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Abstract: There are several symmetric and asymmetric data encryption algorithms. IDEA (International Data Encryption Algorithm) is one of 

the strongest secret-key block ciphers. In this article, I try to represent the existing IDEA algorithm in a different way. In the following 

illustration, we would see how the encryption can be expressed in a simpler way. 
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INTRODUCTION 

International Data Encryption algorithm (IDEA) is a block 

cipher algorithm designed by Xuejia Lai and James L. 

Massey of ETH-Zürich and was first described in 1991.The 

original algorithm went through few modifications and 

finally named as International Data Encryption Algorithm 

(IDEA). The mentioned algorithm works on 64-bit plain text 

and cipher text block (at one time). For encryption, the 64-

bit plain text is divided into four 16 bits sub-blocks. In our 

discussion, we denote these four blocks as P1 (16 bits), P2 

(16 bits), P3 (16 bits) and P4 (16 bits).  Each of these blocks 

goes through 8 ROUNDS and one OUTPUT 

TRANSFORMATION phase. In each of these eight rounds, 

some (arithmetic and logical) operations are performed. 

Throughout the eight ROUNDS, the same sequences of 

operations are repeated. In the last phase, i.e., the OUTPUT 

TRANSFORMATION phase, we perform only arithmetic 

operations. At the beginning of the encryption process, the 

64 bit plain text is divided in four equal size blocks and 

ready for ROUND1 input. The output of ROUND1 is the 

input of ROUND2. Similarly, the output of ROUND2 is the 

input of ROUND3, and so on. Finally, the output of 

ROUND8 is the input for OUTPUT TRANSFORMATION, 

whose output is the resultant 64 bit cipher text (assumed as 

C1 (16bits), C2 (16 bits), C3 (16 bits) and C4 (16 bits)). As 

the IDEA is a symmetric key algorithm, it uses the same key 

for encryption and for decryption. The decryption process is 

the same as the encryption process except that the sub keys 

are derived using a different algorithm [6].  The size of the 

cipher key is 128bits. In the entire encryption process we 

use total 52 keys (ROUND1 to ROUND8 and OUTPUT 

TRANSFORMATION phase); generated from a 128 bit 

cipher key. In each round (ROUND1 to ROUND8) we use 

six sub keys. Each sub-key consists of 16bits. And the 

OUTPUT TRANSFORMATION uses 4 sub-keys. 

DETAILED ANALYSIS IDEA 

As we mentioned before, in the IDEA algorithm, we take 

input text of size 64bits at a time and divide it in evenly; i.e.,  

 

64bit plain text is divided into 4 sub-blocks, each of 16bits 

in size. 

Now, let us look, what are the basic operations needed in the 

entire process. 

Operations needed in the first 8 rounds -  

1. Multiplication modulo 216 +1. 

2. Addition modulo 216. 

3. Bitwise XOR. 

And, operations needed in the OUTPUT 

TRANSFORMATION phase –  

1. Multiplication module 216 +1.     

2. Addition modulo 216. 

All the above mentioned operations are performed on 16 bit 

sub-blocks. For simplicity of expressing the operations, we 

denote, Multiplication modulo 216 +1 by * symbol, and 

Addition modulo 216   by, + symbol. And bitwise XOR will 

be represented by its usual symbol     . 

Now, let us take a look on the key generation for the 

encryption process. Using 25-bit circular left shift operation 

on the original key, we produce other subsequent sub-keys, 

used in different rounds. For instance, among the total no. of 

52 keys- Sub-key K1 is having first 16bits of the original 

key, sub-key K2 is having the next 16 bits, and so on till 

sub-key K6; i.e., for ROUND1, sub-keys K1 to K6 use first 

(16x6=) 96 bits of the original cipher key. 

In ROUND2, sub-key K7 & K8 take the rest of the bits (bits 

97 to 128) of the original cipher key. Then we perform 

circular left shift (by 25bits) operation on the original key. 

As a result the 26th bit of the original key shifted to the first 

position and becomes the first bit (of the new shifted key) 

and the 25th bit of the original key, moves to the last position 

and becomes the 128th bit (after first shift). 

This process continues till ROUND8, and also in the 

OUTPUTPUT TRANSFORMATION phase; i.e., after the 

ROUND8, the key is again shifted left by 25 bits and the 

first 64 bits of the shifted key is taken for use, and used as 

sub-keys K49 to K52 in the OUTPUT 

TRANSFORMATIONMATION phase. So, form the above 

observations, we could write –  
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Table 1.  Sub-Keys & corresponding Bit positions 

Bit Positions Sub-keys 

1-96 ROUND1 (K1 to K6) ;       

ROUND5 (K25 to K30)                      

and OT (K49 to K52)                                                                                    

[Bit position 1-64] 

97-128 & 1-64 (of 

shifted key) 

ROUND2 (K7 to K12) ;         

ROUND6 (K31 to K36) 

65-128 &    1-32 (of 

shifted key) 

