
Volume 2, No. 4, April 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 107

HINDI LANGUAGE INTERFACE TO DATABASES

Himani Jain*1, Parteek Bhatia2

*1 Department of Computer Science and Engineering, Thapar University, Patiala, INDIA

 himani88jain@gmail.com1
2Department of Computer Science and Engineering, Thapar University, Patiala, INDIA

parteek.bhatia@gmail.com2

Abstract: The need for Hindi Language interface has become increasingly accurate as native people are using databases for

storing the data. Large number of e-governance applications like agriculture, weather forecasting, railways, legacy matters etc use

databases. So, to use such database applications with ease, people who are more comfortable with Hindi language, require these

applications to accept a simple sentence in Hindi, and process it to generate a SQL query, which is further executed on the

database to produce the results. Therefore, any interface in Hindi language will be an asset to these people. This paper discusses

the architecture of mapping the Hindi language query entered by the user into SQL query.

Keywords: Hindi language interface to databases, Natural language interface to databases, Tokenizer, Parser, Semantically

tractable

INTRODUCTION

The proposed system maps the Hindi language to SQL query.

A database is made up of three types of elements: relations,

attributes and values. Each element is distinct and unique: an

attribute element is a particular column in a particular relation

and each value element is the value of a particular attribute. A

value is compatible with its attribute and also with the relation

containing this attribute. An attribute is compatible with its

relation. Each database attribute has a set of compatible wh-

values. In Hindi, these wh-values are { “����”, “��”,

“����”, “��”, “��� ��” }. A token is a set of word

stems that matches a database element. Many di�erent tokens

might match the same database element, and conversely, a

token might match several di�erent elements. A syntactic

marker (such as “��”) is a token that belongs to a fixed set of

database-independent tokens that make no semantic

contribution to the interpretation of a question In order for the

sentence to be interpreted in the context of the given database,

at least one complete tokenization must map to some set of

database elements E as follows:

• Each token matches a unique database element in E. This

means that there is a one-to-one match between the

tokens in the tokenization and E.

• Each attribute token corresponds to a unique value token.

This means that (a) the database attribute matching the

attribute token and the database value matching the value

token are compatible and (b) the attribute token and the

value token are attached.

• Each relation token corresponds to either an attribute

token or a value token.

This means that (a) the database relation matching the relation

token and the database element matching the attribute or value

token are compatible and (b) the relation token is attached to

the corresponding attribute or value token.

Next section discusses the literature survey of some already

existing systems. Then it deals with system details and the

attribute/value graph. Lastly, it discusses the architecture for

the system.

LITERATURE SURVEY

There are many already systems that were the beginning of the

era for NLIDB. The best known NLIDB of sixties and early

seventies was LUNAR [4] , a natural language interface to a

database containing chemical analyses of moon rocks.

RENDEZVOUS engaged the user in dialogues to help him/her

formulate his/her queries. LADDER could be used with large

databases and it could be configured to interface to different

underlying database management systems (DBMS). Chat-

80[5] is one of the best-known NLIDBs of the early eighties. It

was implemented completely in Prolog. It transformed English

questions into Prolog expressions, which were evaluated

against the Prolog database.

ASK [6] [7] developed in 1983, allowed end-users to teach the

system new words and concepts at any point during the

interaction. It was actually a complete information

management system, providing its own built-in database, and

the ability to interact with multiple external databases,

electronic mail programs, and other computer applications. All

the applications connected to ASK were accessible to the end-

user through natural language requests. The users stated his /

her requests in English, and ASK transparently generated

suitable requests to the appropriate underlying systems.

Himani Jain et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 108

SYSTEM DETAILS

Q- HP �� UNIX�������� ��������������?

Figure 1. Tokenization of question along with its attributes

SQL Query

SELECT DISTINCT Description FROM JOB WHERE

Company=’HP’ AND Platform=’UNIX’;

A mapping from a complete sentence tokenization to a set of

database elements such that conditions 1 through 3 are

satisfied is a valid mapping. If the sentence tokenization

contains only distinct tokens and at least one of its value

tokens matches a wh-value, we refer to the corresponding

sentence as semantically tractable.

