
Volume 3, No. 10, October 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 1

IMPLEMENTATION OF EVENT BASED PROGRAMMING ON LOCATION
AWARE MOBILE APPLICATIONS

Mannam Chandra Sekhar*1 and Mudiganti Vijaya Bhaskar2
*1M Tech Student , Gokul Institute of Technology and Science, Bobbili, India

2Asst. Professor , Dept of CSE , Gokul Institute of Technology and Science, Bobbili, India

Abstract: The programming paradigms and middleware architectures are designed to support the development of mobile applications as they are
became more widespread and increasingly very essential. For the development of mobile applications, the event-based programming paradigm is
a strong candidate as it gives congenital platform for the loose coupling between components required by mobile applications. Although existing
middleware supports the event-based programming paradigm, it is not well accepted to give support for location-aware mobile applications in
which intensely mobile components come together dynamically to collaborate at some location. In this paper we present a number of approaches
which involves location-independent announcement and subscription coupled with location dependent filtering and event delivery which can be
used by event-based middleware. This paper discusses how these approaches have been put into action in STEAM which is an event-based
middleware and it is a fully decentralized architecture that is clearly suits to deploy in ad hoc network environments.

chsekhar48@gmail.com

Keywords: Distributed systems, publish subscribe, event-based communication, mobile computing, collaborative and location-aware
applications.

INTRODUCTION

Emerging pervasive and mobile computing applications
comprise large numbers of interacting components
distributed over large geographical areas. Examples include
context aware intelligent transportation systems and city-
wide information systems. Middleware to support such
applications must deal with the increased complexity that
arises from such scale, from the geographical dispersion of
components, and from the spontaneously changing
connections between components.

Such mobile applications can be characterized as
collaborative in the sense that mobile entities use a wireless
network to interact with other mobile entities that have come
together at some common location. Examples might include
tourists visiting the same site or vehicles traveling in the
same direction. Having come together in some area,
collaborative entities establish connections with other
collaborative entities dynamically, temporarily forming a
group that has a common goal. The members of such a
group may even travel together for a period of time, as in the
case of a group of tourists coming together and deciding to
participate in a guided tour or a group of vehicles traveling
in the same direction forming a convoy to improve driver
safety and reduce fuel consumption. Although these
collaborative applications may use infrastructure networks,
they will often use ad hoc networks since these are
immediately deployable in arbitrary environments and
support communication without the need for a separate
infrastructure.

For pervasive and mobile computing as well as sentient
computing, this collaborative style of application allows
loosely coupled, highly mobile components to communicate
and collaborate in a spontaneous manner anywhere and at
any time. In many cases, such applications will be deployed
in situations where wireless network infrastructure might be

available. For example, museums may deploy wireless local
area networks and proposals exist for large-scale
deployment of wireless access infrastructure along roads
such as the Vehicle Infrastructure Integration initiative in
the United States. However, we argue that such applications
cannot rely on the presence of such infrastructure: Tourist
attractions such as national parks or archaeological sites are
unlikely to have such infrastructure and cost mitigates
against ubiquitous wireless infrastructure being deployed on
every road. Moreover, there are many collaborative mobile
applications that will never be able to avail of such
infrastructure such as coordination of Unmanned Aerial
Vehicles (UAVs) or autonomous military vehicles deployed
in hostile environments.

In principle, event-based communication is well suited to
such mobile applications since it naturally accommodates a
dynamically changing population of interacting entities and
the dynamic reconfiguration of the connections between
them. Event-based communication supports asynchronous
interconnections between components and is particularly
useful where communication relationships among
components are dynamically and frequently reconfigured
during the lifetimes of the entities. The event-based
communication model supports a one-to many or many-to-
many communication pattern that allows one or more
entities to react to a change in the state of another entity.
Event notifications, or simply events, contain the data
representing the change to the state of the sending entity.
They are propagated from the generating entities, called the
producers, to the receiving entities, called the consumers.
Events typically have a name and may have a set of typed
attributes whose specific values describe the specific change
to the producer’s state. A particular consumer may only be
interested in a subset of the events produced in the system.
Event filters provide a means to control the propagation of
events.

