
Volume 2, No. 7, July 2011

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 116

INTERNATIONAL DATA ENCRYPTION ALGORITHM (IDEA) – A TYPICAL

ILLUSTRATION

Sandipan Basu
Department of Computer Science, Asutosh College, Calcutta University,

Kolkata-700026, West Bengal, INDIA

mail.sandipan@gmail.com

Abstract: There are several symmetric and asymmetric data encryption algorithms. IDEA (International Data Encryption Algorithm) is one of

the strongest secret-key block ciphers. In this article, I try to represent the existing IDEA algorithm in a different way. In the following

illustration, we would see how the encryption can be expressed in a simpler way.

Keywords: Round, Output Transformation, Sub-Key, Symmetric Key Algorithm.

INTRODUCTION

International Data Encryption algorithm (IDEA) is a block

cipher algorithm designed by Xuejia Lai and James L.

Massey of ETH-Zürich and was first described in 1991.The

original algorithm went through few modifications and

finally named as International Data Encryption Algorithm

(IDEA). The mentioned algorithm works on 64-bit plain text

and cipher text block (at one time). For encryption, the 64-

bit plain text is divided into four 16 bits sub-blocks. In our

discussion, we denote these four blocks as P1 (16 bits), P2

(16 bits), P3 (16 bits) and P4 (16 bits). Each of these blocks

goes through 8 ROUNDS and one OUTPUT

TRANSFORMATION phase. In each of these eight rounds,

some (arithmetic and logical) operations are performed.

Throughout the eight ROUNDS, the same sequences of

operations are repeated. In the last phase, i.e., the OUTPUT

TRANSFORMATION phase, we perform only arithmetic

operations. At the beginning of the encryption process, the

64 bit plain text is divided in four equal size blocks and

ready for ROUND1 input. The output of ROUND1 is the

input of ROUND2. Similarly, the output of ROUND2 is the

input of ROUND3, and so on. Finally, the output of

ROUND8 is the input for OUTPUT TRANSFORMATION,

whose output is the resultant 64 bit cipher text (assumed as

C1 (16bits), C2 (16 bits), C3 (16 bits) and C4 (16 bits)). As

the IDEA is a symmetric key algorithm, it uses the same key

for encryption and for decryption. The decryption process is

the same as the encryption process except that the sub keys

are derived using a different algorithm [6]. The size of the

cipher key is 128bits. In the entire encryption process we

use total 52 keys (ROUND1 to ROUND8 and OUTPUT

TRANSFORMATION phase); generated from a 128 bit

cipher key. In each round (ROUND1 to ROUND8) we use

six sub keys. Each sub-key consists of 16bits. And the

OUTPUT TRANSFORMATION uses 4 sub-keys.

DETAILED ANALYSIS IDEA

As we mentioned before, in the IDEA algorithm, we take

input text of size 64bits at a time and divide it in evenly; i.e.,

64bit plain text is divided into 4 sub-blocks, each of 16bits

in size.

Now, let us look, what are the basic operations needed in the

entire process.

Operations needed in the first 8 rounds -

1. Multiplication modulo 216 +1.

2. Addition modulo 216.

3. Bitwise XOR.

And, operations needed in the OUTPUT

TRANSFORMATION phase –

1. Multiplication module 216 +1.

2. Addition modulo 216.

All the above mentioned operations are performed on 16 bit

sub-blocks. For simplicity of expressing the operations, we

denote, Multiplication modulo 216 +1 by * symbol, and

Addition modulo 216 by, + symbol. And bitwise XOR will

be represented by its usual symbol .

Now, let us take a look on the key generation for the

encryption process. Using 25-bit circular left shift operation

on the original key, we produce other subsequent sub-keys,

used in different rounds. For instance, among the total no. of

52 keys- Sub-key K1 is having first 16bits of the original

key, sub-key K2 is having the next 16 bits, and so on till

sub-key K6; i.e., for ROUND1, sub-keys K1 to K6 use first

(16x6=) 96 bits of the original cipher key.

In ROUND2, sub-key K7 & K8 take the rest of the bits (bits

97 to 128) of the original cipher key. Then we perform

circular left shift (by 25bits) operation on the original key.

As a result the 26th bit of the original key shifted to the first

position and becomes the first bit (of the new shifted key)

and the 25th bit of the original key, moves to the last position

and becomes the 128th bit (after first shift).