“Fig. 1” shows the tokenization with attributes of relation. The

problem of finding a mapping from a complete tokenization of

question to a set of database elements such that the semantic

constraints are satisfied is reduced to a graph-matching

problem. We use the max-flow algorithm to e�ciently solve

this problem. Each max-flow solution corresponds to a

possible semantic interpretation of the sentence. It collects

max-flow solutions, discards the solutions that do not obey

syntactic constraints, and retains the rest as the basis for

generating SQL queries corresponding to the question.[3]

Consider how it maps the example question “HP �� UNIX��

������� �����������������?” to an SQL query. The

example refers to a single relation (���) with attributes

�������, ���, �����. The tokenizer produces a

single complete tokenization of this question: (HP UNIX

������� ������ ���). The tokenizer strips

syntactic markers such as “��” and “��”. In this case,��

����, HP and UNIX are value tokens, ������� is an

attribute token and ��� is a relation token. Next, the matcher

constructs the attribute-value graph as shown in “Fig. 2”. The

leftmost node in Figure 2 is a source node. The value tokens

column consists of the tokens matching database values

(which in turn can be found in the DB Values column). For

instance, the token HP is ambiguous as it could either match a

value of the ����� attribute or a value of the ���

attribute. Edges are added from each value token to each

matching database value. Solid edges represent the final flow

path while dashed edges suggest alternative flow routes. Let F

denote the flow in the network. The matcher connects each

database value to its corresponding database attribute. Each

attribute is then connected to its matching attribute tokens and

also to the node I, which stands for implicit attributes. All

attribute tokens link to the node E, which stands for explicit

attributes. Finally, both E and I link to the sink node T. The

two instances of the column containing DB attribute nodes.

The unit edge from each DB attribute node to itself ensure that

only one unit of flow in fact traverses each such node. These

edges are needed because more than one DB value is

compatible with a given DB attribute and a DB attribute may

match more than one attribute token. However, the definition

of a valid mapping requires each DB attribute be used only

once. The graph is interpreted as a flow network where the

capacity on each edge is 1, unless otherwise indicated. The

capacity on the edge from E to T is the number of attribute

tokens. The capacity on the edge from I to T is the number of

Value Tokens minus the number of attribute tokens. That

di�erence is 2 in our example. The maximum flow through the

network in this example is 3. In fact, the maximum flow in any

graph constructed by the system matcher is equal to the

number of value tokens because each value token has to

participate in the match produced by the algorithm.

Figure 2: Attribute/value graph

The solid arrows indicate the path chosen by the maxflow

algorithm. The ambiguity regarding whether HP is �����

or ��� is automatically resolved by maximizing the flow.

The algorithm “decides” that HP is ����� because this

choice allows flow along two edges with capacity 1 into node

I. Because the edge (I,T) has capacity 2, this choice maximizes

the flow through the graph (F = 3).If the algorithm ”decided”

that HP was ���, there would be no possible interpretation

for “Unix” and the final flow would be 2. After all attribute

and value tokens have been matched to database elements,

system ensures that all relation tokens correspond to either a

value token or an attribute token. In the case of a unique

relation token (���), this amounts to checking whether any

of the matching database relations contains some attribute

matching an attribute token. Since ��� matches only ���,

the algorithm has found a one-to-one match between the

sentence tokens and the database elements that satisfies the

semantic constraints in the set of conditions for semantically

tractable sentences. If all constraints are satisfied it means that

a valid mapping has been found. Each valid mapping is

converted into a SQL query, in the end system will return the

set of non-equivalent such queries.

Himani Jain et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 109

SYSTEM ARCHITECTURE

“Fig. 3” shows the architecture of the system.

Figure 3: System architecture

Lexicon and Tokenizer

The lexicon supports the following two operations [1]:

1) Given a word stem ws, retrieve the set of tokens which

contain ws.

2) Given a token t, retrieve the set of database elements

matching t.

