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INTRODUCTION
The Standard Model of particles, experimentally validated by the Higgs boson detection, represents the crowning of 

quantum theory. It is admitted that the whole universe is composed of fundamental particles, at one and the same time for 
matter and for three out of the four different interactions. They all manifest experimentally either as waves or as particles, 
justifying that they leans upon a quantum mechanical probabilistic framework. Since it has not still incorporated gravitation, 
the Standard Model describes only an incomplete aspect of the universe.

While Einstein’s contribution for relativity is admitted as essential, it appears as less important for quantum mechanics, 
even though his Nobel Prize was awarded for his discovery of the first quantum particle in photoelectric effect. More 
especially as his resolute opposition to the probabilistic framework is well known. For him, the probabilistic experimental 
behavior of quantum particles, like electrons, proves that the quantum mechanics description is incomplete. The statistical 
character of the present theory would then have to be a necessary consequence of the incompleteness of the description 
of the systems in quantum mechanics.

Until now, gravitation has resisted to its theoretical quantification. It remains well described by general relativity, 
based upon a continuous field in a classical framework, [1-5] widely confirmed by numerous experiments, by its theoretical 
consequences and practical applications. The graviton, as quantum particle mediating gravitation interaction, has not yet 
been experimentally detected and validated [6,7]. On another hand, quantum field theories of gravity generally break down 
theoretically before reaching the Planck scale, which determines the limit between the wave and particle behavior of 
quantum particles [8]. We may conclude that the discrepancy between quantum mechanics and general relativity leans on 
the wave particle duality, together with the classical deterministic or quantum probabilistic approaches.

In order to circumvent these difficulties, the program proposed by Einstein offered an alternating approach founded 
upon a general energy field.

We have two realities: matter and field. …We cannot build physics on the basis of the matter concept alone. But the 
division into matter and field is, after the recognition of the equivalence of mass and energy, something artificial and not 
clearly defined. Could we not reject the concept of matter and build a pure field physics? We could regard matter as the 
regions in space where the field is extremely strong. In this way a new philosophical background could be created… Only 
field-energy would be left, and the particle would be merely an area of special density of field-energy. In that case one 
could hope to deduce the concept of the mass-point together with the equations of the motion of the particles from the 
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 field equations - the disturbing dualism would have been removed… One would be compelled to demand that the particles 
themselves would everywhere be describable as singularity free solutions of the completed field-equations… One could 
believe that it would be possible to find a new and secure foundation for all physics upon the path which had been so 
successfully begun by Faraday and Maxwell.

From an experimental point of view, the Einstein’s Program has been validated by the International Legal Metrology 
Organization when it admitted, in one hand, that the light velocity in vacuum was a primary, fundamental constant in 
physics, with its numerical value strictly fixed, and in other hand, when it choose one particular period an electromagnetic 
wave frequency as standard for measures of time.

As shown in different articles, the Einstein’s Program yields a consistent system for universe description, beside 
the Standard Model [8-10]. It enlarges our approach, comparably to using both eyes for tridimensional vision, or both ears 
for stereophonic audition. It is founded upon a scalar field propagating at speed of light c. Matter properties derive from 
standing waves, while electromagnetic interaction derives from adiabatic variations of frequencies. In the geometrical 
optics approximation, when very high frequencies are experimentally undetectable, the oscillations are hidden. This holds 
at one and the same time in classical relativistic and quantum frameworks, yielding their descriptions being incomplete.

In this article we propose to show how the Einstein’s program offers a means to remedy this problem, It leads to a 
space-like Helmoltz equation available to describe particle extension, especially in quantum theory, since the Standard 
Model is basically founded upon particles, in which the behaviour of massive particles is described only by time-like 
fundamental equations: of Dirac for fermions and of Klein-Gordon for bosons, or by their Lagrangians in variational 
equations. Then, particles can be indifferently extended or point-like. In accordance with experiment, they are admitted 
as point-like. This is necessarily a physical approximation, since their mass-energy density cannot be infinite. The Dirac’s 
distribution δ(r0), which offers a means to circumvent this difficulty in order to handle a particle as a singularity within a 
continuous field, derives itself from a space-like Helmoltz equation.

THE EINSTEIN’S PROGRAM
We restrict to summarize some equations deduced from Einstein’s program, in order to show how they are related to 

main equations of quantum mechanics, otherwise widely documented [11].