This process continues till ROUND8, and also in the

OUTPUTPUT TRANSFORMATION phase; i.e., after the

ROUND8, the key is again shifted left by 25 bits and the

first 64 bits of the shifted key is taken for use, and used as

sub-keys K49 to K52 in the OUTPUT

TRANSFORMATIONMATION phase. So, form the above

observations, we could write –

Sandipan Basu, Journal of Global Research in Computer Science Volume 2 No (7), July 2011, 116-118

© JGRCS 2010, All Rights Reserved 117

Table 1. Sub-Keys & corresponding Bit positions

Bit Positions Sub-keys

1-96 ROUND1 (K1 to K6) ;

ROUND5 (K25 to K30)

and OT (K49 to K52)

[Bit position 1-64]

97-128 & 1-64 (of

shifted key)

ROUND2 (K7 to K12) ;

ROUND6 (K31 to K36)

65-128 & 1-32 (of

shifted key)

ROUND3 (K13 to K18) ;

ROUND7 (K37 to K42)

33-128 ROUND4 (K19 to K24) ;

ROUND8 (K43 to K48)

[OT: OUTPUT TRANSFORMATION]

Figure 1. Overview of IDEA algorithm

ANALYSIS OF IDEA

Let us assume, in our example, in Fig.1, the four initial

blocks are P1, P2 P3 and P4. That is, P1, P2, P3 and P4 are

the input to ROUND1. Assume, the outputs of ROUND1

are, R1, R2, R3 and R4. Similarly, the output of ROUND2,

denoted as R5, R6, R7 and R8; and so on. Previously, we

have seen, that what are the operations taking place in one

round of IDEA. Now, we analyze the outputs of ROUND1.

If we have a close look on ROUND1 (or any these 8

rounds), then we would observe, that, all the operations that

are taking place in a round, can eventually be expressed as

simple equations. The outputs of ROUND1 can be written

as below –

R1= P1 * K1 [[{(P2 + K2) (P4 * K4)} + [{(P1 * K1)

(P3 + K3)} * K5]] * K6]

R2= P3 + K3 [[{(P2 + K2) (P4 * K4)} + [{(P1 * K1)

(P3 + K3)} * K5]] * K6]

R3= P2 + K2 [[{(P1 * K1) (P3 + K3)} *K5] + [[{(P2 +

K2) (P4 * K4)} + [{(P1 * K1) (P3 + K3)} * K5]] * K6]]

R4= P4 * K4 [[{(P1 * K1) (P3 + K3)}* K5] + [[{(P2 +

K2) (P4 * K4)} + [{(P1 * K1) (P3 + K3)} * K5]] * K6]]

The outputs of other subsequent rounds can also be written

in the same manner. From the above we would notice, to

calculate R1, R2, R3 and R4, we have to perform a lot of

operations. But, in each round of IDEA, we are performing

the same operations again & again and also unnecessarily.

For instance, to calculate R1, we perform bitwise XOR

operation with the result of (P1 * K1) and the underlined

portion (as shown in the equation). Again, to calculate R2

we perform the same operations again as underlined in R1.

To calculate R3 and R4, we perform the same (indicated as

italic+underlined) operations again and again. Apart from

this, in the calculation of R3 and R4, again we perform the

same sequence of operations (the entire underlined portions

of R3 and R4).

Hence, there is no logic to perform the same set of

operations again & again for R1, R2, R3 and R4.

For simplicity we just perform each of the basic operations

for once, and use its result for other further calculations. The

basic required operations that are involved in calculating R1,

R2, R3 and R4, are as follows -

1. P1 * K1

2. P4 * K4

3. P2 + K2

4. P3 + K3

Other operations are based on these basic operations.

Next, we represent a block diagram of a hardware unit,

needed to implement IDEA algorithm. To implement it in

hardware, we need some separate hardware components to

accomplish the individual tasks, and as a whole too.

Figure 2: Hardware components required for IDEA

In Fig.2, we would see, that, there is a unit named “Key

generator”. At the beginning of the encryption process, we

provide the original (128bits) cipher key to the mentioned

unit. When necessary, the KEY GENERATOR unit

produces different sub-keys by performing circular left shift

operation (by 25bits) on the current key and provides the

sub-keys to other units (multiplication modulo 216 +1 and

addition modulo 216 units). The unit named as

“Multiplication modulo 216 + 1”, is used to perform all the

multiplication modulo 216+1 operation, when required. The

same is for unit “Addition modulo 216” and unit “Bitwise

XOR”.

Now, we look forward for the parallel implementation of

IDEA algorithm. In our approach, we have shown, the entire

encryption process can be performed in several steps and

performing operations in parallel wherever possible.

Parallelism in operations can be achieved both in software

and using hardware. In the computation of R1, R2, R3 and

Sandipan Basu, Journal of Global Research in Computer Science Volume 2 No (7), July 2011, 116-118

© JGRCS 2010, All Rights Reserved 118

R4 the above mentioned operations can be performed in the

following way, at different time instants -

Time Unit 1: t1=P1 * K1, t3=P3 + K3

(These two operations can be done in parallel by their

corresponding units.t1 & t3 are used to hold the temporary

results.)