We describe the manner in which the lexicon is derived from

the database. The names of all database elements are extracted

and split into individual words.

The lexicon and Tokenizer further involves a number of steps

so that it divides the tokens according to their syntactic

category.

1) Tokenizer: This module convert a sentence into word

level tokens (consisting of words, punctuation marks, and

other symbols) and return sentence marker for each sentence

of input text. A token is an instance of a sequence of

characters in some particular document that are grouped

together as a useful semantic unit for processing.

HP �� UNIX�������� �������������� ?

Figure 4: Tokenizer [2]

Here the sentence is divided into number of tokens.

At this stage we don’t have any information about the sentence

like its category, person etc. So with each token we put the

symbol “unk”.

2) Morph Analyser: The morphological analyzer identifies

root and grammatical features of the word.

‘fs’ in output are the feature structure.

‘af’ is a composite attribute consisting of root, lcat(lexical

category), gend, num, pers, case, tam(tense, aspect, modality),

vi(vibhakti).

Figure 5: Morph analyser [2]

3) Postagger: Part of speech tagging is the process of

assigning a part of speech to each word in the sentence.

Identification of the parts of speech such as nouns, verbs,

adjectives, adverbs for each word of the sentence helps in

analyzing the role of each constituent in a sentence.

Figure 6: Postagger [2]

NN-Noun Singular or Mass, PSP - Prepositional Phrase,

PRON-Pronoun, SYM-Symbol

4) Chunker: Chunking involves identifying simple noun

phrases, verb groups, adjectival phrase, and adverb phrase in a

sentence. This involves identifying the boundary of chunks

and the label.

Himani Jain et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 110

Figure 7: Chunker [2]

5) Pruning: It involves two steps:

Morph Pruning- It takes that feature structure where lcat value

is matched with CAT value. All those features

structures whose lcat is compatible with pos tag are retained

as possible outputs for given token. Rest of the feature

structures will be pruned by this module. In case there is not

any feature whose lcat is matching with CAT, then all features

structures are retained and a new attribute value pair

poslcat=“NM” is added to every feature structure. NM stands

for “not matched”.

Pick one morph- It will pick only the one feature structure

based on selection definition given to it. By default it will

pick the first feature structure.

Figure 8: Pruning [2]

6) Head Computation: This module computes the head of

chunk. A child node is identified as head of the chunk. A new

feature called name is added to this child node with attribute

as name. All features are copied from the head child to parent

chunk except ‘name’. A new attribute called head is added to

the feature of the chunk node whose value is the name-

string just assigned to the head child.

Figure 9: Head computation [2]

7) Vibhakti Computation: Local word grouper does

 technical task of vibhakti computation. The main task here

 is to group function words with the content words based on

local information.

Figure 10: Vibhakti computation [2]

Matcher

The matcher reduces the problem of finding a semantic

interpretation of ambiguous natural language tokens as

database elements to a graph-matching problem. More

precisely, our reduction is to a maximum bipartite-matching

problem with the side constraints that all Value Token and

Attribute Token nodes and a specified subset of the DB Value

and DB Attribute nodes be involved in the match. Here

Himani Jain et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 111

‘UNIX’ can be matched with ‘���’; ‘HP’ can be matched

with ‘�����’ or ‘���’ and so on.

Parser Plug in

System then extracts attachment relationships between tokens

from the parse tree. The attachment relationships are used by

the matcher in the generation of valid mappings.

Here attached tokens are- (����, ���), (HP,� ����),

(UNIX,��������).

Query Generator

The query generator takes the database elements selected by

the matcher and weaves them into a well-formed SQL query.

The SELECT portion of the query contains the database

elements paired with wh-words; the WHERE portion contains

a conjunction of attributes and their values, and the FROM

portion contains the relevant relation name for the attributes in

WHERE. Here the query generated is-

SELECT DISTINCT Description FROM JOB WHERE

Company=’HP’ AND Platform=’UNIX’;

Equivalence Checker

The equivalence checker tests whether there are multiple

distinct solutions to the maxflow problem and whether these

solutions translate into distinct SQL queries. If system finds

two distinct SQL queries, it does not output an answer, since it

cannot be certain which query is the right one. Here ‘HP’ can

be matched with ‘�����’ or ‘���’. But equivalence

checker checks that correct match of ‘HP’ is with ‘�����’.

