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Abstract - Cloud computing is a general term for any-

thing that involves delivering hosted services over the 

Internet. A Fault tolerance is a setup or configuration that 

prevents a computer or network device from failing in the 

event of an unexpected problem or error. In this project 

work, we propose a model to analyze an optimal fault 

tolerant strategy to   improve the resilience of cloud 

applications.  The cloud applications are usually large 

scale and include a lot of distributed cloud  components. 

Building highly efficient cloud applications is a challeng-

ing and critical research problem. To attack this  chal-

lenge a component ranking frame work, named FTCloud 

is used for building fault tolerant cloud  applications. 

First extract the components from the cloud application. 

Then, rank the critical components using the significance 

value. After the component ranking phase, an algorithm is 

projected to    automatically conclude an optimal 

fault-tolerance strategy for the significant cloud compo-

nents. Thereby, resilience of cloud application can be im-

proved. 

 

Keywords — Cloud application, component ranking     

technique, fault tolerance    

 

I.INTRODUCTION 

 

Cloud is a general term for anything that involves  

delivering hosted services over the Internet. It is getting 

popular in recent years. The software systems in the cloud 

(named as cloud applications) typically involve multiple 

cloud components communicating with each of them [1]. 

Basically cloud applications are usually huge and very 

complex. Regrettably, the reliability of the cloud     

applications is still far from perfect in real life. The   

requirement for highly reliable cloud applications is  

becoming unprecedented strong.   Building highly  

efficient clouds becomes a critical, challenging, and   

 

 

 

 

urgently required research problem. The trend toward  

large-scale complex cloud applications makes       

developing fault-free systems by only employing fau 

lt-prevention techniques and fault-removal techniques 

exceedingly difficult. Another approach for building  

efficient systems, software fault tolerance [20], makes the 

system more robust by faults masking without        

removing it. One of the most well known software fault 

tolerance techniques is to employ functionally equivalent 

yet independently designed components to tolerate faults 

[5]. Due to the cost of developing and maintaining   

redundant components, software fault tolerance is    

usually only employed for critical systems. Different from 

traditional software systems, there are a lot of       

redundant resources in the cloud environment, making 

software fault tolerance a possible approach for building 

highly reliable cloud applications. Since cloud       

applications usually involve a large number of     

components, it is still too expensive to provide      

alternative components for all the cloud components. 

Moreover, there is probably no need to provide  fault 

tolerance mechanisms for the non critical components, 

whose failures have limited impact on the systems. To 

reduce the cost so as to develop highly reliable cloud  

applications within a limited budget, a small set of   

critical components needs to be identified from the cloud 

applications. By tolerating faults of a small part of the 

most important cloud components, the cloud application 

reliability can be greatly improved. Based on this idea, we 

propose FTCloud, which is a component ranking  

framework for building fault tolerant cloud applications. 

the optimal fault-tolerance strategies for these significant 

components automatically. FTCloud can be employed by 

designers of cloud applications to design more reliable 

and robust cloud applications efficiently and effectively. 
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Contribution of this paper: 

.  This paper identifies the critical problem of  

locating significant components in complex cloud    

applications and proposes a ranking-based framework, 

named FTCloud, to build fault-tolerant cloud        

applications. We first propose ranking algorithms to  

identify significant components from the huge amount of 

cloud components. Then, we present an optimal 

fault-tolerance strategy selection algorithm to determine 

the most suitable fault-tolerance strategy for each    

significant component. We consider FTCloud as the first 

ranking-based framework for developing fault-tolerant 

cloud      applications. 

 We provide extensive experiments to evaluate the 

impact of significant components on the reliability of 

cloud applications. 

 

II. RELATED WORK 

 

Component ranking is an important research problem 

in cloud computing [41], [42]. The component ranking 

approaches of this paper are based on the intuition that 

components which are invoked frequently by other   

important components are more important. Similar  

ranking approaches include Google Page rank [7] (a 

ranking algorithm for web page searching) and SPARS-J 

[16] (software product retrieving system for Java).   

Different from the Page Rank and SPARS-J models, 

component invocation frequencies as well as component 

characteristics are explored in the approaches. Moreover, 

the target of approach is identifying significant     

components for cloud applications instead of web page 

searching (Page Rank) or reusable code searching 

(SPARS-J). 

