

Volume 2, No. 6, June 2011

Journal of Global Research in Computer Science

ISSN-2229-371X

RESEARCH PAPER

Available Online at www.jgrcs.info

KEY BASED STEGANOGRAPHY IN A GRAY LEVEL IMAGE INVOLVING PERMUTATION AND XOR OPERATION

V.U.K.Sastry^{1*}, Ch.Samson² ¹Department of computer Science and Engineering, SNIST Hyderabad, AP, India vuksastry@rediffmail.com ²Department of Information Technology, SNIST Hyderabad, AP, India samchepuri@gmail.com

Abstract: In this paper, we have developed a procedure for the steganography of a plaintext in a gray level image. This procedure is totally based on a key. The plaintext is modified by permuting with the key and by performing the XOR operation with the key. The modified plaintext obtained in the afore mentioned manner is hidden in the image by taking the help of the key. The process adopted in this investigation is found to be quite interesting as the original image has practically no change even when a long plaintext is introduced into the image.

Keywords: steganography, plaintext, permutation, modified plaintext, key, XOR operation.

INTRODUCTION

Though the study of steganography [1] had its origin several centuries back, it has gained considerable importance in recent years. In this process, the plaintext of a message is concealed either by applying a mechanism such as character marking, invisible ink etc., or by placing it in another plaintext or in an image (gray level or colored). The method of placing one plaintext in another plaintext, for hiding the former in the latter, requires a lot of overhead, while placing a plaintext of several megabytes requires a snapshot of an image. Thus steganography in an image is preferred to all the other methods available in the literature.

In the science of steganography [2-3], it is very well noticed that the strength of the steganography can be enhanced by using a key and encrypting the plaintext. Some of the ideas of the key based steganography are found in [4].

In the present paper, our objective is to develop a novel procedure for the steganography of a plaintext in a gray level image, by using a key, wherein the numbers in the key are chosen in a random manner. Here the plaintext is converted into numbers by using the EBCDIC code, and these numbers are permuted by using the key. Then the permuted plaintext is XORed with the key, and the resulting numbers are placed in the image in an appropriate manner by using the key. In this analysis, the key is used not only in modifying the plaintext but also in hiding the contents of the modified plaintext in the image under consideration. This salient feature is expected to strengthen the steganography in a remarkable manner.

In what follows we present the plan of the paper. In section 2, we introduce the development of a method for the key based steganography, and present a pair of algorithms which offer a clear insight into the procedure. Section 3 is devoted to an illustration. In section 4 we examine the strength of the steganography. Finally in section 5, we discuss the computations and conclusions.

DEVELOPMENT OF THE METHOD FOR KEY BASED STEGANOGRAPHY

Consider a plaintext, T consisting of 256 characters. On using EBCDIC code, T can be written in the form

T = $[T_{ij}]$, i=1 to 16, j= 1 to 16, where each T_{ij} is lying in [0 255].

Let us consider a key K which can be written in the form

 $K = [K_{ii}], i = 1 \text{ to } 16, j = 1 \text{ to } 16.$

Here each K_{ij} is an integer lying in [0 255], and all the K_{ij} 's are chosen at random.

Let the plaintext T be permuted by using the numbers in the key K. Let the permuted plaintext be denoted by P, where $P = [P_{ii}]$, i=1 to 16, j= 1 to 16.

The procedure for permutation can be explained as follows. Let K_{ij} =N. Let us suppose that N can be written in the form

N = 16m + n, (2.1)

Where m and n are integers lying in the interval [0 15]. When n=0, the mth row last column element of the T will be placed as the ith row jth column element of the permuted matrix P. On the other hand, when n≠ 0, the $(m+1)^{th}$ row nth column element of the T will be placed as the ith row and jth column element of P. For example, when N=144 we have n=0, and m=9. Then P_{ij=} T(9,16). On the other hand when N=156, we have m=9 and n=12. Then P_{ij=}T(10,12). This is the process of the permutation. The details of this permutation are clearly illustrated in section 3. In order to strengthen the procedure of steganography, let us write

$$\mathbf{P} = \mathbf{P} \oplus \mathbf{K}.\tag{2.2}$$

Thus we get the elements of P in their modified form. Then, these new elements of the P are to be placed in a gray level image.