Kinematical Properties of Standing Fields

From the d'Alembertian’s equation describing a scalar field ε propagating at light velocity c

ε=∆ε-(1/c2)(∂2ε/∂t2)=0,   ∂µ∂µ ε=0                  (1)

Derive two kinds of elementary harmonic solutions with constant frequency ω0, with different kinematical properties. 
The progressive waves, retarded cos(0t0-k0x0) or advanced cos(ω0t0+k0x0), are in motion with light velocity c=ω0/k0. The 
standing waves ε0(x0,t0)=u0(k0x0)ψ0(ω0t0)=cos(ω0t0)cos(k0x0), where space and time variables are separated, oscillate 
locally. They allow to define a system of coordinates at rest (x0,t0).

They may be considered as resulting from superposition of progressive waves.

cos(ω0t0+ k0x0)+ cos(ω0t0 - k0x0)=2cos(ω0t0)cos(k0x0)                     (2)

When, in a system of reference (x,t), the frequencies of opposite progressive waves are different.

cos(ω1t-k1x)+ cos(ω2t + k2x)=2 cos(ωt-βkx)cos(kx-βωt)                         (3)

Where ω=(ω1+ω2)/2=kc, and β=(ω1-ω2/ω1+ω2). By identification with eqn. (2), they form a standing wave in motion with 
a speed v=βc=(ω1-ω2/ω1+ω2)c with frequency ω=(ω1+ω2)/2=kc, and ω0=√ω1ω2 at rest, defining the Lorentz transformation 
between the systems of reference(x0,t0) and (x,t), and leading to its whole consequences.

It can be shown that the Lorentz transformation, fundamental in special relativity, is specific of c-field standing 
waves, particularly through the coefficient √(1-β2), which becomes (1 ± β) for progressive waves. The four-dimensional 
Minkowski’s formalism expresses invariance properties of standing waves at rest, in which the variables of space and time 
are separated, when they move uniformly with a speed v=βc<c since β is a relative difference [12]. Confirmation is found 
into invariant quantities obtained from four-quantities, such as coordinates xµx

µ=x0
2 or xµx

µ=c2t0
2, and functions uµu

µ=u2(x0) 
or ψµψ

µ=ψ2(t0). Their space-like or time-like characters are absolute, depending of their refering quantities defined in the 
rest system.

Since the functions u0(k0x0) and ψ0(ω0t0) are independent, the frequency ω0 is necessarily constant in:

( ) ( )( )2 2 2 2 2 2
0 0 0 0 0 0 0 01/ 1/ / /u u c t k cψ ψ ω∆ = ∂ ∂ = − = −                  (4)

The function of space u0(k0x0), obeying the Helmholtz’s equation at rest ∆0u0+k02u0=0, which becomes ∆u-(1/c2)
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(∂2u/∂t2)+k02u=0 in motion. It describes geometric properties of standing waves. It verifies Bessel spherical functions 
solutions, and particularly its simplest elementary solution, with spherical symmetry, finite at of the references system,

u0(k0r0)=(sink0r0)/(k0r0).                       (5)

Dirac’s distribution u0(k0r0) → δ(r0) is favored when frequency is tending towards infinity ω0=k0c→∝. In Cartesian sys-
tem of reference, the central extremum of an extended standing wave determines its standing position x0=r0=0.

∇0u0(x0)=0.                        (6)

In order to point out the constant frequency of a standing field, we express it as:

ε(ωt,kx)=u(kx,βωt)exp i(ωt-βkx)    ϕ=t-βkx                  (7)

The equations of special and general relativity are based on mass-points, as singularities, moving on trajectories, 
deriving then directly from geometrical optics approximation. Then, the kinematic properties of standing waves for a scalar 
field propagating at light velocity c, with constant frequency ω and velocity v, reduce formally to kinematical properties of 
isolated point-like matter.

Dynamical Properties of Standing Fields

In order to limit the field ε(ωt,kx) with respect to space and time, which cannot be infinite, one imposes usually 
boundary conditions exerted by matter [13]. It fixes the wavelength λ through k=2π/λ fixing the frequency ω or as a detector 
annealing it which is not felicitous from relativistic consistency since space and time operate separately .

It behaves either as a source:

Two progressive waves with different frequencies ω1,ω2 propagating in the same direction at light velocity, give 
rise to a wave packet propagating in the same direction at light velocity. Its main wave with frequency ω=(ω1+ω2)/2, is 
modulated by a wave with frequency βω=(ω1-ω2)/2=∆ω/2=∆kc/2, wavelength Λ=2π/βk, and period T=Λ/c. Since β<1, 
the modulation wave acts as an envelope with space and time extensions ∆x=Λ/2, ∆t=T/2, yielding well known Fourier 
relations ∆x.∆k=2π and ∆t.∆ω=2π.

The boundary conditions for the scalar field ε are represented by the Fourier relations which should supplement 
d'Alembertian’s eqn. (1) to emphasize that field cannot extend to infinity with respect to space and time. When the 
difference of frequencies βω=(ω1-ω2)/2=∆ω/2<< ω is very small, it can be considered as a perturbation with respect to 
the main frequency, βω=δω.

Monochromatic wave by a frequency Ω(x,t) can be characterized around a constant ω.

Ω(x,t)=K(x,t)c=ω ± δΩ(x,t)   δΩ(x,t)<< ω  ω=constant.                (8)

This is also the definition of an adiabatic variation for the frequency. Consequently, all following properties of almost 
fields arise inside such a process [14]. The necessarily constant frequency of a standing wave must be considered, not 
as a given data, but rather as the mean value, all over the field, of different varying frequencies Ω(x,t). The perturbation 
frequencies δΩ(x,t) of modulation waves propagating at light velocity, behave as interactions between main waves, which 
yield the mean frequency ω to remains practically constant all over the space-time.

Such a behavior authorizes mathematically to derive almost fields properties from monochromatic ones, through the 
variation of constants method (Duhamel principle). Instead of eqn. (8), we express it, as:

 ε(x,t)=U(x,t)exp iΦ(x,t)  Φ(x,t)=Ω(x,t)t - K(x,t).x +2nπ,                  (9)

Where products of second order δΩdt≈0 and δK.dx≈0, defined modulo 2π, are neglected at first order of approximation. 
This is equivalent to incorporate directly the boundary conditions defined by Fourier relations, in almost monochromatic 
solutions,

 dΦ(x,t)=Ω(x,t)dt - K(x,t).dx ≈ ωdt-k.dx.   U(x,t)=u(x,t) ± δU(x,t)                (10)

 Following eqn. (1), the field ε(x,t) defined by eqn. (9) verifies,

 ∂µ∂µU-U∂µΦ∂µ Φ=0  or ∂2U/c2∂t2-∇2U-U[(∂Φ/c∂t)2-(∇Φ)2]=0                     (11)

 ∂µ (U2∂µ Φ)=0 or ∂(U2Ω)/c2∂t+ ∇.(U2βK)=0                 (12)

These relations apply to progressive waves for β=±1, to standing waves at rest for β=0 and in motion for β<1, to 
monochromatic waves for ω and k constant, to almost monochromatic waves for varying Ω(x,t) et K(x,t). They lead to 
dynamical properties for energy-momentum conservation, and to least action principles, for standing fields and almost 
standing fields.

For a standing wave with constant frequencyω, either at rest or in motion, (12) reduces to:



13RRJPAP | Volume 5 | Issue 2 | April - June, 2017

Research & Reviews: Journal of Pure and Applied Physics e-ISSN:2320-2459
p-ISSN:2347-2316

 ∂u0
2/t0=0.   ∂u2/∂t +∇.u2v=0 or ∂µw

µ=0                            (13)

Where wµ=(u2,u2v/c)=u0(x0)
2(1,v/c)/(1-β2) is a four-dimensional vector. This continuity equation for u2 is formally 

identical with Newton’s equation continuity for matter-momentum density:

 ∂µ/∂t +∇.µv=0.  With  u2=µc2.                (14)

By transposition, we can then admit that u2 represents the energy density of the standing field.

Centre of amplitude is taken into consideration to determine the kinematical behavior of a standing field, with position 
x0 defined by eqn. (6)

The position x0 of the energy density is such that,

 ∇0u02=0  ∇u2 +(∂u2v/c2∂t)=0   ∇×v=0 or                       πµ=∂µwν-∂νwµ=0,                   (15)

The standing wave energy density u2 is spread in space [15]. It corresponds then to a potential energy density. 
F=-∇u2=-∇wP=is a density force, and ∂u2v/c2∂t a density momentum, and πν is a four-dimensional force density. 

In eqn. (15), the vanishing four-dimensional force density tensor πµν of a standing wave, asserts its space stability 
remains in motion, and that the energy-momentum density four-vector wµ is four-parallel, or directed along the motion 
velocity v.

Eqn. (15) is mathematically equivalent to the least action relation, in which energy density wµ is a four-dimension 
gradient ∂µa,

 δ∫da=0 δ∫∂µadxµ=0  with  wµ=∂µa.                (16)

When we transpose the mass density µ=u2/c2, and we take into account the identities ∇P2=2(P.∇)P+2P × (∇ × P) 
and dP/dt=∂P/∂t+(v.∇)P for c and v constant, after integration with respect to space, we get the equation for matter:

dp/dt=-∇mc2+ {∇(mv)2}/2m   dp/dt=∇Lm=-∇m0c2√(1-β2).               (17)

We retrieve the relativistic Lagrangian of mechanics for free matter Lm=-m0c2√(1-β2).

Electromagnetic Interaction

The continuity equation of an almost standing wave, expresses the total energy density, W=U2Ω=w+δW, sum of the 
mean standing wave w and of the interactions δW. Relation eqn. (15) becomes:

Πµν=µWν-∂νWµ=0  or  Πµν=πµν + δΠµν=0               (18)

The total density force Πµν for an almost standing wave vanishes. This asserts its stability when it is in motion; Its total 
energy-momentum density four-vector Wµ is directed along the motion velocity v.

However it behaves as a system composed of two sub-systems, the mean standing field with high frequency Ω(x,t) ≈ 
ω, and the interaction field with lower frequency δΩ(x,t), each one exerting an equal and opposite non vanishing density 
force πµν=-δΠµν against the other [16].

By difference with the null four-dimensional density force πµν for a standing wave, only the total density force Πµν for 
an almost standing wave vanishes. In the first case, this asserts the space stability of an isolated moving standing wave, 
while in the second case, the space stability concerns the whole almost standing wave. It behaves as a system composed 
of two sub-systems, the mean standing field with high frequency Ω(x,t) ≈ ω, and the interaction field with lower frequency 
δΩ(x,t), each one exerting an equal and opposite non vanishing density force πµν=-δΠµν against the other. The mean 
energy-momentum density tensor πµν, no longer vanishes in eqn. (18), as previously in eqn. (15). This comes from the 
mean energy-momentum density four-vector wµ, which is no longer parallel, because of the opposite density force δµν 
exerted by the interaction.

It appears that an almost standing field behaves as a whole system in motion which can be split in two sub-systems, 
the mean standing field and the interaction field. Both are moving with velocity v, while exerting each other opposite 
forces in different directions, including perpendicularly to the velocity v. The perturbation field, arising from local frequency 
variations δΩ(x,t), introduces orthogonal components in interaction density force and momentum.

After generalizing relations eqn. (17) by constants variation method for mass M(x,t)=m ± δM(x,t), we get,

 ∇Mc2 +∂P/∂t=0  ∇×P=0  dP/dt=-∇Mc2+(∇P2)/2M.              (19)

The density force δΠµν≠0 exerted by the interaction is formally identical with the electromagnetic tensor Fµν=∂µAν-
∂A≠0. We can set them in correspondence δΠµν=eFµ, through a constant invariant charge e, with δM(x,t)=eV(x,t)/c2 and 
δP(x,t)=eA(x,t)/c. The double sign for mass variation corresponds to the two signs for electric charges, or to emission 
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and absorption of electromagnetic energy by matter. We retrieve the minimum coupling of classical electrodynamics, 
Pµ(x,t)=pµ+eAµ(x,t)/c, with M(x,t)c2=mc2+eV(x,t), and P(x,t)=p+eA(x,t)/c, where electromagnetic energy exchanged with 
a particle is very small compared to its own energy eAµ(x,t)/c=δPµ(x,t) << pµ. Electromagnetic interaction is then directly 
linked to frequencies variations of the field ε.

Relation eqn. (19) yields the relativistic Newton’s equation for charged matter with the Lorentz force.

dP/dt=-∇m0c2√(1-β2) + e(E+v×H/c).                   (20)

Adiabatic Invariant

The relation eqn. (11) leads to first order approximation for an almost standing wave,

[∂U2/∂t+∇.U2v]/U2+δ[∂Ω/∂t+∇.Ωv]/Ω=0  or  (∂νW
ν)/W+δ(∂νΩ

ν)/Ω=0               (21)

with energy density W=w ± δW=µc2=µc2 ± δµc2, four-dimensional energy density Wν=wν ± δWν, frequency Ω=ω ± δΩ, 
and four-dimensional frequency Ων=(Ω,Ωv/c), leading to,

Wν=IΩν  and  δWν=IδΩ                               (22)

When we take into account the double sign in frequency variation δΩ. The constant I is an adiabatic invariant density [17].

Integrations with respect to space of µ and I densities, lead to relations between four-energy and four-frequency 
through the adiabatic invariant H, formally identical with the Planck’s constant h.

Eν=(mc2,pc)=m0c
2uν=Hων=H(ω,kc)=Hω0u

ν                 (23)

For the standing wave corresponding to matter, adiabatic variations of its frequency Ω lead to electromagnetic 
interaction constituted by progressive waves. The energy of electromagnetic interaction derives from mass variation 
dE=c2dm. It leans directly upon the wave property of matter: its energy dE=hdν=c2dm derives from variations of matter 
energy E=hν=mc2.

APPLICATIONS TO QUANTUM THEORY
Relativistic Foundations

The Einstein’s program, based upon a basic scalar field propagating at speed of light, tends toward a theoretical 
economy by deriving mathematically, and independently of any interpretations, many different fundamental principles of 
Quantum Theory.

The fundamental role of the speed of light in vacuum appeared already in the beginning of Quantum Mechanics, 
when one noticed that, beyond its agreement with experiment, the non-relativist Schrödinger’s equation, with energy 
mv2/2, derived as an approximation from the relativist Klein-Gordon’s equation with energy mc2. Nevertheless it remained 
as foundation to elaborate the theoretical and experimental Copenhagen consistent interpretation: description of a single 
quantum particle in motion, superposition principle, wave-particle duality behavior with uncertainty principle, Dirac’s 
relativist equation, the statute of the observer associated with the admitted collapse of the wave function…

Nowadays, the more general relativist Quantum Field Theory has introduced some distance with Quantum Mechanics 
description. For instance, a single quantum particle is no longer considered alone. It is not necessarily permanent 
experimentally, since it can be created or annihilated. Its experimental point-like behavior is not of prime importance, 
since it derives as a kind of resonance from a continuous field expressed by partial differential equations. Its mass is not 
a time-independent constant but varies according to the Feynman process. Its interactions verify gauge theories, with a 
Lagrangian invariant under continuous local transformations.

In addition to the generating time-like ψ function of quantum theory, the Einstein’s program points out the generating 
role of the space-like amplitude function u. It yields to define the position of a particle as a dynamical variable eqn. (6), 
either at rest x0 or in x motion with x0→x-vt, to express the continuity eqn. (15) with the energy-momentum conservation 
laws, and to get the least action law eqn. (16) with determining the Lagrangian eqn. (17). This is not too surprising since the 
amplitude function, u0 at rest and u in motion with u0 (x0)→u(x-vt), remains always closely linked to the particle displacement. 
These properties apply both in classical and in quantum domains.

Since the Einstein’s program leans on a generating basic c-scalar field, which provides a physical general framework, 
it draws our attention to some main problems of Quantum Theory such as the point-like behavior of particles, and the 
problem of iincompleteness of quantum theory with hidden variables, which should ask to be deepened little further.

Size of Particles

It is admitted that the Standard Model represents the crowning of the Quantum theory. Consequently, the different 
fundamental component particles, either of matter or of interactions, are usually gathered according their spin, as bosons 
or fermions, which are a typical quantum property.
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They are considered as point-like. From a physical point of view, it is obvious that a particle cannot be strictly 
point-like, since its energy density would be infinite. Since their size is not of prime importance, it does not figure usually 
beside their mass and electric charge. We may conclude that the description of particles by Quantum theory is not complete.

The Einstein program incites us to differentiate the fundamental particles by their relativist properties of motion, 
according they have a rest mass or not. The distinction is exclusive since particles without mass, like photons and gluons 
for interactions, move always at speed of light c: it can never be different. On the contrary, particles with mass, like fermions 
for matter, have a motion velocity v necessarily inferior to light speed c, following the generic relation v=βc=(ω1-ω2/ω1+ω2)c, 
in which the frequencies ω1,ω2 are hidden in the geometrical optics approximation.