ROUND3 (K13 to K18) ;           

ROUND7 (K37 to K42)    

33-128 ROUND4 (K19 to K24) ;             

ROUND8 (K43 to K48) 

[OT: OUTPUT TRANSFORMATION] 

 

Figure 1.  Overview of IDEA algorithm 

ANALYSIS OF IDEA 

Let us assume, in our example, in Fig.1, the four initial 

blocks are P1, P2 P3 and P4. That is, P1, P2, P3 and P4 are 

the input to ROUND1. Assume, the outputs of ROUND1 

are, R1, R2, R3 and R4. Similarly, the output of ROUND2, 

denoted as R5, R6, R7 and R8; and so on. Previously, we 

have seen, that what are the operations taking place in one 

round of IDEA. Now, we analyze the outputs of ROUND1. 

If we have a close look on ROUND1 (or any these 8 

rounds), then we would observe, that, all the operations that 

are taking place in a round, can eventually be expressed  as 

simple equations. The outputs of ROUND1 can be written 

as below –  

R1= P1 * K1   [[{(P2 + K2)    (P4 * K4)} + [{(P1 * K1)    

(P3 + K3)} * K5]] * K6] 

R2= P3 + K3    [[{(P2 + K2)    (P4 * K4)} + [{(P1 * K1)    

(P3 + K3)} * K5]] * K6] 

R3= P2 + K2    [[{(P1 * K1)     (P3 + K3)} *K5] + [[{(P2 + 

K2)    (P4 * K4)} + [{(P1 * K1)    (P3 + K3)} * K5]] * K6]] 

R4= P4 * K4    [[{(P1 * K1)     (P3 + K3)}* K5] + [[{(P2 + 

K2)    (P4 * K4)} + [{(P1 * K1)    (P3 + K3)} * K5]] * K6]] 

The outputs of other subsequent rounds can also be written 

in the same manner. From the above we would notice, to 

calculate R1, R2, R3 and R4, we have to perform a lot of 

operations. But, in each round of IDEA, we are performing 

the same operations again & again and also unnecessarily. 

For instance, to calculate R1, we perform bitwise XOR 

operation with the result of (P1 * K1) and the underlined 

portion (as shown in the equation). Again, to calculate R2 

we perform the same operations again as underlined in R1. 

To calculate R3 and R4, we perform the same (indicated as 

italic+underlined) operations again and again. Apart from 

this, in the calculation of R3 and R4, again we perform the 

same sequence of operations (the entire underlined portions 

of R3 and R4). 

Hence, there is no logic to perform the same set of 

operations again & again for R1, R2, R3 and R4. 

For simplicity we just perform each of the basic operations 

for once, and use its result for other further calculations. The 

basic required operations that are involved in calculating R1, 

R2, R3 and R4, are as follows -  

1. P1 * K1 

2. P4 * K4 

3. P2 + K2 

4. P3 + K3 

Other operations are based on these basic operations.  

Next, we represent a block diagram of a hardware unit, 

needed to implement IDEA algorithm. To implement it in 

hardware, we need some separate hardware components to 

accomplish the individual tasks, and as a whole too.  

 

 

Figure 2: Hardware components required for IDEA 

 

In Fig.2, we would see, that, there is a unit named “Key 

generator”. At the beginning of the encryption process, we 

provide the original (128bits) cipher key to the mentioned 

unit. When necessary, the KEY GENERATOR unit 

produces different sub-keys by performing circular left shift 

operation (by 25bits) on the current key and provides the 

sub-keys to other units (multiplication modulo 216 +1 and 

addition modulo 216 units). The unit named as 

“Multiplication modulo 216 + 1”, is used to perform all the 

multiplication modulo 216+1 operation, when required. The 

same is for unit “Addition modulo 216” and unit “Bitwise 

XOR”. 

Now, we look forward for the parallel implementation of 

IDEA algorithm. In our approach, we have shown, the entire 

encryption process can be performed in several steps and 

performing operations in parallel wherever possible. 

Parallelism in operations can be achieved both in software 

and using hardware. In the computation of R1, R2, R3 and 
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R4 the above mentioned operations can be performed in the 

following way, at different time instants -  

Time Unit 1: t1=P1 * K1,   t3=P3 + K3  

(These two operations can be done in parallel by their 

corresponding units.t1 & t3 are used to hold the temporary 

results.) 

Time Unit 2:  t2=P2 + K2;   t4=P4 * K4;   t5=t1    t3 

Time Unit 3: t6=t2    t4;     t7=t5 * K5  

Time Unit 4:  t8=t6 + t7 

Time Unit 5:  t9=t8 * K6  

Time Unit 6:  R1 = t9     t1;    t10=t9+t7 

Time Unit 7:  R2 = t9     t3      

Time Unit 8:  R3 = t10     t2  

Time Unit 9: R4 = t10     t4;      

From the above illustration, it is noticeable, if we want to 

perform the operations of one round in parallel, then it 

would take at least 9 time units. Operations written in single 

time unit can be done in parallel. We could also see, after 

the completion of ROUND1, the partial encrypted input text 

R1 is produced at time unit 6, R2 at time unit 7, R3 at time 

unit 8 and R4 at time unit 9.  