Mannam Chandra Sekhar et al, Journal of Global Research in Computer Science, 3 (10), October 2012,01-06

© JGRCS 2010, All Rights Reserved 2

Ideally, filters enable a particular consumer to specify the
exact set of events in which it is interested. Essentially, a
consumer’s event filters are matched against the events
received by the middleware and only events for which the
matching produces a positive result are subsequently
delivered to the consumer application.

RECENT RESEARCH

Recently some authors have begun to address distinct
requirements of collaborative mobile application or of
supporting event-based communication in ad hoc networks
characterized by the absence of shared infrastructure. Eg.
Application components using ad hoc networks cannot rely
on the use of access point when discovering peers in order to
establish connections to them .Event messages can neither
be routed through access point nor rely on the presence of
intermediate components that may reply on the presence of
intermediate components that may apply event filters or
enforce nonfunctional attributes such as ordering polices and
delivery deadlines.

JEDI:
It allows Nomadic application components to produce or
consume events by connecting to a logically centralized
event dispatcher that has global knowledge of all
subscription requests and events. JEDI provides a
distributed implementation of the events dispatcher
consisting of a set of dispatching servers that is
interconnected through a fixed network. Nomadic entities
may move using the move Out operation disconnects the
entity from its current dispatching server and move In
operation allowing it to move to another location to connect
the dispatch server.

Figure 2.1: Overview of JEDI architecture

Elvin4:
Represent event-based systems that support mobility
through the use of a proxy server maintaining a permanent
connection to the event servers on behalf of nomadic clients
components. [3]The proxy server stores events while a client
is temporarily disconnected and clients can specify a time to
live for each subscription to prevent large numbers of events
being stored indefinitely .Clients must explicitly connect to
proxy server using a URL and must reconnect to the same
proxy server each time they reconnect to the event system.

Figure 2.2: Overview of Elvin4 architecture

Rebeca:
It allows nomadic clients to access a network of event
routing brokers through local brokers. Local Brokers act as
access points and allow clients to disconnect at the network
broker to which they wish to relocate in a way similar to the
approach described. Rebeca also promotes of location
awareness. Eg: Describing the rooms in a house, the places
in a city, or the (coarse-grained) coordinates of GPS system.
Topss—Supports location awareness by extending its
centralized filtering engine with a location matching engine.
Location information can be expressed as
latitude/longitude/altitude tuples and the location-matching
engine receives periodic updates of the location of mobile
entities. Eg: Topss has been used for a friend-finder
application in which mobile users specify a mobile friend
about whom they wish to be notified when in closed
proximity.

Figure 2.3: Overview of Rebeca architecture

MOTIVATIONS AND CONTRIBUTIONS

Existing event-based middleware for wireless networks has
mainly focused on nomadic applications. These applications
are characterized by the fact that mobile entities make use of
the wireless network primarily to connect to a fixed network
infrastructure but may suffer periods of disconnection while
moving between points of connectivity.

Existing Computing devices are becoming more pervasive
and the dependence on the information delivered through
these devices is increasing. Due to these trends, users expect
access to information on multiple devices at various
geographic locations at any time, but Users may disconnect
when network connectivity is absent or to conserve battery
life. Therefore, support for disconnected operation is
essential for information dissemination applications that
support mobile users.

Existing problem of mobility from the viewpoint of the
event-based paradigm and the two separate flavors of
mobility identified. While physical mobility is tied to the
notion of rebinding a client to different brokers and can be
implemented transparently, logical mobility refers to a
certain form of location awareness offering a client a fine-
grained control over notification delivery in the form of
location-dependent filters. But problems concerning the
combination of mobility and pub/sub infrastructures remain.
In existing system the disconnection while entities move
from one access point to another, is handled whereas
relatively little work has addressed the distinct requirements
of collaborative mobile applications, especially those that
use ad hoc networks. Existing system only identifies but
does not classify the factors that affect the performance of

Mannam Chandra Sekhar et al, Journal of Global Research in Computer Science, 3 (10), October 2012,01-06

© JGRCS 2010, All Rights Reserved 3

Publish/ Subscribe system that supports client mobility.
Existing system have high cost associated with
disconnection operation. There is lack in formalization of
mobility algorithms for distributed Publish/ Subscribe
system. No proper middleware to run distributed application
on a variety of hardware and operating system. Problems
concerning the combination of mobility and Pub/ Sub
infrastructure not addressed.

