
Volume 2, No. 3, March 2011 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

 

© JGRCS 2010, All Rights Reserved   16 

 

IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE 

SORT USING HASHING AND BITWISE OPERATORS 

Tamana Pathak*
1 
and Dr. Deepak Garg

2
 

*1Department of computer Science and Engineering, Thapar University, Patiala, Punjab, India 

tamana.pathak@gmail.com1 

2Department of computer Science and Engineering, Thapar University, Patiala, Punjab, India 

dgarg@thapar.edu2 

 
Abstract: Research done in the area of integer sorting has considerably improved the lower bound and achieved with comparison 

sorting i.e. to  [1] for a deterministic algorithms or to for a radix sort algorithm in space that 

depends only on the number of input integers. Andersson et al. [2] presented signature sort in the expected linear time and space 

which gives very bad performance than traditional quick sort. It is well known that  integers in the range [1, c] can be sorted in 

 time using radix sorting. Integers in any range [1, ] can be sorted in time [1]. However, these algorithms 

use  words of extra memory. We present a simple and stable variant of signature sort for integer sorting, which works in  

time and uses only words of extra memory. In this we are trying to improve the performance of the signature sort by 

implementing differently and comparing its performance against traditional sorting algorithms and to see the effect of register size 

on the algorithm. 

Keywords: Randomized algorithms; Sorting; Integer Sorting; Linear Complexity. 

 
INTRODUCTION 
 
Integer sorting has always been an important task in 
connection with the digital computer. The sorting problem is 
to sort n elements, according to a given ordering, has a tight 

 bound in the comparison model. This lower 
bound is achievable without randomization. The table-1 
depicts various existing comparison based algorithms and 
their complexities with relative performance. 
 

Table I. Complexity and Performance Comparison 
 

 

Recent works in the field of deterministic algorithms have 
optimized this lower bound. Andersson et al. presented with 

new idea which gives a lower bound of  

but uses  extra memory. Later on, Yijie Han also 

improved the lower bound to  with linear 
space. And he then introduced to new lower bound of 

 with linear space. 
Using randomization the lower bound for deterministic 
algorithms can be optimized further as Andersson et al. 

presented a concept which takes  and 
linear space. Later on, he came up with signature sort with 
expected linear time and space. But the relative performance 
of signature sort with traditional deterministic sorting 
algorithms is very poor. 
The Randomized Signature Sorting algorithm works in two 
phases: One of the phases is Word Formation phase which 
packs multiple integers into a single machine word to sort 
quickly by operating on multiple integers with a single 
instruction. Another Phase of Randomized signature sorting 
is Comparison Sorting i.e. Sorting between words and 
Sorting within words, discussed later. To accomplish linear 

time sorting of  integers requires to pack 

 of integers into one machine word. 
The existing signature sort divide integers into fields and 
then pack them into different words to perform packed 
sorting. This concept consumes lot of running time of 
computer as integers must be divided into fields and then 
each field must be packed into different word. After that 
comparison is performed and based upon that the sorted list 

Name Complexity Stable Memory 
Relative 

Performance 

Insertion Sort  Yes  Avg. 

Shell Sort No  Avg. 

Binary tree sort  Yes  Good 

Selection sort  No  Avg. 

Heap sort  No  Good 

Bubble sort  Yes  Avg. 

Merge sort  Yes Depends Good 

Quick sort  Depends Good 

Randomized 
Quick sort  Depends Good 

Signature Sort  Depends Linear Bad 

Randomized 
Signature Sort  Depends Linear Bad 



Tamana Pathak et al, Journal of Global Research in Computer Science,2 (3), March 2011, 16-20 

 

 

© JGRCS 2010, All Rights Reserved   17 

is generated. As we can see this signature sort requires lot of 
extra operation.  
In this paper, we present the concept which reduces the extra 
operation required by the signature sort. Instead of dividing 
integer into fields we hash each integer into signature which 

is only  bit size long. It reduces the requirement of 
dividing integer into field as integer has only one signature 
of reduced bit size. We can pack multiple signatures into 
one word. In this way, we only use single word for multiple 
integers, instead of using one word for one field of integer. 
Thus, the operation required after this in only comparison. 
The Signature Sorting algorithm uses the signatures which 
are computed by applying hash function on the integer i.e. 
input values to reduce the size of the integers being sorted. 
The range reduction depends on the hashing algorithm not 
generating collisions; if collisions occur, the output will not 
actually be sorted, making this a Monte Carlo algorithm. To 
change the Monte Carlo algorithm’s result to a Las Vegas 
algorithm’s result, the output is checked and if the output is 
not sorted, the algorithm is re-run. Thus, overall the 

algorithm runs in expected  time. Thus, the hash 
function is very important and it must not generate collision 
at all for better results. We are presenting an idea of hash 

function in this paper which hashes integer into  
bit size signature. 
 
