ABSTRACT

The best capacity of the immune system is certain destruction of tumors with no toxicity to ordinary tissue and for lengthy-term reminiscence that may save you most cancers recurrence. Recent years of cancer immunology research have given robust evidence that most cancers lumps are identified with the aid of the immune system and their development can be immobilized or managed long term through a procedure referred to as immunosurveillance. Tumor specificity of the immune reaction is living inside the detection of tumor antigens.

INTRODUCTION

Cancer immunotherapy is a new era of medicine that focused on the development and delivery of different types of immunotherapies that can improve the human body's intrinsic potential in the generation of effective immune response against cancer. The main concentration of this field is only on immunity, not in the cancers cells. Scientists have been tried to know this complex interplay for over a century, with enticing however unsustainable results [1-8]. The Latest improvements in our expertise of antigen recognition, presentation and the cells required in T and B cellular activation have given new and excited immunotherapeutic strategies which can be used towards the cancer cells. Some achievement in animal models has been discovered and a few molecules are now being beneath medical trials. The interaction among our immune system and most cancers could be very complicated technique. Recent practices are based on agents that can disrupt the immune tolerance [9].

At present, numbers of immunotherapy having various mechanisms for cancer patients are beneath clinical trials.

Our Immune System and Cancer

The main function of our immune system is to recognize the difference between self and non self. Self is related to your body tissue and non-self is the foreign cells means any abnormal cell like viruses, bacteria, fungus and parasite [10-15]. Normally, your immune machine will not assault whatever that it identifies as a healthy a part of self. The hassle with cancer cells is they arise from our cells, but there are differences. As they grow and develop, cancer cells go through a series of mutations, turning into more and less like normal cells [16-23]. Sometimes our immune system can discover those variations and respond. Different instances, the most cancers cells slip via the defenses or are definitely able to inhibit the immune system [24-37]. Researchers have regarded for many years that our immune structures do recognize and attack most cancers cells (Figure 1). But, the progress being made nowadays in immunotherapy is the result of new understanding approximately the
complicated interplay among the immune system and cancer. Immunooncology is also known as tumour immunology [38-51].

Figure 1. Immunotherapy for cancer.

Currently available Immunotherapy based treatments

Monoclonal antibodies

Specifically, these mAbs are designed to target the cancer cells. These antibodies are used to block the growth and communication of tumor cells. The Food and drug administration is approved that by using these mAbs are helping to control the different types of cancers such as Breast cancer, colorectal cancer, Hodgkin’s lymphoma, Cervical Cancer, Brain cancer, Lung cancer, etc [52-69] (Figure 2).

A number of monoclonal antibody drugs are available to treat various types of cancer. Clinical trials are studying monoclonal antibody drugs in treating nearly every type of cancer.

Figure 2. Monoclonal antibodies.

Check point inhibitors/ Immune Modulators

As known that the immune system has the ability to recognize the differences between normal cells and foreign cells in this procedure it uses some cells as a checkpoint on certain immune cells that requisite to be activated or inactivated to begin immune response. Cancer cells sometimes find ways to use these checkpoints to avoid being attacked by the immune system [70].

Check point Inhibitors are two types one is CTLA-4 Inhibitors, used in the treatment of Melanoma and present research is going on the treatment of lung cancer and prostate cancer. Another check point called as PD-1/PD-L1Inhibitors. It is used in the advanced melanoma, lung cancer and a number of other cancers.
There are several types of inhibitors such as Atezolizumab (to treat bladder cancer), Ipilimumab (to treat melanoma of the skin), Pembrolizumab and Nivolumab. These drugs are helpful in the treatment of Hodgkin Lymphoma and non-small cell lung cancer.

Therapeutic Vaccines

These cancer vaccines are targeted the immune system to recognize and attack the certain markers, or antigens present in the cancer cells. There are different types of therapeutic vaccines in that some are made from individual proteins and others are made from whole cells. These vaccines are often required some additional substances to treat cancer called adjuvants [71,72].

Provence is a therapeutic cancer vaccine and it is approved by FDA to treat the prostate cancer. BioVaxID is used in the treatment of Non-Hodgkin’s lymphoma and mantle cell lymphoma. Imprime PGG® is also type of cancer vaccine, used in the treatment of colorectal Cancer.

Oncolytic virus immunotherapies

The oncolytic viruses are directly destroys the cancer cells and it triggers the cells of the immune system like T cells and dendritic cells (to target the cancer cells and eliminate the cancer through the body) (Figure 3). Several types of viruses like adenovirus, retrovirus, measles and herpes simplex have now been clinically tested as oncolytic agents [73-75].

![Oncolytic virus](image)

Adoptive T cell transfer

It is an anti-cancer method, used to enhance the natural cancer-fighting ability of the body’s T cells by removing immune system cells. There are 3 types of methods.

- T cells are collected from patient’s tumor sample and multiplied in laboratory.
- It has taken from the body and it converts to genetically modified T cells to attack the antigens.
- When it can be taken from the patient’s body and appareled with the receptors called chimeric antigen receptors (CARs); after those CARs can be given back to the patient, these “CAR T cells” recognize and attack cancer cells.

It has shown the result of metastatic melanoma, sarcoma and Neuroblastoma [76]. Presently, the research is being investigated for use in the other type of tumors and blood cancer.

Cytotherapy

It is used to regulate the development and activity of the immune system cells, and also blood cells. These are classified as Interleukin and Interferon. It (IL’s) plays an important role in the cell division and Interferon [77-83],
which enhance the capacity of certain immune cells to attack the antigens. These are used to treat the several types of benign tumors like IL-2 and IFN-alpha are used in the treatment of melanoma and Hairy cell leukemia, Cutaneous T cell lymphoma, Kaposi's sarcoma [84-90].

Adjutant Immunotherapy

Adjutant immunotherapies are substances that are either utilized alone or consolidated with different immunotherapies to improve the insusceptible reaction much more. Adjutant immunotherapies can enhance reactions to helpful growth immunizations that include in the work of T cells or other immune cells [91-95]. Some adjutant immunotherapies use ligands-molecules that can attach to protein receptors-to improve the immune responses. Granulocyte macro phage province empowering element is a cytokine that triggers the dendritic cells to create, and is frequently utilized as an adjutant with helpful disease immunizations, including those for prostate and pancreatic malignancy [96-100]. Toll-like receptors (TLRs) are utilized to build up the body's resistant reaction, and have uncovered the viability in cerebrum, kidney, lung and colon, pancreatic, prostate, ovarian and bosom malignancy.

CONCLUSION

The development of new immunotherapies against several diseases is based upon many years of scientist’s hard work to recognize the complex signaling pathways of immune systems and also they are trying to invent the new treatments that have the potential to change the ways in which treat cancer. Though the Immunooncology still developing and so many questions are raised but there is no specified answer still now. But in future may be Immunooncology will give the answer to all the questions and benefit the large numbers of cancer patients with minimum side effects.

REFERENCES