Let us consider a gray level image F as shown in figure. 1.

else

}

P(i,j)=T(m+1,n);

Figure.1. Image of a person

This can be represented in the form

 $F=[F_{ij}]$, i=1 to 256, j= 1 to 256, where F_{ij} are the gray level values of the image. Here each F_{ij} lies in the interval [0 255]. Thus each one can be represented in terms of 8-binary bits. Now the process of hiding the modified plaintext in the image can be described as follows.

Let $K_{11} = r$. Let us focus our attention on the rth column of the image, i.e., j=r. Now, let us convert P₁₁ into its binary form. we get a string containing 8 binary bits. Then keeping the first 6-bits of each gray level value of F_{ir} , i=1 to 4 as it is, we go on concatenating the first two bits of the binary string corresponding to P_{11} in the first row, the next two bits of P_{11} in the next row, etc., till we reach the 4th row and exhaust all the 8 binary bits. Then we proceed to the column corresponding to the value of K₁₂ and deal with the binary string obtained from P12, and carry out the concatenation process as we have mentioned earlier. This process is to be carried out for all the columns corresponding to all the 256 numbers in the key, and of course, till we exhaust all the numbers. In the modified plaintext. Here it is to be noted that the modified plaintext is accommodated in the first four rows of the image. This procedure is explained very clearly in the illustration presented in the next section. In what follows, we present an algorithm describing the method of steganography discussed so far. We have also presented an algorithm for obtaining the original plaintext from the image in which it is hidden.

Algorithm for Key Based Steganography

// Bin() is used to convert a decimal number into its binary form. Six() is used to take only the first 6 bits into consideration. Concat () is utilized to concatenate a string with another string. Dec () is used to convert a binary string into its decimal form.

```
1. Read the matrices T, K and F
```

```
2. // Permutation
for i=1 to 16
{
for j=1 to 16
{
N=K(i,j);
m=N/16;
n=N mod 16;
if( n=0)
P(i,j)=T(m,16);
```

} 3. $P=P \oplus K$: 4. for NI=1 to 16 u=0: for i=1:16 for j=1:16 $\mathbf{r} = \mathbf{K}(\mathbf{i},\mathbf{j});$ P(i,j)=Bin(P(i,j));t=0; for s=(1+u) to (4+u)G(s,r)=Bin(F(s,r));G(s,r)=Six(G(s,r));G(s,r)=Concat(G(s,r), (2t+1)thbit and $(2s)^{th}$ bit of P) t=1; F(s,r)=Dec(G(s,r));} } } u=u+4; }

5. Write F

Algorithm for obtaining the original plaintext

//Extract () is used to get the 7^{th} and 8^{th} bits of the binary string under consideration.

- 1. Read the matrices K and F
- 2. for i=1:16

```
for j=1:16
     {
     \mathbf{r} = \mathbf{K}(\mathbf{i},\mathbf{j});
     P(i,j)=0;
     s=1:4
     G(s,r)=Bin(F(s,r));
     P(s,r)=Extract(G(s,r));
     P(i,j)=Concat(P(i,j),P(s,r));
     }
     }
3. P=P \oplus K
4.//Inverse permutation
   for i=1:16
  for j=1:16
   N=K(i,j);
     m=N/16;
     n = N \mod 16;
     if( n=0)
     T(m, 16) = P(i, j);
     else
```

```
T(m+1,n)= P(i,j);
}
}
```

5. Write P

Gar

It is worth noticing that the process involved in the present algorithm is obtained by reversing the steps in the steganography.

ILLUSTRATION OF THE STEGANOGRAPHY

Consider the plaintext given below.