For event systems to support collaborative mobile
applications, they must enable collocated producers and
consumers to be able to discover each other. Producers need
to be able to advertise the events they intend to generate
independently of their location and consumers must be able
to subscribe to events persistently. Consumers must also be
able to discover events of interest and to eventually deliver
them at the relevant locations.

Event-based middleware to support pervasive and mobile
applications in which collaboration between nearby entities
is intrinsic must deal with the increased complexity that
arises from a potentially large number of interacting entities,
From their geographical dispersion we use proximity i.e.,
location.

In this paper, we present a number of techniques that can be
used by event-based middleware to support collaboration in
location-aware mobile applications including location-
independent announcement and subscription, location-based
event filtering, and location-dependent delivery of events,
Inherently distributed event service.

Location- independent announcement and subscription:
Location-independent announcement allows producers to
advertise the (types of) events that they produce and have
these advertisements persist while moving location.
Likewise, consumers use location-independent subscription
to subscribe to events allowing them to receive events of
interest wherever they move. Such announcements and
subscriptions are persistent in that they apply transparently
to all locations independently of the specific location at
which they have been issued and are vital to enabling the
delivery of subsequently disseminated events at any location
and while entities are moving.

For example, an ambulance providing an emergency vehicle
warning service while rushing to an accident site may use a
location-independent announcement to persistently advertise
this service while responding to an emergency call. Other
vehicles may use a location-independent subscription to
subscribe to this service, enabling them to receive
emergency vehicle warning events every time their
respective journeys intersect that of an ambulance.

Figure 3.1: Location-independent announcement and subscription

Location-based event filtering:
Event filters define the specific subset of events in which a
consumer is interested. Our approach to event filtering
allows producers and consumers to define location-based
filters that may use the actual entity location when applying
a filter. Producers may define filters that describe a
geographical area surrounding their location. These filters
bound the geographical scope in which events are to be
disseminated and move location with a migrating producer.

Figure: 3.2.Location-based event dissemination. (a) Single-hop event

dissemination. (b) Multihop event dissemination

Location-dependent delivery of events:
Event propagation is location dependent in that events
generated by a particular producer will only be delivered by
consumers currently residing in a specified geographical
area. Consumers may deliver a particular set of events at
some location and subsequently deliver a different set of
events at another location; they may deliver events
generated by one producer and then deliver events generated
by another producer at a different location.

Inherently distributed event service:
Event-based middleware for collaborative applications
should enable entities that have come together at a certain
location to communicate and collaborate through wireless
connections even in the absence of any local network
infrastructure, in particular by supporting ad hoc as well as
infrastructure networks. Due to the characteristics of ad hoc
networks, such an event service must be inherently
distributed since it cannot rely on any service infrastructure.
It cannot depend on logically centralized or intermediate
components that are typically hosted by such an
infrastructure. For example, it cannot rely on a well-known
intermediate event broker to connect producers and
consumers as has been proposed by SIENA to support
nomadic applications. Moreover, the characteristics of
collaborative applications, where entities come together to
collaborate, move apart, and then come together with other
entities at a different location, preclude dependency on
broker nodes interconnecting such locations of collaboration
across an ad hoc network. For example, it cannot rely on
dynamically elected cooperating directories as have been
proposed to support scalable service discovery for service
oriented architectures based on ad hoc networks. Hence,
event-based middleware for collaborative applications,
employ concepts that can support such an inherent
distribution, including event types and proximities, instead
of centralized components.

Mannam Chandra Sekhar et al, Journal of Global Research in Computer Science, 3 (10), October 2012,01-06

© JGRCS 2010, All Rights Reserved 4

THE STEAM EVENT SERVICE

The STEAM event-based middleware implements the
techniques introduced in the previous section using group
communication. STEAM provides location-aware event
dissemination for collaborative pervasive and mobile
applications running on mobile devices that interact through
IEEE 802.11b-based ad hoc wireless local area networks ..
Depending on the application areas in which they are used,
such portable computing devices may range from handheld
devices, such as personal digital assistants, to notebook
computers. This section outlines the architecture and most
important implementation techniques used by STEAM.

