

ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st& 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2169

Improving Resilience of Cloud Application

Using Ranking Technique

Abstract - Cloud computing is a general term for any-

thing that involves delivering hosted services over the

Internet. A Fault tolerance is a setup or configuration that

prevents a computer or network device from failing in the

event of an unexpected problem or error. In this project

work, we propose a model to analyze an optimal fault

tolerant strategy to improve the resilience of cloud

applications. The cloud applications are usually large

scale and include a lot of distributed cloud components.

Building highly efficient cloud applications is a challeng-

ing and critical research problem. To attack this chal-

lenge a component ranking frame work, named FTCloud

is used for building fault tolerant cloud applications.

First extract the components from the cloud application.

Then, rank the critical components using the significance

value. After the component ranking phase, an algorithm is

projected to automatically conclude an optimal

fault-tolerance strategy for the significant cloud compo-

nents. Thereby, resilience of cloud application can be im-

proved.

Keywords — Cloud application, component ranking

technique, fault tolerance

I.INTRODUCTION

Cloud is a general term for anything that involves

delivering hosted services over the Internet. It is getting

popular in recent years. The software systems in the cloud

(named as cloud applications) typically involve multiple

cloud components communicating with each of them [1].

Basically cloud applications are usually huge and very

complex. Regrettably, the reliability of the cloud

applications is still far from perfect in real life. The

requirement for highly reliable cloud applications is

becoming unprecedented strong. Building highly

efficient clouds becomes a critical, challenging, and

urgently required research problem. The trend toward

large-scale complex cloud applications makes

developing fault-free systems by only employing fau

lt-prevention techniques and fault-removal techniques

exceedingly difficult. Another approach for building

efficient systems, software fault tolerance [20], makes the

system more robust by faults masking without

removing it. One of the most well known software fault

tolerance techniques is to employ functionally equivalent

yet independently designed components to tolerate faults

[5]. Due to the cost of developing and maintaining

redundant components, software fault tolerance is

usually only employed for critical systems. Different from

traditional software systems, there are a lot of

redundant resources in the cloud environment, making

software fault tolerance a possible approach for building

highly reliable cloud applications. Since cloud

applications usually involve a large number of

components, it is still too expensive to provide

alternative components for all the cloud components.

Moreover, there is probably no need to provide fault

tolerance mechanisms for the non critical components,

whose failures have limited impact on the systems. To

reduce the cost so as to develop highly reliable cloud

applications within a limited budget, a small set of

critical components needs to be identified from the cloud

applications. By tolerating faults of a small part of the

most important cloud components, the cloud application

reliability can be greatly improved. Based on this idea, we

propose FTCloud, which is a component ranking

framework for building fault tolerant cloud applications.

the optimal fault-tolerance strategies for these significant

components automatically. FTCloud can be employed by

designers of cloud applications to design more reliable

and robust cloud applications efficiently and effectively.

Anand M and KannigaDevi R

PG Student, Dept of Computer Science Engg., Kalasalingam University, Krishnankoil, Virudhunagar, India.

Assistant Professor, Dept of Computer Science Engg., Kalasalingam University, Krishnankoil, Virudhunagar, India.

Improving Resilience of Cloud Application Using Ranking Technique

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2170

Contribution of this paper:

. This paper identifies the critical problem of

locating significant components in complex cloud

applications and proposes a ranking-based framework,

named FTCloud, to build fault-tolerant cloud

applications. We first propose ranking algorithms to

identify significant components from the huge amount of

cloud components. Then, we present an optimal

fault-tolerance strategy selection algorithm to determine

the most suitable fault-tolerance strategy for each

significant component. We consider FTCloud as the first

ranking-based framework for developing fault-tolerant

cloud applications.

 We provide extensive experiments to evaluate the

impact of significant components on the reliability of

cloud applications.

II. RELATED WORK

Component ranking is an important research problem

in cloud computing [41], [42]. The component ranking

approaches of this paper are based on the intuition that

components which are invoked frequently by other

important components are more important. Similar

ranking approaches include Google Page rank [7] (a

ranking algorithm for web page searching) and SPARS-J

[16] (software product retrieving system for Java).

Different from the Page Rank and SPARS-J models,

component invocation frequencies as well as component

characteristics are explored in the approaches. Moreover,

the target of approach is identifying significant

components for cloud applications instead of web page

searching (Page Rank) or reusable code searching

(SPARS-J).