 

Cloud computing [3] is being popular. The works have 

been done on cloud computing, including identifies the 

critical to address  fault tolerant strategy [32],      

identifies the effects of failures on user’s applications, and 

surveying fault tolerance solutions corresponding to each 

class of failures [9], Too inadequate or  too   expensive 

to fit their individual requirements [34], etc. In recent 

years, a great number of research efforts have been   

performed in the area of service component    selection 

and     composition [30]. Various      approaches, 

such as QoS-aware middle ware [38],  adaptive service    

composition [2], and efficient  service selection     

algorithms [37], have been   proposed. Some recent  

efforts also take subjective information (e.g., provider 

reputations, user requirements, etc) to enable more   

accurate component selection [27]. Instead of employing 

non functional performance (e.g., QoS values) or    

functional capabilities, the approaches rank the cloud 

components considering component invocation      

relationship, invocation frequencies, and component cha-

racteristics. 

 

 

 

 

. 

III. SYSTEM ARCHITECTURE 

 

Fig.1shows the system architecture of the 

fault-tolerance framework (named FTCloud), which  

includes two parts: 1) ranking and 2) optimal 

fault-tolerance selection. The procedures of FTCloud are 

as follows: 

1. The system designer provides the initial        

architecture design of a cloud application to FTCloud. A 

component extraction can be done for the cloud      

application based on the weight value.  

 

 
 

Figure:1- System Architecture 

 

2. Significance values of the cloud components are 

calculated by employing component ranking algorithms. 

Based on the significance values, the components can be 

ranked. 

3. The most significant components in the cloud   

application are identified based on the ranking results.  

4. The performance of various fault-tolerance strategy 

candidates is calculated and the most suitable 

fault-tolerance strategy is selected for each significant 

component. 

5. The component ranking results and the selected 

fault-tolerance strategies for the significant components 

are returned to the system designer for building a reliable 

cloud application.  

 

IV. PROPOSED WORK 

 

IV.I .SIGNIFICANT COMPONENT RANKING: 

The target of significant component ranking     

algorithm is to measure the importance of cloud    

components based on available information (e.g.,    

application structure, component invocation         

relationships, component characteristics, etc.).The    

significant component ranking includes three steps (i.e., 

component Extraction, component ranking, and      

significant component determination) 

 

IV.I.I. Component Extraction: 

A cloud application can be modeled as a weighted, 

where a node c
i
 represents a component and a directed 
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edge e
ij
 from node c

i 
to node c

j
 represents a component 

invocation relationship, i.e., c
i
  invokes c

j 
. Each node c

i 

has a nonnegative significance value V(c
i
), which is in the 

range of (0,1). Each edge e
ij
 has a nonnegative weight 

value W(e
ij
), which is in the range of [0,1]. The weight 

value of an edge e
ij
 can be calculated by 

  W(e
ij
) = frq

ij 
/
 
∑

n
j=1 frq

ij
         (1) 

Where frq
ij
 is the invocation frequency of component c

j
 

by component c
i
, n is the number of components, and frq

ij
 

= 0 if component c
i
 does not invoke c

j
. In this way, the 

edge e
i 
has a larger weight value if component c

j
     is 

invoked more frequently by component c
i
 compared with 

other components invoked by c
i
. For a component    

extraction, C which contains n components, an n * n  

transition probability matrix W can be obtained by   

employing (1) to calculate the invocation weight values of 

the edges. Each entry w
ij
     in the matrix is the value of 

W(e
ij
). w

ij
 = 0 if there is no edge from c

i
 to c

j
, which 

means that c
i
 does not invoke c

j 
. If a component does not 

invoke itself, w
ii 

= 0. Otherwise, the value of w
ii
 can be 

calculated by (1). In the case that a node c
i
   has no   

outgoing edge, w
ij 

= 1\ n. For i, a single component of an 

application, C can be obtained by weight of an edge, W 

(e
ij
)                                                 

        ∑
n
j=1 W(e

ij
)           (2) 

 

IV.I.II. Component Ranking: 

Based on the component extraction, a component 

ranking algorithms, named as FTCloud is proposed in this 

section. It employs the system structure information (i.e., 

the component invocation relationships and         

frequencies) for making component ranking and also  

considers the component characteristics (i.e., critical 

components or noncritical components) for making  

component ranking.Figure: 2 shows the critical and non 

crical components based on significance value. 