But, for the next round, i.e., for ROUND2, the computation 

R5 would involve the usage R4 (generated from ROUND1). 

So, before we start the computation for ROUND2, we will 

have to wait 9 time units; i.e., until R4 is generated from 

ROUND1. Hence, till ROUND 7, all the partial encrypted 

cipher texts (R1 to R28) are generated, and would take at 

least (7 rounds x 9) = 63 time units. Now, let us look how 

we can improve ROUND 8 & the OUTPUT 

TRASNFORMATION phase. For the following illustration, 

we would assume, sub-keys K49-K52 are available in the 

ROUND 8 also. So, the computation for ROUND 8 and 

OUTPUT TRANSFORMATION can also be accomplished 

as follows -  

Time Unit 64: t1=R25 * K43,   t3=R27 + K45  

Time Unit 65:  t2=R26 + K44;   t4=R28 * K46;   t5=t1    t3 

Time Unit 66: t6=t2    t4;     t7=t5 * K47  

Time Unit 67:  t8=t6 + t7 

Time Unit 68:  t9=t8 * K48  

Time Unit 69:  R29 = t9    t1;    t10=t9+t7 

Time Unit 70:  R30 = t9    t3;     R33 = R29 * K49 

Time Unit 71:  R31 = t10    t2;     R34 = R30 + K50 

Time Unit 72: R32 = t10    t4;    R35 = R31 + K51 

Time Unit 73: R36 = R32 * K52 

Form the above illustration, we can see, if sub-keys K49 to 

K51 are available in the ROUND8, then we will be able to 

perform, the first three operations of OUTPUT 

TRANSFORMATION in ROUND8. Hence, the entire 

process can be made faster. 

So, to complete the IDEA encryption process, the time 

required is 73 time units. 

DISCUSSIONS 

In the above discussion, it is seen, the minimum time taken 

to complete the encryption process of IDEA is 73 time units. 

Here, what is the span of each time unit, it depends on the 

implementation. In software implementation, it would 

depend on, how efficient code is being written to 

accomplish parallelism in the operations. In hardware 

implementation, how fast the encryption process is done, 

depends on the different circuitry available, the hardware 

architecture used to achieve parallelism (since, there are 

many options are available) and also the technology used to 

design and implement the entire hardware unit (Fig. 2). In 

implementation on the XCV300-6, the bit parallel version 

achieved an encryption rate of 1166Mb/sec using an 82MHz 

clock, whereas the bit serial implementation achieved a 

600Mb/sec throughput at a clock rate of 150MHz [2]. The 

bit-parallel implementation achieved a higher throughput 

with lower latency than the bit serial implementation, while 

the bit-serial implementation permits a minimal area fully-

parallel design [2]. In the implementation on XCV1000E-6, 

the total time taken is 1.246μs with maximum clock rate 

105.9MHz, with throughput 6.78Gbps [3]. In his paper, 

Daemen mentioned large classes of weak keys for IDEA. 

These keys are weak in the sense that it takes only a very 

small amount of effort to detect their use. It is possible to 

eliminate the weak key problem by slightly modifying the 

key schedule of IDEA [4]. 

CONCLUSION 

The IDEA (International Data Encryption Algorithm) is a 

strong block-cipher. Though there are many operations 

involved in the entire algorithm, only three different of 

operations are involved (as mentioned above). As the cipher 

key size is 128bits, in that respect IDEA is too strong 

(having taken care for weak keys). 

REFERENCES 

[1] Chang H.S., “International Data Encryption Algorithm” CS-

627-1 Fall, 2004. 

[2] Cheung O.Y.H., Tsoi K.H., Leong P.H.W., and Leong M.P. 

“Tradeoffs in Parallel and Serial Implementations of the 

International Data Encryption Algorithm IDEA”. 

[3] Daemen J., Govaerts R., Vandewalle J., “Weak Keys for 

IDEA”, Springer-Verlag, 1998. 

[4] Hämäläinen A., Tommiska M., and Skyttä J., “Gigabit per 

Second Implementation of the IDEA Cryptographic 

Algorithm”, Springer-Verlag Berlin Heidelberg, 2002. 

[5] Kahate A., “CRYPTOGRAPHY AND NETWORK  

SECURITY”, Tata-McGraw-Hill, 2nd edition, 2008. 

[6] Schneider B., “Applied Cryptography”,  John Wiley & Sons, 

Second ed., 1996. 

 

       
I am Sandipan Basu, M.Sc. (CS).Currently, I am a Guest 

Faculty, Department of Computer Science, Asutosh College, 

Kolkata, West Bengal, INDIA. 

 

 

 

 