MACHINE MODEL 
 
The machine model is a normal computer which holds an 
instruction set corresponding to what is programmed in 
common standard programming language such as C/C++ or 
JAVA. A processor determined word-size W, confines how 
large integers can be processed in constant time. It is 
assumed here that each input integer fits in a single word 
and for generic code, the type of a full word integer e.g. long 
int, should be a macro parameter in C or template parameter 
in C++ or a primitive type in JAVA. The unit-cost time 
measure is adopted where each operation takes constant 
time [1]. Interestingly, the traditional theoretical RAM 
model of Cook and Reckhow [11] allows infinite words.  
According to Yijie Han and Mikkel Thorup [1], the outcome 
of infinite words with operations like shifts or 
multiplications, exponentially big parallel processor can be 
simulated, solving all problems in NP in polynomial time. 
So they suggested banning such operations from unit-cost 
theory RAM, making it even more contrived from a 
practical view-point. But it is possible to achieve such 
algorithms that can be implemented in the real world 
considering the real-world limitation of a fixed word-size in 
mind. This model is named the word RAM (Hagerup [2]). 
The word RAM has a fairly long tradition within integer 
sorting, being advocated and used by Kirkpatrick and Reisch 
[3] and Fredman and Willard [4]. 
In word RAM, addition and subtractions can be performed 
on integers and this is considered as an advantage over the 
comparison based model by word RAM. Hence, this word 
RAM can be used to code multiple comparisons of short 
integers combined in single words. The idea of multiple 
comparisons was first introduced by Paul and Simon [5]. As 
per [1], the word RAM model is different from the 
comparison based model as well as from the pointer 
machine in which integers can be used, and segments of 
integers, as addresses. This idea links to radix sort where an 
integer is viewed as a vector of characters, and these 
characters are used as addresses. Another idea of word 

RAM is to hash the integers into smaller ranges, naming 
these hash integers as signatures in this paper. Here radix 
sort goes back at least to 1929 [6] and hashing goes back at 
least to 1956 [7], both being developed for efficient problem 
solving in the real world. Fredman and Willard [4] further 
use the RAM for advanced tabulation of complicated 
functions over small domains. 
As a simple example, considering computer architecture of 
64 bits i.e. 64 bits are processed in single instruction cycle. 
Actual comparison operation is performed on maximum of 
32-bit integers; if we are having a range of integers then 
these integers can be mapped to lower number of bits. Thus 
we can merge several integers into a single word. Thus 64 
bit machine can compare 16 signatures i.e. hash value of 
input integers with their size of 8 bits in single instruction 
cycle. 
Summing up, we have discussed that the ideas facilitated by 
the word RAM are well established in the practice of writing 
fast code. Hence, if we disallow these ideas, we are not 
discussing the time complexity of running imperative 
programs on real world computers. Thus this RAM model 
plays a vital role in reducing the overhead and enhancing the 
performance of the algorithm.  
 
SIGNATURES 
 
In order to decrease the size of integers to be operated upon, 
signatures are created which have the lesser bit size than the 
original inputs. The signatures are computed for each input 
with a universal hash function. Such signatures must have 

the size of where n is the number of input 
integers. The hash function used to create these signatures, 
must assure collision free hashing.  
The signatures created with this method must follow the 
property:  

If    

Then    �    

Where ’s are the input integers, ’s the corresponding 
signatures and n is the number of input integers.  
 
HASH FUNCTION 
 
The hash function reduces the size of integers by creating 

signatures of  bit size. The hash function must 
provide collision free hashing to ensure accurate and better 

result. The hash function must take  expected time. 
This will improve the overall performance of algorithm. We 
are presenting an idea that can be used for hashing of 
integers into signatures. Division must be avoided in hash 
function for better performance. The hash function is, 

   
Where k is the number of bits in the input integer, 

        is the number of bits in the signature which 

will be . 

      is randomly chosen between zero and .   
Since the division in the above function is division by a 
power of two, it can be implemented as a left shift. This 
function will be applied to each input integer to produce a 



Tamana Pathak et al, Journal of Global Research in Computer Science,2 (3), March 2011, 16-20 

 

 

© JGRCS 2010, All Rights Reserved   18 

signature. This will take time i.e. constant time for 
each signature. Since there will be n signatures, thus the 
overall expected time for signatures creation will be 

of . The above said hash function assures 

bit size of signatures and also collision free 
result. 
 
WORD FORMATION 
 
In Andersson’s concept integers are divided into fields and 
each of these fields is packed into words. In this way 
signatures are created. This is a bit of overhead as each field 
of integers is required to be packed and compared. We are 
modifying this idea using hashing. As discussed above hash 
function will hash whole integer into a signature with 

reduced bit size of . After that the packing of 
multiple signatures into one word will be done. This will not 
only reduce the extra overhead created by dividing integers 
into fields but also enhance the overall performance.  It is an 
important phase as multiple integers i.e. signatures (hashes) 
of integers will be packed in a word. We must ensure that 
this phase runs error free while implementing. 

If w is word size of the machine,  is the number of bits 

in the signature,  is the word length,  is the number 

of words,  is the number of signatures in a word and  is 
the number of input integers then: 
To calculate the number of words required will be equal to 
the product of bits in a signature and number of inputs 
divided by the total length of the word. 

 
 
The number of signatures to be packed in a word is equal to 
the total number of inputs divided by number of words 
required. 

 
Consider the example, for 64-bit machine taking 256 input 
integers of any bit length for simplicity, on which after 
applying hash function signatures of 8-bit can be obtained 

corresponding to 256 inputs as signatures are of  
bit length. Thus, eight different 8-bit integers that are 
actually signatures can be packed into a word of 64 bit 

length. Or this can be said that for  inputs there will be 

 number of words will be created 
overall. 
In order to pack the signatures in the word, masking is done 
using shift operators as well as logical operators that make 

the process faster. Also there will be total  operations in 

the word formation phase there it will take  time. 
 
COMPARISON SORTING 
 
Comparison sorting is another important phase which is 
applied on words in order to get the sorted result. Here 
sorting means exchanging the positions of the signatures 
from one word to another word and also exchanging 
positions within word itself. This is the phase where actual 
comparison will occur, which will result in sorting. As now, 
there are multiple integers in one word thus, the word itself 
also be sorted after sorting has occurred in between words. 
Thus we can divide the whole procedure of sorting into two 
sub-phases.  
The first sub-phase is sorting between words. This can be 
done by comparing two words and checking corresponding 

bits of signatures to merge them. The idea is to use bitwise 
operations to get the result. As bitwise operators are 
comparatively fast thus use of these operators will speed up 
the processing the algorithm. We only requires two bitwise 

operators  and  to perform this task. The task 

includes applying  and  in such a way that the 
result will show which signatures need to be swapped. First, 

we will apply on words and then apply  and 

 operators on result with the word in which we want 
smallest of this signatures.  
The above discussed operations will give non-zero value on 
corresponding bits where signatures are needed to be 
swapped. Thus we will swap those signatures again using 

 operator. Hence, only a constant time is required to 
perform the above said operation. As we know there will be 

a maximum of words which are to be 

compared. This will lead us to   
number of maximum comparisons. We can further reduce 
these comparisons by using any traditional deterministic 
algorithm like Quick Sort. By applying the traditional 
deterministic algorithm the number of comparison will be 

reduced to   
We know that, 

 
Taking  on both sides, 

 
Multiplying both sides with , 

 
Now as we know, 

 
Thus, 

 

Now,   
hence,            

 
 

This proves that total number of comparisons will be . 
As we know that there is constant number of signatures in 
every word thus we need to perform this procedure only a 
constant number of times which is independent of number of 
integers. The overall expected time for this sub-phase is 

only  
Now after first sub-phase the words will be in sorted order 
with each other, but there are multiple signatures in every 
word thus we need to take care of that. Here we need to 
perform sorting within word itself. This can be done in 
similar fashion as sorting is done between words. The one 
more thing we need to take care of here is masking of 
signatures which are not participating in sorting operation. 
The task consists of comparing signatures within word. Here 
also we will use bitwise operators as used above. Hence, 
there is constant number of signatures in a word. This will 
take constant number of operations. There is at most 

 number of words, that implies we 

require  number of operations which 

is less than   

Let’s suppose there are  signatures in a word. So if we 
start comparing each signature with other, it will take 

 expected time. We can reduce this expected time to 



Tamana Pathak et al, Journal of Global Research in Computer Science,2 (3), March 2011, 16-20 

 

 

© JGRCS 2010, All Rights Reserved   19 

enhance the performance by simply using divide and 
conquer technique on word. This is shown in the figure-1: 
 

 
Figure1. Comparison within word 

 
The algorithm for comparison within word is given as 
follows: 

����

����

 

����

 
 

 

����

����

  
This algorithm first divide a word into 2 halves and 
compares them bitwise operations. And according to the 
result of bitwise operations, the positions of signatures are 
exchanged, and in second pass each half considered as 
individual word and same task is performed on those. In this 
way, we are exploiting parallelism of uniprocessor system as 
done while performing comparison between words. The 
number of passes will be log m and total number of 
comparison will be c log m where m is the number of 
signatures in a word.  We have to call the algorithm for all 
words formed. Thus, finally words will be sorted itself. This 

shows that there will be at most  passes and in 

each pass only constant number of comparisons is required. 