Figure 4.1: STEAM Event model

Inherently Distributed Service Architecture:
The STEAM event service is based on an inherently
distributed architecture in which the middleware is
exclusively collocated with the application components and
does not depend on any separate centralized or intermediate
components. As illustrated in Fig. 3, the architecture
essentially consists of four key components that reflect the
main features of the event service. The Event Service
Nucleus (ESN) implements STEAM’s application
programming interface and therefore is explicitly exposed to
applications. The event service nucleus can be regarded as
STEAM’s central component since it interconnects the
remaining components and because it provides a filter
engine that applies and maintains the various event filters
that producers and consumers may define. The event service
nucleus exploits a Proximity-based Group Communication
Service (PGCS) to disseminate events depending on the
locations of the relevant producers to consumers. The
Proximity Discovery Service (PDS) provides the means for
potentially mobile entities to persistentlyannounce and
subscribe to events and eventually to discover events of
interest. The discovery mechanism uses location information
to map proximities to the subscriptions of its consumers and
as a result, manages the proximity groups that are relevant at
its current location. This implies that the proximity
discovery service is responsible for maintaining a consistent
notion of the relationship between proximity groups and
subscriptions at any given time while considering the
migration of entities and indeed of proximities.

Figure 4.2: Mobile devices hosting the inherently distributed architecture of

the STEAM middleware

The above figure illustrates the fact that every mobile device
has identical STEAM capabilities. The middleware may
support a variable number of consumers and producers on
each mobile device, thereby allowing individual devices to
both produce and consume events. The event type and
proximity information announced by producers are
exploited by the PDS to establish communication
relationships between mobile entities rather than to optimize
event routing as suggested by Carzaniga Subscriptions are
used locally to map consumer interests to the sets of
currently available events being disseminated within the
discovered proximities. As shown below, the operations of
the STEAM application programming interface reflect the
fact that STEAM is based on an implicit event model as they
refer neither to explicit entities nor to designated
components of any kind. Instead, the operations for
announcing and subscribing to events refer to event types,
the former indicating the actual type and the latter using a
subject filter to name the type.

announce(eventType et, proximityFilter pf)
unannounce(eventType et)
subscribe(subjectFilter sf,

deliveryHandler dh,
contentFilter cf)
unsubscribe(subjectFilter sf,
deliveryHandler dh,
contentFilter cf)
raise(event e)

STEAM depends on a Location Service (LS) to supply
geographical location information. The current location
service uses GPS-based sensor data to compute the current
geographical location of the mobile device and provides this
location information to the middleware and to producers and
consumers hosted by the device.

The STEAM application programming interface also
illustrates how producers and consumers specify the
irrespective event filters. Producers specify their proximity
filters and announce them, together with their event types,
there by grouping them into associated pairs, while
consumers specify both their subject filters and their content
filters together with their delivery handlers. Consumers may
omit content filters, allowing them to express their interest
in events solely using their types, thereby employing a
classic, topic-based subscription mechanism.

Mannam Chandra Sekhar et al, Journal of Global Research in Computer Science, 3 (10), October 2012,01-06

© JGRCS 2010, All Rights Reserved 5

RESULTS

Figure 6.1: MiddleWare(Server)

Figure 6.2: Producer Initial Screen

Figure 6.3: Producer Distance Entered

Figure 6. 4: After entering Producer distance, the distance is registered with

Middleware.

Figure 6.5: Domain Information or Event popup for Producer P9946

Figure 6.6: Event Information with Domain name and Description for

P9946

Figure 6. 7: Middleware with Event and Producer range Information

Figure 6.8: Consumer Initial Screen

Figure 6.9: Consumer Range Entered

Figure 6.10: Consumer with C6430

Figure 6.11: Consumer without filter has Hospital (Dependent) Showing all

the Events

Mannam Chandra Sekhar et al, Journal of Global Research in Computer Science, 3 (10), October 2012,01-06

© JGRCS 2010, All Rights Reserved 6

Figure 6.12: Consumer with filter has Hospital (Independent selected)

