I.E.T.E, New Delhi, India, in 1997 and M.Tech in Computer

science from Osmania University, Hyderabad, A.P., India in

2003. She has published 3 International papers. She is presently

working as Associate Professor in Department of Computer

Science and Engineering, Hyderabad Institute of Technology and

Management, Hyderabad [HITAM], A.P, India. Her area of

research includes Network Security, Data Mining, Web Mining

Technologies and Emerging Technologies.� �She can be reached

at: s_vanikumar@yahoo.co.in

 3. G. Sindhu Priya is pursuing B.Tech in

Computer Science and Engineering, Hyderabad Institute of

Technology and Management, Hyderabad [HITAM], A.P,

India. She has participated in number of paper presentations

and technical workshops. She is a noted and active member of

the Sahaya Society, a organization to educate the less

privileged school students i.e. www.sahayasociety.org. She

has organized number of events which include Cultural,

Symposiums and blood donation camps. She can be reached:

sindhupriya78@gmail.com

�

