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Abstract: In this paper, we introduce a new kernel function called polynomial radial basis function (PRBF) that could improve the classification 

accuracy of support vector machines (SVMs). The proposed kernel function combines both Gauss (RBF) and Polynomial (POLY) kernels and is 

stated in general form. It is shown that the proposed kernel converges faster than the Gauss and Polynomial kernels. The accuracy of the 

proposed algorithm is compared to algorithms based on both Gaussian and polynomial kernels by application to a variety of non-separable data 

sets with several attributes. We noted that the proposed kernel gives good classification accuracy in nearly all the data sets, especially those of 

high dimensions. 
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INTRODUCTION 

The basic form of support vector machines (SVMs) is to 

maximize the distance separating the elements of two 

different classes [1]. When the classes to which the elements 

belong to are known a priori, the problem is called 

classification. The set of data used to calculate the boundary 

limit between the classes is called the training set, while the 

data set used to test the efficacy of the method, is called 

validation set. Initially, classification problems were 

designed to separate two classes, the binary class problem 

[2, 3]. 

 

Despite the maturity of classification, problems remain, 

especially in choosing the most appropriate kernel of SVMs 

for a particular application. In recent years, support vector 

machines (SVMs) have received considerable attention 

because of their superior performance in pattern recognition 

and regression [1,4-8]. Choosing different kernel functions 

will produce different SVMs [7, 10, 11] and may result in 

different performances. Some work has been done on 

limiting kernels using prior knowledge, but the best choice 

of a kernel for a given problem is still an open research issue 

[12,13]. Comparing SVMs with Gaussian function (GF) to 

radial basis function (RBF) classifiers can be found in 

literature [14-17], but these focus on a sub-set of techniques 

and often only on performance accuracy. Tsang et al. [18] 

described a way to take advantage of the approximations 

inherent in kernel classifiers, by using a minimum enclosing 

ball algorithm as an alternative means of speeding up 

training. An alternative approach was proposed in [13] to 

selecting an appropriate kernel is to use invariance 

transformations.  

 

The drawback here is that they are mostly appropriate only 

for linear SVM classifiers. The methods of [19-20] can both 

be applied to pre-image applications with a discrete input 

space, since they do not require the gradient of the objective 

function. Generally, in implementations of this method, the 

time and space complexities are very high because the core 

of the SVMs is based on approximate minimum enclosing 

ball algorithms which are computationally expensive. The 

exact evaluation of intersection kernel SVMs which is 

logarithmic in time was presented in Maji et al. [21]. They 

have shown that the method is relatively simple and the 

classification accuracy is acceptable, but the runtimes are 

significantly increased compared with the established radial 

bases function (RBF) and polynomial kernel (POLY) due to 

large number of SV for each classifier [14, 21]. Zanaty et al. 

[15-17] combined GF and RBF functions in one kernel 

called “universal kernel” to take advantage of their 

respective strengths. The universal kernels constructed the 

most established kernels such as radial bases, gauss, and 

polynomial functions by optimizing the parameters using the 

training data. These kernels satisfied Mercer’s condition and 

converged faster than the existing kernels.  

 

Completely achieving a Support Vector Machine with high 

accuracy classification therefore requires specifying the high 

quality kernel function. This paper addresses the problem of 

data classification using SVMs. We improve the accuracy of 

SVMs using a new kernel function. We concentrate on non-

linearly separable data sets to improve the classification 

accuracy. The proposed kernel function called polynomial 

radial basis function (PRBF) that combines both Gauss and 

Polynomial kernels, is analyzed to prove its advantages over 

Gaussian and Polynomial kernels. The SVMs modified by 

the proposed PRBF kernel function is experimented using 

different data sets. 

 

The rest of this paper is organized as follows: In section 2, 

the problem formulation is stated. In section 3,m the 

traditional kernel functions are discussed. A new kernel 

function is presented and discussed its analysis in section 4. 

Experimental results are shown in section 5. Finally, section 

6 gives our conclusions. 

THE PROBLEM FORMULATION 

SVMs algorithm [7] has been shown to be one of the most 

effective machine learning algorithms. It gives very good 
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results in terms of accuracy when the data are linearly or 

non-linearly separable. When the data are linearly separable, 

the SVMs result is a separating hyperplane, which 

maximizes the margin of separation between classes, 

measured along a line perpendicular to the hyperplane. If 

data are not linearly separable, the algorithm works by 

mapping the data to a higher dimensional featurespace 

(where the data becomes separable) using an appropriate 

kernel function and a maximum margin separating 

hyperplane is found in this space. Thus the weight vector 

that defines the maximal margin hyperplane is a sufficient 

statistic for the SVMs algorithm (it contains all the 

information needed for constructing the separating 

hyperplane). Since this weight vector can be expressed as a 

weighted sum of a subset of training instances, called 

support vectors, it follows that the support vectors and the 

associated weights also constitute sufficient statistics for 

learning SVMs from centralized data.  