Thus total number of comparisons will be  .  
Considering the space requirement it is clear that the only 

extra space requirement is  which is used to perform 
bitwise operations on words. 
The above discussion shows that the whole sorting operation 

can be completed in  expected time and uses  
extra memory. 
 
TRACKING INDEX 
 
Traditionally indexing is not required in sorting as the array 
to be sorted stores pointers to the data structure, and the 
pointers are changed in order to put the structures in the 
right order. However, signature sort in word formation and 
sorting phases works on signature which is lesser in bit size 
that are packed many to a word, thus there isn’t enough 
space to carry along a pointer to the rest of the structure. 
The above mentioned matter can be resolved by not only 
outputting the sorted data but also outputting their 
corresponding indexes listed in the original list too. The 
benefit of index is to track the original position can be 
looked up afterwards. This association of indexes with the 
integer can be computed by manipulating a packed list of 
indexes in the exact way the list of integer to be sorted. In 
order to rearrange the word of indexes in exact way as the 
word of integers at every stage, the merge operation is 
annotated. 
At the end, each word of sorted integers matches up with the 
value of original position in the word of indexes. After 
applying merge operation on integers, indexes are mirrored 
on integers. This gives a list consisting of pairs i.e. one list 
containing the integers in the sorted order and another one 
of original indexes of each integer in the original list. 
This method of maintaining indexes will work fine upto  

 . This will fail afterwards because at this 
point, the indexes no longer fit in a field. 
Another way of using the benefits of indexes apart of 
mirroring the indexes with the sorting, the indexes can be 
created afterward by constructing a table of 

size . This will not require more 
space than before. The table stores the start index of each 
integer in the sorted list, from which the index of each 
integer in the sorted list can be computed. The table will 
help us in sweeping the original list. The table can be 

computed in  time and the sweep takes  time, for 

a total of  post-processing time to compute the indexes. 

As a side note, if , packed sort is 

unnecessary as the number can be sorted in  time using 
radix sort. 
 
SUMMING UP 
 
We finally come up with variant of signature sort which is 
not only stable but better in performance than existing 

signature sort algorithm with  expected time which 

uses only  extra space. The variant is also randomized 
as the existing algorithm is also. The actual running time of 
this variant is comparatively very low than existing 
signature sort as we are using bitwise operation. The use of 
bitwise operator makes the algorithm fast. The comparative 
performance of this variant with randomized quick sort is 



Tamana Pathak et al, Journal of Global Research in Computer Science,2 (3), March 2011, 16-20 

 

 

© JGRCS 2010, All Rights Reserved   20 

also good. We have enhanced the relative performance of 
signature sort. 
  
 
REFERENCES 
 

[1] Yijie Han and Mikkel Thorup. Integer sorting in 

 expected time and linear space. In 
IEEE Symp. on Foundations of Computer Science, volume 
43, 2002. 

[2] Andersson, Hagerup, Nilsson, and Raman. 
Sorting in linear time? In STOC: ACM Symposium on 
Theory of Computing (STOC), 1995. 

[3] D. Kirkpatrick and S. Reisch. Upper bounds for sorting 
integers on random access machines. 1984. 

[4] M. L. Fredman and D. E. Willard. Surpassing the 
information theoretic bound with fusion trees.1993. 
Announced at STOC’90. 

[5] W. Paul and J. Simon. Decision trees and random access 
machines. In Proc. Symp. ¨uber Logik and Algoritmik, 
1980. 

[6] L. J. Comrie. The hollerith and powers tabulating 
machines.Trans. Office Machinary Users’ Assoc., Ltd, 
1929-30. 

[7] A. I. Dumey. Indexing for rapid random access memory 
systems. Computers and Automation, 1956. 

[8] Mikkel Thorup. Randomized sorting in 

 time and linear space using addition, 
shift, and bit-wise boolean operations. 

[9] Y. Han: Deterministic Sorting in Time and 
Linear Space, J. Algorithms 50(1): 2004. 

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: 
Introduction to Algorithms, Second Edition, The MIT Press 
and McGraw-Hill Book Company2001. 

[11] S. Cook and R. Reckhow. Time-bounded random 
access machines. J. Comp. Syst. Sc., 10(2):1973. 

[12] M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen, 
A reliable randomized algorithm for the closest- pair 
problem, J. Algorithms 25 (1997). 

 