As a consequence of the Einstein’s program eqn. (5), a space-like bunched function u0(k0r0), with Compton’s 
wavelength λ0=h/m0c=hk0/2π characterizes a material quantum particle. It tends towards a Dirac’s distribution 
u0(k0r0) → δ(r0), without the Planck’s constant, when the very high frequency becomes infinite ω0=k0 →∝, in geometrical 
optics approximation. The standing wave of the field behaves then as a free classical material particle isolated in space. 
Such an approach, which links the point-like aspect of particles to experimental interacting or measuring conditions, 
appears as more physical than the difficult and controversial collapse of the wave function ψ of Quantum Mechanics, since 
its time-like character is not adapted to describe any space repartition.

In quantum domain, in absence of space-like function describing the extension of a quantum particle, its point-like 
character is implicitly admitted because of the Planck’s constant in the Einstein’s relation E=hν for the photon, and in the 
de Broglie’s relation E=hν=mc2 for matter.

A physical particle cannot be strictly point-like, since its energy density would be infinite. In quantum mechanics, where 
experimental behaviour is privileged, like in quantum mechanical Young double-slit, energy repartition is approximated by 
splitting it in two parts, instead of being considered as extended in space. The whole energy is concentrated in a mass-point, 
while the neglecting part of energy remains extended all around space-time. It behaves then as information which fixes 
implicitly interactions with space-time boundaries, according to eqns. (5) and (6) approximations [14-16].

For instance, such a split is clearly described by the Dirac’s distribution δ(x0). By integration all over space, mass 
is totally concentrated at x0 coordinate. As δ(x)=0 for x0≠x0, no mass-energy remains elsewhere. Nevertheless, since 
centuries, its hidden informative action had intrigued physicists about the least action principle controlling a mass-point 
behavior, even evoking teleological explanations: how the particle was aware of the far boundaries in order to adjust and 
minimize its path?

Incompleteness of Quantum Theory

Einstein considered the probabilistic experimental behaviour of quantum particles, like electrons, as a proof of the 
incomplete description by quantum mechanics. The statistical character of the present theory would then have to be a 
necessary consequence of the incompleteness of the description of the systems in quantum mechanics.

However, such incompleteness does not rest in the equations of quantum mechanics themselves. From a mathematical 
point of view they do not need to be modified or supplemented. They are mathematically complete inside the consistent 
quantum framework. For instance, in Bohm's hidden variable theory, the nonlocal quantum potential Q=-(h2∇2a)/8π2a, 
which constitutes an implicate hidden order in the guidance of a particle, derives from the non-relativist Schrödinger 
equation ih∂ψ/2π∂t=-(h2∇2ψ)/82m, inside the solution ψ=a.expi2πS/h.

The equations deduced from Einstein’s program show particularly how, and why, quantum mechanics, and more 
generally quantum theory formalisms, are physically incomplete [15-17]. They do not involve the space-like amplitude function 
u(r0), which describes a particle extension in its rest system, yielding many fundamental laws. It supplements the consistent 
quantum framework, based upon time-like equations: of Klein-Gordon for bosons, (from which derives the non-relativist 
Schrödinger equation), of Dirac for fermions, or of introduced Lagrangian densities for massive particles.

As well known, the distinction between time-like and space-like characters is absolute.

CONCLUSION
Consequently, the quantum framework of the Standard Model of particles, which is theoretically consistent and com-

plete, remains unaffected by the Einstein’s program. However, the introduction of an extraneous space-like function for the 
elementary particles description emphasizes that their admitted size, with zero dimension, is physically only an approxima-
tion. This points out a problem which, according to Einstein, merits probably to be more investigated: Above all, however, 
the reader should be convinced that I fully recognize the very important progress which the statistical quantum theory has 
brought in physics.... this theory is until now the only one which unites the corpuscular and undulatory dual character of 
matter in a logically satisfactory fashion; and the (testable) relations, which are contained in it, are, within the natural 
limits fixed by the indeterminacy-relation, complete. The formal relations which are given in this theory—i,e, its entire 
mathematical formalism—will probably have to be maintained, in the form of logical inferences, in every useful future 
theory.
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