 

The accuracy problem is usually represented by the 

proportion of correct classifications. For many data sets, the 

SVMs may not be able to find any separating hyperplane at 

all (accuracy equal 0), either because the kernel function is 

inappropriate for the training data or because the data 

contains mislabeled examples. The latter problem can be 

addressed by using a soft margin that accepts some 

misclassifications of the training examples. A soft margin 

can be obtained in two different ways. The first is to add a 

constant factor to the kernel function output whenever the 

given input vectors are identical. The second is to define a 

priori an upper bound on the size of the training set weights. 

In either case, the magnitude of the constant factor to be 

added to the kernel or to bound the size of the weights 

controls the number of training points that the system 

misclassifies. The setting of this parameter depends on the 

specific data at hand. Completely specifying a support 

vector machine therefore requires specifying two 

parameters, the kernel function and the magnitude of the 

penalty for violating the soft margin. Hence, in order to 

improve the accuracy of SVMs, we select a suitable kernel 

function; this is criterion for achieving better results.                                                     

Binary Classification Problem: 

Binary classification is the simplest one over all the 

classification tasks. Given a data set D of N samples:(x1, y1), 

(x2, y2), …(xn,yn) each sample is composed of a training 

example xiof length M, with elements xi = (x1, x2, …,xm), and 

a target value yi Є {-1,1}. The goal is to find a classifier 

with decision function, f(x), such 

that Dyxyxf iiii ),(,)( . The performance of 

such a classifier is measured in terms of the classification 

error defined in equation (1): 

otherwise

yxfif
yxferror

1

)(0
)),((     (1) 

In order to compute the classification error SVM, we use the 

Structural Risk Minimization (SRM). The Structural Risk 

Minimization (SRM)  considers the complexity of the 

learning machine when it searches for α to learn the 

mapping x→y. This is done by minimizing the expected 

risk: ),,()),,(()(exp yxdpyxferrorR ii whe

re p(x,y) is a prior probability [22]. 

Linear Classifiers 

There are two cases of linear classifiers. The first where a 

perfect mapping x→f(x,α) can be learned is called the 

separable case, and the other case where a perfect mapping 

is unattainable is called the non-separable case [23]. 

 The Separable Case: 

Consider the binary classification problem of an 

arrangement of data points as shown in Fig. (1a) the 

"square" denotes positive examples with target yi =+1, 

belonging to the set S+, and the "round" denotes negative 

examples with target yi=-1, belonging to S-. One mapping 

that can separate S+ and S- is, 

).(),( bxwsignyxf
 (2)

 

wherew is a weight vector and b the offset from origin.             

Given such a mapping, the hyperplane, 0. bxw  (3)  

defines the decision boundary between S+ and S. 

 

The two data sets are said to be linearly separable by the 

hyperplane if a pair {w, b} can be chosen such that the 

mapping in equation (1) is perfect, this is the case in Fig. 

(1a). There are numerous values of {w, b} that creates 

separating hyperplanes. The SVMs classifier finds the only 

hyperplane that maximizes the margin between the two sets 

(optimal separating hyperplane) this is shown in Fig. (1b). 

 

 

Figure. (1): The hyperplane is separated into two separable sets:a) A 

separating hyperplane, b) The optimal separating hyperplane. 

Consider the problem of separating the set of training 

vectors belonging to two separate classes, 

}1,1{,)},,(,),........,{( 11 yRxyxyxD n

mm  (4)
 

with the following decision function, 

).()( bxwsignxf  

If the data is linearly separable then, 

0).( bxwyi  (5)
 

where  w  is the normal to the hyperplane, wb  is the 

perpendicular distance from the hyperplane to the origin, 

and ║w║ is the Euclidean norm of w. A canonical 

hyperplane is defined for the support vectors on one side of 

the separating hyperplane, 

1. bxw  (6) 

for the support vectors on the other side, 

1. bxw (7) 

and for the separating hyperplane, 

0. bxw  (8) 
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if we consider a data point 1x , a support vector  on one side 

of the separating hyperplane and 2x  another support vector 

on the other side then by substituting into (6) and (7) and 

subtracting, then, 

2)().(. 2121 xxwbxwbxw
                    (9) 

for the separating hyperplane the normal vector is,  

,ˆ
w

w
w

         (10) 

the margin can be defined as half the projection of (x1-x2) 

onto the normal vector giving, 

,
)(

2 21

w

xxw

       (11) 

from equation (9), we can obtain,   

,
2

2
w

 
which implies that, 

.
1

w
         (12) 

For the linearly separable case, the support vector algorithm 

looks for the separating hyperplane with largest margin. In 

order to maximize themargin (γ) the following term is 

minimized,  

),
2

1
(

2
wMin

      (13)

 

subject to:     

ibxwy ii .1).(
      (14)

 

Now, Lagrange multipliers are applied for two reasons.        

