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ABSTRACT 

 

The role of the gut microbiome in host health is of growing interest, as it plays 

various roles in maintaining homeostasis. The composition of the microbiome has 

been shown to be associated with factors such as age, race, gender, geographical 

distribution, and genetic features. However, the full extent of the interaction 

between the gut microbiome and the host remains unknown. Compared to 

humans, there have been limited studies conducted on the gut microbiome of 

companion animals. In this study, we analyzed the canine gut microbiome using 

the National Center for Biotechnology Information (NCBI) SRA database. A total of 

982 SRA data, comprising 1.22 TB, from 8 countries were included. Distance-

based redundancy analysis (dbRDA) revealed a strong correlation between the 

presence of Peptoclostridium and epilepsy, and between the presence of 

Fusobacterium and Giardia intestinalis infection. Through network analysis using 

spearman rank-based correlation coefficient (ρ), we identified potential 

biomarkers by examining interactions within the genera lists. The results indicate 

that the composition of the canine gut microbiome varies with disease-specific 

microbes, suggesting that these species lists could serve as candidate 

biomarkers for epilepsy and Giardia intestinalis infection. 

Keywords: Gut microbiome; Biomarker; Epileptic; Giardia intestinalis; 

Fusobacterium; Species 

INTRODUCTION 

The gut microbiome and host health are closely linked in mammals, and their 

interaction is essential for maintaining physiological functions such as immune 

regulation, production of bio-compounds, and energy harvesting. Imbalances in 

the microbiome-host interaction can lead to disorders. For example, the ratio of 

Firmicutes to Bacteroidetes has been correlated with obesity rates [1]. 
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Changes in the composition of the gut microbiome, known as dysbiosis, characterized by a loss of species richness, 

have been associated with various physiological or pathological conditions such as Inflammatory Bowel Disease (IBD), 

obesity, and cancers [2,3]. Other studies have shown links between the gut microbiome and diseases such as crohn’s 

disease, inflammatory intestinal disease, and chronic obstructive pulmonary disease [4-6]. Moreover, the gut 

microbiome is not only influenced by organs but also by the brain and the nervous system [7,8]. It has been found that 

the gut microbiome is significantly associated with various organs, including the brain. 

In this study, we aimed to obtain meaningful insights from initial research on animal gut microbiomes using the NCBI 

database. Our objective was to investigate the correlation between diseases and the gut microbiome and identify 

genera that may have an impact on specific diseases. Subsequently, we considered these genera as potential 

biomarker candidates. 

MATERIALS AND METHODS 

Data collection 

We utilized publicly available Next-Generation Sequencing (NGS) data obtained from the National Center for 

Biotechnology Information (NCBI), specifically from the uploaded SRA projects, to analyze the composition of the 

canine gut microbiome. The total size of the downloaded canine gut microbiome sequence data from the SRA project 

was 1.22 TB. To ensure the analysis was conducted under consistent and high-quality conditions across all samples 

worldwide, we focused on 62 GB of amplicon sequences after sorting out Whole-Genome Sequencing (WGS) 

sequences and reverse-end sequences. 

Data pre-processing 

The raw data underwent pre-processing using the "dada2" R package [9] with the single-end forward sequences 

obtained from the NCBI amplicon sequences. The pre-processing steps involved excluding low-quality sequences and 

those with unavailable metadata. Additionally, sequences containing ambiguous characters and those shorter than 

300 bp or longer than 500 bp were removed. To align and classify the sequences, we utilized the latest Silva database 

(version 138.1, Jan. 2023) [10]. The abundance of Amplicon Sequence Variants (ASVs) was normalized to relative 

abundance for subsequent analysis. 

Microbial composition with statistical analysis 

To estimate the clustering of gut microbiome based on metadata, beta-diversity analysis was conducted at the ASV 

level. This analysis utilized the distance-based redundancy analysis (dbRDA) with the 'capscale' algorithm from the 

"vegan" package in R. The results were visualized using the "ggplot2" package [11,12]. In this analysis, bray distance 

permutations were performed 9999 times [13,14]. Differentiation was assessed using statistical analysis of similarities 

(ANOSIM) and analysis of variance (ANOVA<0.01) from the "vegan" package in R [13,15]. Pairwise tests were conducted 

using the games-howell test, and visualization of the results was performed with the "ggstatsplot" package in R [16]. 

To explore the relationships between disease and the gut microbiome, network analysis was conducted at the genus 

level based on the spearman rank-based correlation coefficient (ρ). This analysis aimed to identify potential 

interacting candidate biomarkers [17]. Only genera that met the following thresholds were considered: Detected in at 

least 5% of the samples and relative abundance of less than 0.01% [18]. To address multiple testing errors, p-values 

were adjusted using the Benjamin-Hochberg method, and the network was constructed with the following thresholds: 

ρ (absolute value)>0.6 and q-value<0.01 [19]. Network visualization was performed using cytoscape tools [20]. 
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RESULTS  

Gut microbiome community composition 

After the processing steps, a total of 93,570,027 high-quality sequences were retained, resulting in the identification 

of 41,838 Amplicon Sequence Variants (ASVs). These ASVs were classified into 55 phyla, 129 classes, 271 orders, 

424 families, and 1,218 genera. According to the distance-based redundancy analysis (dbRDA), there were significant 

differences in gut microbiome compositions at the ASV level between disease groups (ANOSIM R=1, p-value<0.001) 

(Figure 1). Specifically, the genera Peptoclostridium, Blautia, and Megamonas were correlated with the epileptic 

group, while Fusobacterium, Bacteroides, Alloprevotella, Ligilactobacillus, and Prevotella_9 were correlated with the 

Giardia intestinalis group (Figure 1). 

Figure 1. Distance-based redundancy analysis (dbRDA) between disease groups and healthy groups. Note:  Healthy; 

 Giardia intestinalis;  Epileptic. 

 

Furthermore, at the genus level, Peptoclostridium was found to be highly abundant in the epileptic group, while 

Fusobacterium dominated in the Giardia intestinalis group, both showing statistically significant differentiation 

between disease groups (ANOSIM R=0.6376, p-value<0.001) (Figure 2). These bacterial genera were considered as 

candidate biomarkers for the respective diseases, detectable through gut microbiome analysis. In contrast, the gut 

microbiome composition of the healthy group exhibited similar and balanced compositions among genera (Figure 2). 

These composition patterns were consistent with the evenness observed in the alpha diversity analysis (Figure 3). 
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Figure 2. Relative abundance of top 20 genus between the disease groups and healthy group. Note:  Others;  

Lachnoclostridium;  Terrisporobacter;  Collinsella;  Sutterella;  Anaerobiospirillum;  Catenibacterium;  

Faecalibacterium;  Escherichia-Shigella;  Clostridium sensu stricto 1;  Streptococcus;  [Ruminococcus] gnavus 

group;  Cetobacterium;  Alloprevotella;  Romboutsia;  Megamonas;  Prevotella_9;  Bacteroides;  Blautia; 

 Peptoclostridium;  Fusobacterium. 
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Figure 3. Evenness of alpha-diversity analysis with pairwise test. Note:  Mean values. 

 

Biomarker analysis  

To explore the interacting relationships among the candidate biomarkers, a network analysis was performed using 

spearman rank-based analysis. Interestingly, the network was primarily dominated by Firmicutes at the phylum level, 

followed by Proteobacteria, Bacteroidota, and Actinobacteriota (Figure 4). Each candidate biomarker exhibited strong 

correlations within the network (Figure 4). Notably, Collinsella showed the strongest and most frequent correlations 

with Peptoclostridium, Blautia, and Megamonas (Figure 4). 

Figure 4. Network analysis based on spearmans rank-based correlation coefficient. Note:  Relative abundance;   

Actinobacteriota;  Bacteroidota;  Firmicutes;  Proteobacteria;  Others;  Symbiotic bacterium;  Biomarkers; 

 0.6;  0.8;  1. 

 



Research & Reviews: Journal of Microbiology and Biotechnology         e-ISSN: 2320-3528 
                                                                                                                                  
 

RRJMB| Volume 12 | Issue 2|June, 2023  47 
 

To further investigate the biomarker candidates, more specific information was obtained from box plots with 

statistical analysis (Figures 5A-5D). It was observed that Fusobacterium and Ligilactobacillus were highly abundant 

in cases of Giardia intestinalis disease, while Peptoclostridium was the dominant genus in cases of epileptic disease. 

Although the results for Bacteroides did not show statistical significance, there were trends suggesting that this genus 

predominantly occupied a niche in healthy conditions (Figures 5A-5D). 

Figure 5. Box plots with pairwise test of statistical analysis in most significant genus at each category between the 

disease groups and healthy group for A) Bacteroides, B) Fusobacterium, C) Ligilactobacillus and D) Peptoclostridium. 

Note:  Mean values. 

 

 

DISCUSSION 

In recent years, there has been significant research on the brain-gut axis, exploring the relationship between the gut 

microbiome and neurodegenerative diseases in the canine model [7]. Epilepsy, being an encephalopathy, is caused 

by factors such as orexins, oxidative stress, and cerebral toxocariasis, among others, although the exact reasons 

remain unknown [21-23]. Consistent with previous studies, it has been observed that bacteria involved in the production 

of γ -aminobutyric acid (GABA) and Short-Chain Fatty Acids (SCFAs) are significantly reduced in epileptic beagles [24]. 

Additionally, the family Prevotellaceae Ga6A1 group has been associated with a reduced risk of brain disease [24]. 

These findings clearly indicate the influence of gut microbiomes on brain diseases [24]. 

Giardia intestinalis is a flagellated protozoan that causes giardiasis, a parasitic infection prevalent in humans and 

mammals worldwide [25]. When infected with Giardia intestinalis, the gut microbiota undergoes structural changes, 

becoming enriched with facultative anaerobic, mucus-degrading, pro-inflammatory species, and opportunistic 

pathogens [25]. Additionally, this infection has been shown to reduce the presence of Lactobacillus at specific time 

points in canines [25]. 
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In our study, we observed that the pathogen Fusobacterium exhibited the strongest correlation with Giardia 

intestinalis infection, followed by the Prevotella, including Ligilactobacillus and Bacteroides (Figure 1). Notably, 

Prevotella_9 and Ligilactobacillus appeared to mainly influence the upper portion of CAP2, while Alloprevotella, 

Bacteroides, and Fusobacterium affected the lower portion (Figure 1). This suggests that the clustering of Giardia 

intestinalis infection extends across a wide range in the y-axis, and the effectiveness of different genera may vary in 

different parts of the clustering (Figure 1). 

The Giardia intestinalis group exhibited a high dominance of Fusobacterium, accounting for over 40% of the genus 

composition in the gut (Figure 2). However, in the network analysis, Fusobacterium was not detected, indicating that 

it may impact Giardia intestinalis disease without any significant interactions with other species (Figure 4). On the 

other hand, Ligilactobacillus displayed complex interactions in the context of Giardia intestinalis disease, suggesting 

that the interacting genera may attempt to protect against Fusobacterium in the presence of Giardia intestinalis 

infection, as Ligilactobacillus is well-known as a probiotic in the gut system (Figure 4). 

It has been observed that Romboutsia in the gut microbiome is generally associated with healthy adult canines [26]. 

Consistent with this, the healthy groups in our study exhibited a higher relative abundance of Romboutsia compared 

to the disease groups (Figure 2). Additionally, Turicibacter was identified as an interacting bacterium with Romboutsia 

and showed a higher relative abundance in the healthy groups compared to the disease groups (Figures 2 and 4). 

These interaction relationships and correlations highlight the need for further investigation to understand how these 

candidate biomarkers influence disease in the gut microbiome and the underlying mechanisms involved. 

CONCLUSION 

In our study, we identified several biomarker candidates for the diseases epileptic and Giardia intestinalis. After 

statistical analysis, we were able to narrow down the biomarker candidates with significant results (Figure 5). 

Fusobacterium and Ligilactobacillus emerged as potential biomarker candidates for Giardia intestinalis disease, 

while Peptoclostridium could serve as a biomarker candidate for epileptic disease (Figure 5). 
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