Showing event filter based on query and range of consumer

CONCLUSIONS

For engineering distributed applications, Mobile computing
has become increasingly common and the event-based
communication paradigm is increasingly adopted. The focus
of our work in this paper is on techniques that support
collaborative mobile applications which use event-based
communication, and we found that a number of other
paradigms have also been extended to support such
applications as exemplified by various extensions to the
tuple space paradigm. In this paper, we presented
techniques that can be used by event-based middleware to
support collaboration in location-aware mobile applications
including 1)location- independent announcement and
subscription that allows producers to advertise their events
and have these advertisements persist while moving
location,2) location-based event filtering, is a distributed
approach to filtering that allows an application to define
multiple event filters, which may use the actual location of a
producer or a consumer, and to apply them at both the
producer side and the consumer side. And3) location-
dependent delivery of events allows an application to
specify multiple event filters, each of which may apply to a
different attribute of a specific event. Our techniques
provide the basis for supporting a wide range of mobile
applications, to support applications with guaranteed quality
of service requirements in terms of event-delivery latency is
the topic of our future work .We want to exploit the concept
of proximity which is introduced here as the basis for
performing admission control to allocate the necessary
communication resources for timely event delivery within a
dynamically varying population of mobile components.

REFERENCES

[1]. P. Sutton, R. Arkins, and B. Segall, "Supporting
Disconnectedness – Transparent Information Delivery for
Mobile and Invisible Computing," in Proceedings of the
IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2001). Brisbane, Australia: IEEE CS
Press, 2001, pp. 277-285.

[2]. J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A.
McNeil, O. Seidel, and M. Spiteri, "Generic Support for
Distributed Applications," IEEE Computer, vol. 33, pp. 68-
76, 2000.

[3]. G. Cugola, E. D. Nitto, and A. Fuggetta, "The JEDI Event-
Based Infrastructure and its Application to the
Development of the OPSS WFMS," IEEE Transactions on
Software Engineering (TSE), vol. 27, pp. 827-850, 2001.

[4]. Y. Huang and H. Garcia-Molina, "Publish/Subscribe in a
Mobile Environment," in Proceedings of the Second ACM
International Workshop on Data Engineering for Wireless
and Mobile Access(MobiDe'01). Santa Barbara, CA, USA,
2001, pp. 27-34.

[5]. M. O. Killijian, R. Cunningham, R. Meier, L. Mazare, and
V. Cahill, "Towards Group Communication for Mobile
Participants," in Proceedings of Principles of Mobile
Computing (POMC'2001). Newport, Rhode Island, USA,
2001, pp. 75-82.

[6]. Object Management Group, CORBAservices: Common
Object Services Specification - Notification Service
Specification, Version 1.0: Object Management Group,
2000.

[7]. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design
and Evaluation of a Wide-Area Event Notification
Service," ACM Transactions on Computer Systems, vol.
19, pp. 283 - 331, 2001.

[8]. G. Banavar, T. Chandra, R. Strom, and D. Sturman, "A
Case for Message Oriented Middleware," presented at
Proceedings of the 13th International Symposium on
DIStributed Computing (DISC'99), Bratislava, Slovak
Republic, 1999.

[9]. R. Meier, "Communication Paradigms for Mobile
Computing," ACM SIGMOBILE Mobile Computing and
Communications Review (MC2R), vol. 6, pp. 56-58, 2002.

[10]. B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, "IEEE
802.11 Wireless Local Area Networks," IEEE
Communications Magazine, pp. 116-126, 1997.

[11]. I. Podnar, M. Hauswirth, and M. Jazayeri, "Mobile
Push:Delivering Content to Mobile Users," in Proceedings
of the International Workshop on Distributed Event-Based
Systems (ICDCS/DEBS'02). Vienna, Austria, 2002, pp.
563-570.

[12]. http://ulir.ul.ie/bitstream/handle/10344/642/2010-Meier-
On-Event-Based.pdf?sequence=2

[13]. http://www.tara.tcd.ie/bitstream/2262/56442/1/On%20Eve
nt.pdf

Short Bio Data for the Author

Mannam Chandra Sekhar Completed B.tech in cse and
presently pursing M.tech in SE from Gokul Institute of
Technology and Science.

Mudiganti Vijaya Bhaskar, Completed his B.Tech
,Computer Science (A.U) 1997 and M.tech,Computer
Science (A.U) 2000. Presently Pursuing Ph.D, Soft
computing (A.U) .His area of Intrest are Image processing ,
Artificial Intelligence,Robotics and Soft computing