RESULTS

If the sentence tokenization contains only distinct tokens and

at least one of its value tokens matches a wh-value, we refer to

the corresponding sentence as semantically tractable. In this

example, results show that ��� matches with ���, so there

is one-to-one match between the sentence tokens and the

database elements that satisfies the semantic constraints in the

set of conditions for semantically tractable sentences. So

applying results we can say that, a question q is said to be

semantically tractable relative to a given lexicon L, and an

attachment function AF if and only if q has at least one

complete tokenization T such that:

1) All tokens in T are distinct.

2) T contains at least one wh-token.

3) There exists a valid mapping (respecting AF and L) from T

to some set of database elements E.

The parsing of Hindi sentence makes it to understand the

sentence completely which helps in generation of final query.

CONCLUSION

This system accepts query in Hindi language that is translated

into SQL query, by mapping the Hindi language words, with

their corresponding Hindi words with the help of database

maintained. Then this SQL query is executed on database to

provide output to the user.

REFERENCES

[1] Akshar Bharati, Rajeev Sangal, Dipti Misra Sangal, “Shakti

Standard Format Guide”, Centre for Language Technologies

Research Centre, International Institute of Information Technology,

Hyderabad, India.

[2] ILTM Consortium, “ILMT System”, IIT Hyderabad, Gachibowli,

Hyderabad, Feb 2007.

[3] Ana-Maria Popescu, Oren Etzioni, Henry Kautz, “Towards a

Theory of Natural Language Interfaces to Database”, University of

Washington, Computer Science Seattle, WA 98195, USA.

[4] W.A. Woods, R.M. Kaplan, and B.N. Webber, “The Lunar

Sciences Natural Language Information System: Final Report”, BBN

Report 2378,Bolt Beranek and Newman Inc., Cambridge,

Massachusetts, 1972.

[5] D.Warren and F. Pereira, “An Efficient Easily Adaptable System

for Interpreting Natural Language Queries”, Computational

Linguistics, July-December 1982, pp. 3-4, 110-122.

[6] B.H. Thompson and F.B. Thompson, “Introducing ASK, A

Simple Knowledgeable System”, In Proceedings of the 1st

Conference on Applied Natural Language Processing, Santa Monica,

California, 1983, pp. 17-24.

[7] B.H. Thompson and F.B. Thompson, “ASK is Transportable in

Half a Doze Ways”, ACM Transactions on Once Information

Systems, April 1985, pp 185-203.

Himani Jain, Author

She is pursuing her ME in Computer Science and Engineering from Thapar University, Patiala. She has done her BTech in

Computer Science and Engineering from Y.M.C.A. Institute of Engineering, Faridabad. Currently she is in ME-2nd year and is

doing ME thesis on the topic- “Hindi Language Interface to Databases”.

Mr. Parteek Bhatia, Author

Himani Jain et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 112

Parteek Bhatia is Assistant Professor in the Department of Computer Science and Engineering at Thapar University, Patiala. He

has more than ten years of academic experience, including six years at D.A.V College Amritsar. He has earned his B.Tech from

SLIET and MS from BITS Pilani. He is pursuing his Ph.D in the area of Natural Language Processing from Thapar University. He

has published more than 50 research papers and articles in Journals, Conferences and Magazines of repute. He has co-authored six

books including Simplified Approach to Visual Basic and Simplified Approach to Oracle. Acting as Co-PI for the research Project

of Development of Indradhanush: An Integrated WordNet for Bengali, Gujarati, Kashmiri, Konkani, Oriya, Punjabi and Urdu

Sponsored ByDepartment of Information Technology, Ministry of Communication and Information Technology, Govt. of India.