Cloud computing [3] is being popular. The works have

been done on cloud computing, including identifies the

critical to address fault tolerant strategy [32],

identifies the effects of failures on user’s applications, and

surveying fault tolerance solutions corresponding to each

class of failures [9], Too inadequate or too expensive

to fit their individual requirements [34], etc. In recent

years, a great number of research efforts have been

performed in the area of service component selection

and composition [30]. Various approaches,

such as QoS-aware middle ware [38], adaptive service

composition [2], and efficient service selection

algorithms [37], have been proposed. Some recent

efforts also take subjective information (e.g., provider

reputations, user requirements, etc) to enable more

accurate component selection [27]. Instead of employing

non functional performance (e.g., QoS values) or

functional capabilities, the approaches rank the cloud

components considering component invocation

relationship, invocation frequencies, and component cha-

racteristics.

.

III. SYSTEM ARCHITECTURE

Fig.1shows the system architecture of the

fault-tolerance framework (named FTCloud), which

includes two parts: 1) ranking and 2) optimal

fault-tolerance selection. The procedures of FTCloud are

as follows:

1. The system designer provides the initial

architecture design of a cloud application to FTCloud. A

component extraction can be done for the cloud

application based on the weight value.

Figure:1- System Architecture

2. Significance values of the cloud components are

calculated by employing component ranking algorithms.

Based on the significance values, the components can be

ranked.

3. The most significant components in the cloud

application are identified based on the ranking results.

4. The performance of various fault-tolerance strategy

candidates is calculated and the most suitable

fault-tolerance strategy is selected for each significant

component.

5. The component ranking results and the selected

fault-tolerance strategies for the significant components

are returned to the system designer for building a reliable

cloud application.

IV. PROPOSED WORK

IV.I .SIGNIFICANT COMPONENT RANKING:

The target of significant component ranking

algorithm is to measure the importance of cloud

components based on available information (e.g.,

application structure, component invocation

relationships, component characteristics, etc.).The

significant component ranking includes three steps (i.e.,

component Extraction, component ranking, and

significant component determination)

IV.I.I. Component Extraction:

A cloud application can be modeled as a weighted,

where a node c
i
 represents a component and a directed

Improving Resilience of Cloud Application Using Ranking Technique

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2171

edge e
ij
 from node c

i
to node c

j
 represents a component

invocation relationship, i.e., c
i
 invokes c

j
. Each node c

i

has a nonnegative significance value V(c
i
), which is in the

range of (0,1). Each edge e
ij
 has a nonnegative weight

value W(e
ij
), which is in the range of [0,1]. The weight

value of an edge e
ij
 can be calculated by

 W(e
ij
) = frq

ij
/

∑

n
j=1 frq

ij
 (1)

Where frq
ij
 is the invocation frequency of component c

j

by component c
i
, n is the number of components, and frq

ij

= 0 if component c
i
 does not invoke c

j
. In this way, the

edge e
i
has a larger weight value if component c

j
 is

invoked more frequently by component c
i
 compared with

other components invoked by c
i
. For a component

extraction, C which contains n components, an n * n

transition probability matrix W can be obtained by

employing (1) to calculate the invocation weight values of

the edges. Each entry w
ij
 in the matrix is the value of

W(e
ij
). w

ij
 = 0 if there is no edge from c

i
 to c

j
, which

means that c
i
 does not invoke c

j
. If a component does not

invoke itself, w
ii

= 0. Otherwise, the value of w
ii
 can be

calculated by (1). In the case that a node c
i
 has no

outgoing edge, w
ij

= 1\ n. For i, a single component of an

application, C can be obtained by weight of an edge, W

(e
ij
)

 ∑
n
j=1 W(e

ij
) (2)

IV.I.II. Component Ranking:

Based on the component extraction, a component

ranking algorithms, named as FTCloud is proposed in this

section. It employs the system structure information (i.e.,

the component invocation relationships and

frequencies) for making component ranking and also

considers the component characteristics (i.e., critical

components or noncritical components) for making

component ranking.Figure: 2 shows the critical and non

crical components based on significance value.