 

 

IV.I.III. FTCloud-Based Component Ranking: 

In a cloud application, some of the components are 

considered to be more important which are frequently 

invoked by a lot of other components. Since their failures 

will have greater impact on the whole system. Probably, 

the significant components in a cloud application are the 

ones which have many invocation links coming in from 

the other important components. Inspired by the    Pa-

geRank algorithm [7], we propose an algorithm to  cal-

culate the significance values of the cloud components 

applying the component invocation relationships and  

frequencies. The procedure of  FTCloud-based    

component ranking algorithm is shown in the following 

steps: 

 

1. Randomly assign initial numerical scores between 0 

and 1 to the components  

2. Compute the significance value for a component c
i
  

by: 

   V(c
i
) = +d∑kϵN(c

i
)V(c

k
)W(e

ki
)    (3) 

          

Where n is the number of components and N(c
i 
) is a set 

of components that invoke component c
i
. The parameter d 

(0≤d≤1) in (3) is employed to adjust the significance  

values derived from other components, so that the    

significance value of c
i
 is composed of the basic value of 

itself (i.e., ) and the derived values from the 

components that invoked c
i
. By (3), a component c

i
 has 

larger significance value indicating that component c
i
  

invoked by a lot of other significant components     

frequently. 

 

 
 

Figure:2- Significant Component Identification 

 
IV.I.IV. Significant Component Determination 

The components of cloud application can be ranked 

based on obtained significance value and the top k (1 ≤k 

≤n) most significant components can be returned to the 

cloud application’s designer. After that significant   

components can be obtained by the designer of cloud  

application at a time of architecture design and can    

employ various techniques to improve the resilience of the 

cloud application. 

 

IV.II. FAULT-TOLERANCE STRATEGY SELECTION 

 

IV.II.I. Fault-Tolerance Strategies 

Software fault tolerance is widely adopted to      

increase the overall system reliability in cloud        

applications. Applying functionally equivalent      

components to tolerate component failures, thereby   

resilience can be improved. There are three most common 

fault-tolerance methods with formulas to find out the  

failure probabilities of the each fault-tolerant method. The 

failure probability should be within the range of [0,1]. 

 

IV.II.II. Recovery block(RB). 

  Execute a component, if fails through acceptance test, 

then try a next alternate component. Order the   different 
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component according to reliability. Checkpoints needed to 

provide valid operational state for subsequent versions 

(hence, discard all updates made by a      component). 

Acceptance test needs to be faster and  simpler than actual 

code. A recovery block fails only if all the redundant 

components fail. 

The failure probability f of a recovery block : 

f = ∏
n

i=1 fi      (4) 

Where n is the number of alternate components and fi is the 

failure probability of the ith component.  

 

  

IV.II.III. N-version programming (NVP). 

N-version programming, also known as multi    

version programming, all versions designed to satisfy same 

basic requirement. Decision of output comparison based 

on voting. Different teams build different versions to avoid 

correlated failures. When applying the NVP approach to 

the cloud application’s component,      implement the 

equivalent function of cloud components should be alone 

and involved in parallel and then final result is determined 

by majority voting. It will fail only if more than half of the 

redundant components stop   working. The failure  

probability fi of an NVP module can be computed. 

f = ∑
n

i=(n+1)/2  Fi     (5) 

 

Where n is the number of equivalent components (n is 

usually an odd number in NVP) 

 

IV.II.IV. Parallel.  

Parallel strategy invokes all the n functional   

equivalent components in parallel and the first returned    

response will be employed as the final decision. It fails 

only if all the alternate components stop working. The 

failure probability f of a parallel module can be computed 

by 

 f = ∏
n

i=1  fi     (6)  

Where n is the number of alternate components and fi 

is the failure probability of the ith component. 

Different features of fault tolerance strategies, the     

response time of RB and NVP strategies is not good 

compared with Parallel strategy in performance wise, 

while Parallel strategy employs the first returned response 

as the final decision. The required resources of RB are 

much lower than those of NVP and Parallel since parallel 

component invocations consume a lot of networking and 

computing resources. RB, NVP, and Parallel strategies can 

tolerate crash faults. NVP can also mask value faults (e.g., 

data corruption), the final results in NVP can be       

determined through majority voting. 

 

IV.II.V. Optimal FT Strategy Selection 

The fault-tolerance strategies have a number of  

variations based on different setups. Fault tolerance me-

thod variations are applied for each and every single sig-

nificant component in a cloud application and the  optimal 

one need to be identified. For each significant component 

that requires a fault tolerance strategy, the designer can 

specify constraints (e.g., response time of the component 

has to be smaller than 1,000 milliseconds, etc.).Response 

time and cost are the two user constraints should be noted. 