First, the constraints will be replaced by constraints on the 

Lagrange multipliers, which will be much easier to handle. 

The second is that in this first formulation of the problem, 

the training data will only appear in the form of data 

products between vectors. This is a crucial property which 

will allow us to generalize the procedure to the non-linear 

case.  Then Lagrangian is: 

,0

)),1).(().(
2

1

1

i

m

i

iii bxwywwl

             (15)

 

Thus, Lagrange multipliers are,  

.,...,1, mii One for each of the inequality 

constraints.            

If we set , 

,0,0
b

l

w

l

      (16)

 

m

i

iii yxw
1

,0

      (17) 
m

i

ii y
1

,0

      (18)

 

Re-substituting (17) and (18) back into (15) obtained which 

is maximized with respect to αi, 

m

i

m

ji

jijijii xxyyw
1 1,

),()(

 
subject to, 

m

i

iii y
1

.0,0  

 

An important detail is that αi=0 for every xiexcept the ones 

that lie on the hyperplanesH+ and H-. These points where αi 

≥ 0 are called support vectors. The number of support 

vectors in the solution is much less than the number of 

training examples. This is referred to the sparsity of the 

solution. When the optimization problem is solved and 

found the optimal hyperplane, the SVMs can attempt to 

predict unseen instances [24]. 

Non-Separable Case: 

The SVMs have been restricted to the case where a perfect 

mapping, x→f(x, α), can be learned. Most real-world data 

sets don't satisfy this condition, so an extension to the above 

formulation to handle non-separable data is done by creating 

an objective function that trades of misclassifications against 

minimizing ||w||2. Misclassifications are considered by 

adding a "slack" variable ζ ≥ 0 for each training example, 

and require that:, 

 

.yforbxw

yfor w.xi - b 

ii

i

1.

,1 -1  

 
 

The sum of misclassification is minimized errors as well as 

minimizing ||w||2,  ,c(||w||
I

2

i  where c is a 

regularization parameter used to control the relation between 

the slack variables and ||w||2,  k is an integer with typical 

values of 1 or 2. This minimization problem is also convex 

as in the linearly separable case. If we choose k to be 1, it 

has the advantage that ζi's and their Lagrange multipliers 

disappear from the dual Lagrangian problem. 

This objective function of the dual formulation becomes: 
N

i

N

ji

jijijiiD xxyyL
1 ,2

1
emaximiz

 (19)

 

subject to the constraints, 

 

     (20) 

When this minimization problem is optimized then: 

),(
2

1

,
1

xxwb

xyw
N

i

iii

 

Where x+ is the positive example with shortest perpendicular 

distance from the decision boundary, and x- is the closest 

negative example.  
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The difference between the separable and non-separable is 

the added constraint in equation (20), now αi’s have an 

upper bound of c.  

 

The support vectors in this solution are not only the training 

examples that lie on the hyperplane boundary but also the 

training examples that either falls between the two 

hyperplanesH+ and H- or falls on the wrong side of the 

decision surface.                          

Multi-Class Support Vector Machines: 

The multi-class problem is defined as the classification 

problem that has many classes. While SVMs are  binary 

classifiers, i.e. they can classify two classes, we need some 

techniques to extend these classifiers to handle multiple 

classes. The goal of such a technique is to map the 

generalization abilities of the binary classifiers to the multi-

class domain. Multi-class SVMs are usually implemented by 

combining several two class SVMs. In literature, numerous 

schemes have been proposed to solve this problem, popular 

methods for doing this are: one-versus-all method using 

Winner-Takes-All strategy (WTA SVMs), one-versus-one 

method implemented by Max-Wins Voting (MWV SVMs), 

DAG SVMs and error-correcting codes[25]. Hsu and Lin 

[26] compared these methods on a number of data sets and 

found that MWV SVMs and WTA SVMs give similar 

generalization performance. Hastie and Tibshirani[27] 

proposed a good general strategy called pairwise 

couplingfor combining posterior probabilities provided by 

individual binary classifiers in order to do multi-class 

classification and extended it in [28] for speeding up multi-

class. Since SVMs do not naturally give out posterior 

probabilities, they suggested a particular way of generating 

these probabilities from the binary SVMs outputs and then 

used these probabilities together with pairwise coupling to 

do multi-class classification.  