IV.I.III. FTCloud-Based Component Ranking:

In a cloud application, some of the components are

considered to be more important which are frequently

invoked by a lot of other components. Since their failures

will have greater impact on the whole system. Probably,

the significant components in a cloud application are the

ones which have many invocation links coming in from

the other important components. Inspired by the Pa-

geRank algorithm [7], we propose an algorithm to cal-

culate the significance values of the cloud components

applying the component invocation relationships and

frequencies. The procedure of FTCloud-based

component ranking algorithm is shown in the following

steps:

1. Randomly assign initial numerical scores between 0

and 1 to the components

2. Compute the significance value for a component c
i

by:

 V(c
i
) = +d∑kϵN(c

i
)V(c

k
)W(e

ki
) (3)

Where n is the number of components and N(c
i
) is a set

of components that invoke component c
i
. The parameter d

(0≤d≤1) in (3) is employed to adjust the significance

values derived from other components, so that the

significance value of c
i
 is composed of the basic value of

itself (i.e.,) and the derived values from the

components that invoked c
i
. By (3), a component c

i
 has

larger significance value indicating that component c
i

invoked by a lot of other significant components

frequently.

Figure:2- Significant Component Identification

IV.I.IV. Significant Component Determination

The components of cloud application can be ranked

based on obtained significance value and the top k (1 ≤k

≤n) most significant components can be returned to the

cloud application’s designer. After that significant

components can be obtained by the designer of cloud

application at a time of architecture design and can

employ various techniques to improve the resilience of the

cloud application.

IV.II. FAULT-TOLERANCE STRATEGY SELECTION

IV.II.I. Fault-Tolerance Strategies

Software fault tolerance is widely adopted to

increase the overall system reliability in cloud

applications. Applying functionally equivalent

components to tolerate component failures, thereby

resilience can be improved. There are three most common

fault-tolerance methods with formulas to find out the

failure probabilities of the each fault-tolerant method. The

failure probability should be within the range of [0,1].

IV.II.II. Recovery block(RB).

 Execute a component, if fails through acceptance test,

then try a next alternate component. Order the different

Improving Resilience of Cloud Application Using Ranking Technique

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2172

component according to reliability. Checkpoints needed to

provide valid operational state for subsequent versions

(hence, discard all updates made by a component).

Acceptance test needs to be faster and simpler than actual

code. A recovery block fails only if all the redundant

components fail.

The failure probability f of a recovery block :

f = ∏
n

i=1 fi (4)

Where n is the number of alternate components and fi is the

failure probability of the ith component.

IV.II.III. N-version programming (NVP).

N-version programming, also known as multi

version programming, all versions designed to satisfy same

basic requirement. Decision of output comparison based

on voting. Different teams build different versions to avoid

correlated failures. When applying the NVP approach to

the cloud application’s component, implement the

equivalent function of cloud components should be alone

and involved in parallel and then final result is determined

by majority voting. It will fail only if more than half of the

redundant components stop working. The failure

probability fi of an NVP module can be computed.

f = ∑
n

i=(n+1)/2 Fi (5)

Where n is the number of equivalent components (n is

usually an odd number in NVP)

IV.II.IV. Parallel.

Parallel strategy invokes all the n functional

equivalent components in parallel and the first returned

response will be employed as the final decision. It fails

only if all the alternate components stop working. The

failure probability f of a parallel module can be computed

by

 f = ∏
n

i=1 fi (6)

Where n is the number of alternate components and fi

is the failure probability of the ith component.

Different features of fault tolerance strategies, the

response time of RB and NVP strategies is not good

compared with Parallel strategy in performance wise,

while Parallel strategy employs the first returned response

as the final decision. The required resources of RB are

much lower than those of NVP and Parallel since parallel

component invocations consume a lot of networking and

computing resources. RB, NVP, and Parallel strategies can

tolerate crash faults. NVP can also mask value faults (e.g.,

data corruption), the final results in NVP can be

determined through majority voting.

IV.II.V. Optimal FT Strategy Selection

The fault-tolerance strategies have a number of

variations based on different setups. Fault tolerance me-

thod variations are applied for each and every single sig-

nificant component in a cloud application and the optimal

one need to be identified. For each significant component

that requires a fault tolerance strategy, the designer can

specify constraints (e.g., response time of the component

has to be smaller than 1,000 milliseconds, etc.).Response

time and cost are the two user constraints should be noted.

The optimal fault-tolerance method selection problem for

a cloud component with user constraints can then be

formulated mathematically. First, the candidates which

cannot meet the user constraints are not include. Then the

fault-tolerance candidate with the best failure probability

performance will be selected as the optimal strategy for

component i. By the above approach, the optimal

fault-tolerance method, gives the best failure probability

performance and fulfill all the user constraints.

To identify optimal FT Strategy Selection:

Input: si, ti, and fi values of candidates; user constraints

u1, u2;

Output: Optimal candidate index p

m: number of candidates;

for (i =1; i ≤ m; i++) do

if (si≤ u1&&ti ≤u2) then

vi = fi;

end

end

if none of the candidate meet user constraints after that

Throw exception;

end

Select vx which has minimal value from all the vi;

P= x;

Algorithm1. Optimal FT Strategy Selection

The above algorithm identifies optimal FT strategy

selection for each of significant component. Based on

result the designer have to apply the identified FT

strategy, thus resilience of the cloud application can be

improved.