The optimal fault-tolerance method  selection problem for 

a cloud component with user   constraints can then be 

formulated mathematically. First, the candidates which 

cannot meet the user constraints are not include. Then the 

fault-tolerance candidate with the best failure probability 

performance will be selected as the optimal strategy for 

component i. By the above       approach, the optimal 

fault-tolerance method, gives the best failure probability 

performance and fulfill all the user constraints.  

 

 

To identify optimal FT Strategy Selection: 

 

Input: si, ti, and fi values of candidates; user constraints 

u1, u2; 

Output: Optimal candidate index p 

m: number of candidates; 

for (i =1; i ≤ m; i++) do 

if (si≤ u1&&ti ≤u2) then 

vi = fi; 

end 

end 

if none of the candidate meet user constraints after that 

Throw exception; 

end 

Select vx which has minimal value from all the vi; 

P= x; 

 

Algorithm1. Optimal FT Strategy Selection 

 

The above algorithm identifies optimal FT strategy   

selection for each of significant component. Based on 

result the designer have to apply the identified FT   

strategy, thus resilience of the cloud application can be 

improved. 

 

V. EXPERIMENT 

 

V.I. Experimental Setup 

The significant component ranking algorithms are 

implemented by java language using cloudsim tool based 

on hundred nodes. To find out the performance of     

reliability increment, we compare four approaches, which 

are as follows: 

No FT: No fault-tolerance strategies are employed for 

the components in the cloud application. 

Random FT. Fault-tolerance strategies are employed 

to mask faults of K percent components, those      

components are randomly selected. 

FTCloud: Fault-tolerance strategies are employed to 

mask faults of the Top-K percent important components 

(using significance value). The components are ranked 

based on the structural information of the cloud       

application. 

AllFT: Fault-tolerance strategies are employed for all 

the cloud components.  
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VI. COMPONENT FAILURE PROBABILITY 

IMPACT 

 

To learn the impact of the system resilience on cloud 

application, we compare RandomFT and FTCloud under  

probability set from 0.1 to 1 percent with a step value of 0.1 

percent. Thousands node are taken for this execution.  

Implementation result shows cloud application failure 

probabilities Fig. 3. 

 

 
 

FIGURE: 3- The impact of the system resilience 

Fig. 3 explains 

FTCloud outperform RandomFT in all the application 

running time settings from 1 percent constantly as shown 

in Fig. 3 

The system resilience probabilities of the two methods 

become larger, when application runs. To build highly 

reliable cloud applications, then a larger number of   

significant components are needed. 

The application failure probability of FTCloud      

approach decreases much faster than that of RandomFT, 

representing that have a more efficient use of the      

redundant components than RandomFT, by the increase 

the selection of more significant components. 

 

 

VII. CONCLUSION AND FUTURE WORK 

 

This paper proposes a component ranking framework 

cloud application’s component. The significance values of 

these components, how often the current component is 

called by other components, and the component quality.  

After determine the significant components, we   

suggest an optimal fault-tolerance strategy selection  

algorithm to afford optimal fault-tolerance strategies to 

the significant components automatically, based on the 

user limits. The implementation results display the 

FTCloud approaches. 

The current FTCloud framework can be engaged to 

bear crash and significance faults. In the future, we will 

examine more types of faults, such as Byzantine faults. 

Various types of fault-tolerance mechanisms can be extra 

into  FTCloud framework effortlessly without Basic 

changes. We will also examine additional component 

ranking algorithms and add them to the FTCloud  

framework. Moreover, we will expand and practical  

FTCloud framework to other component-based systems. 

In this paper, we only learn the most delegate type of 

software component extraction, i.e., weight value of an 

edge. as different applications may have dissimilar system 

structures, we will examine more types of  component 

models in  future work. 

 The future work also includes 

 Allow more factors (such as invocation delay, output, 

etc.) when computing the weights of invocations links;  

 

 Examining the component consistency itself   

moreover the invocation structures and invocation 

frequencies;  

 More investigational testing on real-world cloud  

applications.  

 more examination on the component malfunction 

correlations; and  

 More new studies on collision of incorrectness of prior 

wisdom on the invocation frequencies and essential 

components.  
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