 

Here, we use a multi-class SVM classifier based on one 

versus one algorithm (the voting strategy) [26, 27], and use 

the Support Vector Machine toolbox for MATLAB. The 

classifier is designed to read two input data files, the training 

data and the test data. 

KERNEL FUNCTIONSL 

Kernel functions are used to non-linearly map the input data 

to a high-dimensional space (feature space). The new 

mapping is then linearly separable [29,30]. The idea of the 

kernel function is to enable operations to be performed in 

the input space rather than the potentially high dimension 

feature space. Hence the inner product does  not  need  to  be  

evaluated  in  the  feature  space. The mapping is achieved  

by replacement  of  the  inner  product  (x. y)→Φ(x).Φ(y)  

this  mapping  is defined  by  the  kernel,                 

 

         K(x, y) = Φ(x).Φ(y).   

 

In order for thedata tobe linearly separable a suitable kernel 

is chosen. There are many different types of kernels, some 

of these are listed below.                                                                                            

Consider the linear kernel that just computes the dot product 

of two vectors, )cos(),( uzxzxzxK , where u 

is the angle between x and z. 

 

Hence, if the two vectors are orthogonal, their dot product is 

0, If they lie in the same direction, their dot product is 

maximal. By analogy, people tend to think of kernels as 

similarity functions between input vectors. Not all functions 

can be used as kernels; feasible kernels must satisfy the 

following conditions [31], 

a. The kernel function must be symmetric. 

b. It must satisfy Mercer's theorem [32]. 

Here are some of the most popular kernels. 

Polynomial function: 

A polynomial mapping is a popular method for non-linear 

modeling. 

.),(),( dxxxxK
 

.)1,(),( dxxxxK
 

Gaussian radial basis function: 

This function has received significant attention, most 

commonly with a Gaussian of the form, 

K( x , x` )= exp( (-|| x-x`||2) /(2σ2) ). 

Exponential radial basis function: 

A Radial Basis function of the form, 

K( x , x`)= exp( (-|| x - x`||) / (2σ)), 

produces a piecewise linear solution which can be attractive 

when discontinuities are acceptable. 

THE PROPOSED KERNEL FUNCTION 

As we mentioned, kernel functions were proposed to handle 

non-separable data. They are used to map the input data to a 

high-dimensional space (feature space). So, for a given non-

separable data in order to be linearly separable asuitable 

kernel is chosen. Classical kernels such as Gauss and 

Polynomial functions, each one performs better with some 

data sets.  Here, we try to formulate a new kernel that could 

obtain good performance with all data sets and specially 

high dimension ones (data sets with many attributes).            

 

The following Polynomial function performs good with 

nearly all data sets, except high dimension ones,                                                   

,1 21

d), xx (POLY  

Where d is the polynomial degree. The same performance is 

obtained with Gauss Radial Basis function of the following 

form,                      

) / (PD),)-x(-sum(x RBF ii

2

21exp  

Where p is the kernel parameter, D the dimension of the 

input vector (number of attributes).                                                                           

 

We propose a new form of kernel functions which is more 

complex that could handle high dimension data sets, we 

denote it as PRBF. This kernel combines both Gauss and 

Polynomial functions, so it performs better with nearly all 

data sets,                                        

.exp1 d2

21 ) / (PD)))-x(-sum(x (PRBF ii  
The performance of this kernel is shown later by the 

experimental results.    

 

The proposed kernel function (PRBF) has large convex than 

the classical Polynomial and Gaussian functions. In addition 
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this function is decreasing when x decreases and it is 

continuous.  If we calculate the limit of (PRBF/RBF) we 

will get, 

,
1

1
1

lim

1

lim

hence,

,RBF                and1PRBF

then,

,                andT  let

2121 ,,

2

21

d

T

T

xxT

d
T

xx

T
d

T

ii

e

e

V

e

V

e

V

e

V

e

PDVxx

iiii

Therefore, the proposed function converges faster than the 

Gauss function. We normalized the data sets to be within the 

interval [-1,1], because the Polynomial function will diverge 

in large intervals, and the proposed function has faster 

convergence within this interval. The following Fig. (2), 

Fig. (3) and Fig. (4) show the shape of Polynomial (POLY), 

Gauss (RBF) and the proposed (PRBF) kernels, 

respectively, within the interval [-1,1] and with two-

dimension vectors x1,x2. 
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.Figure. (2): The Polynomial kernel                                 
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Figure. (3): The Gauss kernel 
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Figure.(4): The proposed kernel 

EXPERIMENTAL RESULTS 

Data Sets: 

In order to evaluate the performance of the proposed kernel 

with SVMs, we carried out some experiments with different 

data sets. Table (1) shows the description of these data sets 

(see Appendix) and for more details can be seen in [33,34]. 