V. EXPERIMENT

V.I. Experimental Setup

The significant component ranking algorithms are

implemented by java language using cloudsim tool based

on hundred nodes. To find out the performance of

reliability increment, we compare four approaches, which

are as follows:

No FT: No fault-tolerance strategies are employed for

the components in the cloud application.

Random FT. Fault-tolerance strategies are employed

to mask faults of K percent components, those

components are randomly selected.

FTCloud: Fault-tolerance strategies are employed to

mask faults of the Top-K percent important components

(using significance value). The components are ranked

based on the structural information of the cloud

application.

AllFT: Fault-tolerance strategies are employed for all

the cloud components.

Improving Resilience of Cloud Application Using Ranking Technique

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2173

VI. COMPONENT FAILURE PROBABILITY

IMPACT

To learn the impact of the system resilience on cloud

application, we compare RandomFT and FTCloud under

probability set from 0.1 to 1 percent with a step value of 0.1

percent. Thousands node are taken for this execution.

Implementation result shows cloud application failure

probabilities Fig. 3.

FIGURE: 3- The impact of the system resilience

Fig. 3 explains

FTCloud outperform RandomFT in all the application

running time settings from 1 percent constantly as shown

in Fig. 3

The system resilience probabilities of the two methods

become larger, when application runs. To build highly

reliable cloud applications, then a larger number of

significant components are needed.

The application failure probability of FTCloud

approach decreases much faster than that of RandomFT,

representing that have a more efficient use of the

redundant components than RandomFT, by the increase

the selection of more significant components.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a component ranking framework

cloud application’s component. The significance values of

these components, how often the current component is

called by other components, and the component quality.

After determine the significant components, we

suggest an optimal fault-tolerance strategy selection

algorithm to afford optimal fault-tolerance strategies to

the significant components automatically, based on the

user limits. The implementation results display the

FTCloud approaches.

The current FTCloud framework can be engaged to

bear crash and significance faults. In the future, we will

examine more types of faults, such as Byzantine faults.

Various types of fault-tolerance mechanisms can be extra

into FTCloud framework effortlessly without Basic

changes. We will also examine additional component

ranking algorithms and add them to the FTCloud

framework. Moreover, we will expand and practical

FTCloud framework to other component-based systems.

In this paper, we only learn the most delegate type of

software component extraction, i.e., weight value of an

edge. as different applications may have dissimilar system

structures, we will examine more types of component

models in future work.

 The future work also includes

 Allow more factors (such as invocation delay, output,

etc.) when computing the weights of invocations links;

 Examining the component consistency itself

moreover the invocation structures and invocation

frequencies;

 More investigational testing on real-world cloud

applications.

 more examination on the component malfunction

correlations; and

 More new studies on collision of incorrectness of prior

wisdom on the invocation frequencies and essential

components.

REFERENCE

[1] “cloud computing in wikipedia,”

http://en.wikipedia.org/wiki/cloud_computing, 2012.

[2] d. Ardagna and b. Pernici, “adaptive service composition in
flexible processes,” june 2007.

[3] m. Armbrust et al., “a view of cloud computing,” 2010.

[4] m. Armbrust et al., “above the clouds: a berkeley view of cloud-
computing,” 2009.

[5] a. Avizienis, “the methodology of n-version programming,”

software fault tolerance, 1995.
[6] v. Batagelj and a. Mrvar, “pajek - program for large network analy-

sis,” 1998.

[7] s. Brin and l. Page, “the anatomy of a large-scale hypertextual web
search engine,” 1998.

[8] m. Creeger, “cloud computing: an overview,”, june 2009.

[9] Huang and Abraham, “Providing Reliability as an Elastic Service in

Cloud Computing”, 2011.

[10] a.p.s. de moura, y.-c. Lai, and a.e. motter, “signatures of

small- world and scale-free properties in large computer programs,”
2003.

[11] c.-l. Fang, d. Liang, f. Lin, and c.-c. Lin, “fault tolerant web

services,” 2007.
[12] s.s. gokhale and k.s. trivedi, “reliability prediction and sensitivity

analysis based on software architecture,” 2002.

[13] s. Gorender, r.j. de araujo macedo, and m. Raynal, “an adaptive
programming model for fault-tolerant distributed computing,”

jan.-mar. 2007.

