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ABOUT THE STUDY 

 

The thermoelectric effect manifests itself strongly or conveniently in 

thermoelectric materials. The term "thermoelectric effect" describes 

situations in which either a temperature difference or an electric current can 

produce an electric potential. The Peltier effect, which uses an electric current 

to drive heat flow, the Thomson effect, which causes reversible heating or 

cooling within a conductor when there is both an electric current and a 

temperature gradient, are the more precise names for these phenomena. 

Despite the fact that all materials have a thermoelectric effect, it is usually 

too small to be of any value. Compared to metals, semiconductors' band 

structures offer better thermoelectric effects.  The state density around the 

Fermi energy is asymmetric because the Fermi energy is below the conduction 

band. Since the conduction band's average electron energy is larger than the 

Fermi energy, the system is favourable for charge migration into a lower 

energy state.  

In contrast, metals' conduction band is where the Fermi energy is located. As 

a result, the average conduction electron energy approaches the Fermi energy 

and the forces urging for charge transport are diminished. This makes the 

state density symmetric about the Fermi energy.  

In light of this, semiconductors make perfect thermoelectric materials. At room temperature, bismuth telluride and its 

solid solutions are effective thermoelectric materials, making them appropriate for refrigeration applications about 300 

K. Compounds made of bismuth telluride have been grown as single crystals using the Czochralski process. These 

compounds are often produced using melt or powder metallurgy methods and directional solidification. Due to the 

random orientation of the crystal grains, materials made using these techniques are less efficient than single-crystalline 

ones, but have better mechanical properties and are less sensitive to structural flaws and impurities because of the high 

optimum carrier concentration. By selecting a nonstoichiometric composition, which is accomplished by adding extra 

bismuth or tellurium atoms to the primary melt or by dopant impurities, the desired carrier concentration is attained. 

Halogens and group IV and V atoms are examples of potential dopants. Bi2Te3 is somewhat degenerate because of the 
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tiny bandgap (0.16 eV), and at ambient temperature, the associated Fermi level should be close to the conduction band 

minimum. The large band-gap indicates that the intrinsic carrier concentration in Bi2Te3 is high. Therefore, even for slight 

stoichiometric variations, minority carrier conduction cannot be disregarded. Due to tellurium's toxicity and scarcity, its 

use is restricted. Substitutional doping, in which a portion of the framework atoms are swapped out for dopant atoms, 

is the most straightforward method for synthesising and improving the thermoelectric characteristics of semiconducting 

type I clathrates [1-3]. Techniques for crystal formation and powder metallurgy have also been applied in the production 

of clathrate. Clathrates' structural and chemical characteristics make it possible to optimise their transport 

characteristics in relation to stoichiometry. The partial filling of the polyhedra permitted by the structure of type II 

materials allows for greater electrical property tuning and, consequently, better control of the doping level. Variants that 

are just partially filled can be created as semiconducting or even insulating materials.  Homologous oxide compounds 

have layered superlattice structures that make them interesting candidates for use in high-temperature thermoelectric 

devices, such as those of the form (SrTiO3)n(SrO) m—the Ruddlesden-Popper phase. While preserving strong electronic 

conductivity within the layers, these materials have low thermal conductivity perpendicular to the layers. They have 

higher thermal stability than traditional high-ZT bismuth compounds, which makes them outstanding high-temperature 

thermoelectrics. Their ZT values can approach 2.4 for epitaxial SrTiO3 films [4-8]. Even though it is significantly more 

widespread than the aforementioned cuprokalininite, the Sulphide Mineral Bornite (Cu5FeS4) is named after an Austrian 

mineralogist. The thermoelectric performance of this metal ore was discovered to be enhanced following cation 

exchange with iron [9-11]. In order to allow cations (positively charged ions) within a parent crystal to exchange for those 

in solution without harming the anion sublattice (negatively charged crystal network), the parent crystal is surrounded 

by an electrolyte complex. This process is known as cation exchange.  What is left are crystals with a varied content but 

the same basic structure. When creating complex heterostructures, scientists are given this kind of tremendous 

morphological control and homogeneity.  
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