We can divide these data sets according to the training set 

size into two types, large data sets (1→4) and small ones 

(5→8). Fig.( ) shows some examples for the input data and 

the output. 

Table (1): Data Sets 

Test Training Attributes Classes Data set N0. 

5000 15000 16 26 Letter 1 

3448 7435 16 9 Pendigits 2 

300 4700 21 3 Waveform  

   6 Satimage  

500 2686   DNA  

500 1810 18 7 Segment 6 

560 1763 16 3 ABE 7 

31 70 17 7 Zoo 8 

 

x1                        x2           …         xmy 

X1     …     -        1 

X2    …     -      2 

X3 04 5 2 3    1    …     1 449           3 

 

Xn   ...                    …                    …      …                         yc 

 

 

Figure. (5): Example for input/output to the classifier. 

Comparative results: 

We design a multi-class SVM classifier based on one versus 

one algorithm (the voting strategy), and we use the Support 

Vector Machine toolbox for MATLAB. We design the 

classifier to read two input data files (as shown in Fig.(5), 

the training data and the test data. Each file is organized as 
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records, each of which consists of a vector of attributes 

X=[x1, x2, ..., xM] followed by the target Y Є {y1, y2, ..., yC} 

where M is the number of attributes and C is the number of 

classes. It constructs C(C-1)/2 binary classifiers, and uses 

the training data to find the optimum separating hyperplane. 

Finally, we use the test data to compute the accuracy of our 

classifier from the equation,  Acc= ( n / N ) *100, where n is 

the number of correct classified examples and N is the total 

number of the test examples. We compare the results of 

Polynomial, Gauss and the proposed kernels with the 

classifier as in Table (2). 

Table (2): SVMs classification accuracy. 

PRBF(P,d=3) POLY(d=4) RBF(σ =3) Data Set 

93.9 93.9 93.9  

83.67 82.52 82  

99 98.67 95  

96.1   4 

98.8  94.86 5 

99 92.12 97 6 

99.82   7 

90.32 87.09 87.09 8 

Result analysis: 

From Table (2) it is obvious that Gauss Radial Basis function 

with σ =3 accomplishes better accuracy with the small data 

sets (5→8) than the Polynomial function, and the Polynomial 

kernel with d=4  gives better results in the large sets (1→4). 

Whereas our proposed kernel, PRBF, accomplishes the best 

accuracy in nearly all the data sets, and especially in the 

largest number of attributes data set number (5), because the 

proposed function is more complex and combines the 

performance of both its parents, Gauss and Polynomial 

functions. 

 

Table (3) presents the mean accuracy we obtained from all 

kernels; it is obvious that the new proposed kernel obtains 

the best mean accuracy compared to the classical Gauss and 

Polynomial function. Fig. (6) Summarizes the comparison of 

the performance of the SVMs with different kernels (POLY, 

RBF & PRBF), it is clear that the proposed kernel (PRBF) 

achieves the highest accuracy. 

Table (3): SVM mean accuracy. 

Mean accuracy Kernel 

92.85 RBF 

92.53 POLY 

95.08 PRBF 

 

 

Figure.(6): SVM mean accuracy. 

CONCLUSION 

In this paper, SVMs have been improved to solve the 

classification problems by mapping the training data into a 

feature space by the aid of new kernel functions and then 

separating the data using a large margin hyperplane.  

 

We have tested the proposed kernel function with different 

sizes of data sets and different attributes. It is obvious from 

experimental results that RBF gives better accuracy with the 

small data sets than the Polynomial function. However the 

Polynomial kernel gives better results in the large data sets. 

Whereas our proposed kernel PRBF obtains the best 

accuracy in nearly all the data sets and especially in the 

largest number of attributes data set, because the proposed 

function combines the performance of both its parents, 

Gauss and Polynomial functions. 

 

Experimental results have been reported to illustrate the 

validity and effectiveness of the proposed kernel. The 

experimental results show that the proposed kernel function 

obtains the best accuracy in nearly all the data sets 

especially in the largest number of attributes data set. Thus 

the proposed kernel functions can be considered as a good 

alternative to the Gaussian and polynomial kernel functions 

for some specific datasets. 
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