[14] a. Goscinski and m. Brock, “toward dynamic and attribute-based
publication, discovery and selection for cloud computing,”, 2010.

[15] d. Hyland-wood, d. Carrington, and y. Kaplan, “scale-free nature of

java software package, class and method collaboration graphs,” 2009.
[16] k. Inoue, r. Yokomori, t. Yamamoto, m. Matsushita, and s. Kusu-

moto, “ranking significance of software components based on use rela-

tions,” mar. 2009.
[17] k. Kim and h. Welch, “distributed execution of recovery blocks:

an approach for uniform treatment of hardware and software faults in

real-time applications,” may 1989.
[18] j. Laprie, j. Arlat, c. Beounes, and k. Kanoun, “definition and

analysis of hardware- and software-fault-tolerant architec-

tures,” july 1990.
[19] w. Li, j. He, q. Ma, i.-l. Yen, f. Bastani, and r. Paul, “a framework

to support survivable web services,” 2005.

[20] m.r. lyu, software fault tolerance, wiley, 1995.
[21] m.r. lyu, handbook of software reliability engineering.

Mcgraw-hill, 1996.

[22] e. Maximilien and m. Singh, “conceptual model of web service
reputation,”2002.

Improving Resilience of Cloud Application Using Ranking Technique

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2174

[23] m.g. merideth, a. Iyengar, t. Mikalsen, s. Tai, i. Rouvellou, and p.

Narasimhan, “thema: byzantine-fault-tolerant middleware

forweb-service applications,” 2005.
[24] s.l. pallemulle, h.d. thorvaldsson, and k.j. goldman, “byzantine

fault-tolerant web services for n-tier and service oriented architec-

tures,” 2008. Zheng et al.: component ranking for fault-tolerant cloud
applications.

[25] b. Randell and j. Xu, “the evolution of the recovery block concept,”

software fault tolerance, m.r. lyu, , wiley,1995.
[26] p. Rooney, “microsoft’s ceo: 80-20 rule applies to bugs, not just

features,” oct. 2002.
[27] s. Rosario, a. Benveniste, s. Haar, and c. Jard, “probabilistic qos and

soft contracts for transaction-based web services orchestra-

tions,” oct. 2008.
[28] j. Salas, f. Perez-sorrosal, m. Patin˜ o-marti´nez, and r.

Jime´nez-peris, “ws-replication: a framework for highly available web-

services,” 2006.
[29] g.t. santos, l.c. lung, and c. Montez, “ftweb: a fault tolerant infra-

structure for web services,” 2005.

[30] q.z. sheng, b. Benatallah, z. Maamar, and a.h. ngu, “configurable
Composition and adaptive provisioning of web services,”

jan.-mar.2009.

[31] g.-w. Sheu, y.-s. Chang, d. Liang, s.-m. Yuan, and w. Lo,

“afault-tolerant object service on corba,” 1997.

[32] Jing Deng and Wang et al, “Fault-Tolerant and Reliable Compu-

tation in Cloud Computing”, 2011.
[33] w.-t. Tsai, x. Zhou, y. Chen, and x. Bai, “on testing and evaluating

service-oriented software,” aug. 2008.

[34] Mei et al and cho li wang,“Web product ranking using opinion
mining”, 2011.

[35] g. Wu, j.wei, x. Qiao, and l. Li, “a bayesian network based qos

assessment model for web services,” 2007.
[36] s.m. yacoub, b. Cukic, and h.h. ammar, “scenario-based

reliability analysis of component-based software,” 1999.

[37] t. Yu, y. Zhang, and k.-j. Lin, “efficient algorithms for web services
selection with end-to-end qos constraints,” 2007.

[38] l. Zeng, b. Benatallah, a.h. ngu, m. Dumas, j. Kalagnanam,

and H. Chang, “qos-aware middleware for web services composition,”
may2004.

[39] z. Zheng and m.r. lyu, “a distributed replication strategy evaluation

and selection framework for fault tolerant web services,” 2008.
[40] z. Zheng and m.r. lyu, “a qos-aware fault tolerant middleware for

dependable service composition,” 2009.

[41] z. Zheng, y. Zhang, and m.r. lyu, “cloudrank: a qos-driven compo-
nent ranking framework for cloud computing,” 2010.

[42] z. Zheng, t.c. zhou, m.r. lyu, and i. King, “ftcloud: a ranking-based

framework for fault tolerant cloud applications,” 2011

	OLE_LINK21