Time Unit 2: t2=P2 + K2; t4=P4 * K4; t5=t1 t3

Time Unit 3: t6=t2 t4; t7=t5 * K5

Time Unit 4: t8=t6 + t7

Time Unit 5: t9=t8 * K6

Time Unit 6: R1 = t9 t1; t10=t9+t7

Time Unit 7: R2 = t9 t3

Time Unit 8: R3 = t10 t2

Time Unit 9: R4 = t10 t4;

From the above illustration, it is noticeable, if we want to

perform the operations of one round in parallel, then it

would take at least 9 time units. Operations written in single

time unit can be done in parallel. We could also see, after

the completion of ROUND1, the partial encrypted input text

R1 is produced at time unit 6, R2 at time unit 7, R3 at time

unit 8 and R4 at time unit 9.

But, for the next round, i.e., for ROUND2, the computation

R5 would involve the usage R4 (generated from ROUND1).

So, before we start the computation for ROUND2, we will

have to wait 9 time units; i.e., until R4 is generated from

ROUND1. Hence, till ROUND 7, all the partial encrypted

cipher texts (R1 to R28) are generated, and would take at

least (7 rounds x 9) = 63 time units. Now, let us look how

we can improve ROUND 8 & the OUTPUT

TRASNFORMATION phase. For the following illustration,

we would assume, sub-keys K49-K52 are available in the

ROUND 8 also. So, the computation for ROUND 8 and

OUTPUT TRANSFORMATION can also be accomplished

as follows -

Time Unit 64: t1=R25 * K43, t3=R27 + K45

Time Unit 65: t2=R26 + K44; t4=R28 * K46; t5=t1 t3

Time Unit 66: t6=t2 t4; t7=t5 * K47

Time Unit 67: t8=t6 + t7

Time Unit 68: t9=t8 * K48

Time Unit 69: R29 = t9 t1; t10=t9+t7

Time Unit 70: R30 = t9 t3; R33 = R29 * K49

Time Unit 71: R31 = t10 t2; R34 = R30 + K50

Time Unit 72: R32 = t10 t4; R35 = R31 + K51

Time Unit 73: R36 = R32 * K52

Form the above illustration, we can see, if sub-keys K49 to

K51 are available in the ROUND8, then we will be able to

perform, the first three operations of OUTPUT

TRANSFORMATION in ROUND8. Hence, the entire

process can be made faster.

So, to complete the IDEA encryption process, the time

required is 73 time units.

DISCUSSIONS

In the above discussion, it is seen, the minimum time taken

to complete the encryption process of IDEA is 73 time units.

Here, what is the span of each time unit, it depends on the

implementation. In software implementation, it would

depend on, how efficient code is being written to

accomplish parallelism in the operations. In hardware

implementation, how fast the encryption process is done,

depends on the different circuitry available, the hardware

architecture used to achieve parallelism (since, there are

many options are available) and also the technology used to

design and implement the entire hardware unit (Fig. 2). In

implementation on the XCV300-6, the bit parallel version

achieved an encryption rate of 1166Mb/sec using an 82MHz

clock, whereas the bit serial implementation achieved a

600Mb/sec throughput at a clock rate of 150MHz [2]. The

bit-parallel implementation achieved a higher throughput

with lower latency than the bit serial implementation, while

the bit-serial implementation permits a minimal area fully-

parallel design [2]. In the implementation on XCV1000E-6,

the total time taken is 1.246μs with maximum clock rate

105.9MHz, with throughput 6.78Gbps [3]. In his paper,

Daemen mentioned large classes of weak keys for IDEA.

These keys are weak in the sense that it takes only a very

small amount of effort to detect their use. It is possible to

eliminate the weak key problem by slightly modifying the

key schedule of IDEA [4].

CONCLUSION

The IDEA (International Data Encryption Algorithm) is a

strong block-cipher. Though there are many operations

involved in the entire algorithm, only three different of

operations are involved (as mentioned above). As the cipher

key size is 128bits, in that respect IDEA is too strong

(having taken care for weak keys).

REFERENCES

[1] Chang H.S., “International Data Encryption Algorithm” CS-

627-1 Fall, 2004.

[2] Cheung O.Y.H., Tsoi K.H., Leong P.H.W., and Leong M.P.

“Tradeoffs in Parallel and Serial Implementations of the

International Data Encryption Algorithm IDEA”.

[3] Daemen J., Govaerts R., Vandewalle J., “Weak Keys for

IDEA”, Springer-Verlag, 1998.

[4] Hämäläinen A., Tommiska M., and Skyttä J., “Gigabit per

Second Implementation of the IDEA Cryptographic

Algorithm”, Springer-Verlag Berlin Heidelberg, 2002.

[5] Kahate A., “CRYPTOGRAPHY AND NETWORK

SECURITY”, Tata-McGraw-Hill, 2nd edition, 2008.

[6] Schneider B., “Applied Cryptography”, John Wiley & Sons,

Second ed., 1996.

I am Sandipan Basu, M.Sc. (CS).Currently, I am a Guest

Faculty, Department of Computer Science, Asutosh College,

Kolkata, West Bengal, INDIA.