"Dear father! I have visited almost all parts of India. You told me that all Indians are highly religious and they are ethical. I have seen that it is true up to a large extent. Here in this country, there are a large number of engineering colleges, and of course, a large number of liquor shops. It is really interesting. Here we find every day a strike conducted by one party or the other. The shops are broken, the buses are damaged and 144 sections are implemented very often. Many changes are coming now!" (3.1)Let us focus our attention on the first 256 characters of the plaintext given by (3.1). Thus we have "Dear father! I have visited almost all parts of India. You told me that all Indians are highly religious and they are ethical. I have seen that it is true up to a large extent. Here in this country, there are a large number of engineering colleges, and of," (3.2)On adopting the EBCDIC code, (3.2) can be written in the form of a matrix T, given by

	196	85	81	99	40	86	81	163	88	85	99	79	40 2	201	40	88	
	81	165	85	40	165	89	162	89	163	85	84	40	81	93	94	96	
	162	163	40	81	93	93	40	97	81	99	163	162	40	96	86	40	
	201	95	84	89	81	75	40	232	96	164	40	163	96	93	84	40	
	94	85	40	163	88	81	163	40	81	93	93	40	201	95	84	89	
	81	95 :	162	40	81	99	85	40	88	89	87	88	93	168	40	99	
	85	93	89	87	89	96	164	162	40	81	95	84	40	163	88	85	
	168	40	81	99	85	40	85	163	88	89	83	81	93	75	40	201	
T =	40	88	81	165	85	40	162	85	85	95	40	163	88	81	163	40	
	89	163	40	89	162	40	163	99	164	85	40	164	97	40	163	96	
	40	81	40	93	81	99	87	85	40	85	167	163	85	95	163	75	
	40	200	85	99	85	40	89	95	40	163	88	89	162	2 40	83	96	
	164	95	163	99	168	107	40	163	88	85	99	85	40	81	99	85	
	40	81	40	93	81	99	87	85	40	95	164	94	82	85	99	40	
	96	86	40	85	95	87	89	95	85	85	99	89	95	87	40	83	
	96	93	93	85	87	85	162	107	40	81	95	84	40	96	86	40	J

Let us take the key K in the form

(208	41	248	43	65	40	222	99	233	67	66	124	78	119	149	183	
	12	50	10	105	226	204	80	102	197	17	104	150	51	83	137	175	
	162	241	87	154	19	169	64	193	13	256	37	198	85	207	170	148	
	183	131	115	134	182	249	201	243	124	85	116	58	55	125	179	119	
	231	56	15	122	9	129	95	182	33	100	126	63	84	196	101	127	
	106	93	181	61	120	77	178	4	89	36	94	195	153	199	123	246	
K =	11	158	90	108	116	76	21	138	216	227	91	54	230	135	161	128	
	235	245	96	237	141	188	133	200	236	250	62	79	14	157	155	156	(3.4)
	53	201	131	221	144	38	168	174	210	3	20	52	45	29	240	28	
	130	179	187	177	147	242	103	70	16	111	255	185	167	98	173	239	
	220	25	114	186	134	225	232	209	35	68	217	212	49	109	159	205	
	202	189	213	48	31	30	117	191	143	215	95	223	7	176	81	34	
	253	180	206	18	229	228	145	23	132	152	160	22	27	1	110	73	
	26	88	244	125	55	190	165	42	164	71	218	74	247	211	243	86	
	249	146	47	172	112	184	194	92	192	171	59	60	251	238	234	224	
	254	32	69	97	58	57	142	82	72	8	46	44	163	214	24	6	J

The numbers in (3.4) are lying in the interval [0 255], and they are chosen at random. On carrying out the permutation process mentioned in section 2, we get

ſ	85	81	107	163	94	97	85	89	85	40	85	81	95	85	162	89 `	1
	79	95	85	40	86	85	89	96	168	81	162	40	84	162	85	163	
	81	96	85	85	85	40	40	164	40	40	93	107	81	99	85	89	
	89	81	81	40	40	40	88	93	81	81	99	164	40	93	85	85	
	89	232	40	89	88	40	40	40	162	87	75	84	40	99	89	40	
	81	93	85	96	163	201	200	99	88	81	168 1	163 1	164	40	83	85	
	99	40	89	84	99	40	165	95	85	40	87	75	87	162	40	201	
P =	99	87	- 99	95	88	89	85	163	89	81	93	84	201	97	40	164	(3.5)
	81	88	81	82	40	93	85	95	81	81	40	89	40	81	83	40	
	88	85	88	40	40	93	164	81	88	88	86	40	87	93	85	40	
	94	163	40	163	40	96	95	40	40	163	40	93	201	40	163	40	
	85	162	81	40	94	93	85	83	163	87	40	99	81	75	81	163	
	40	99	81	165	95	85	89	162	165	99	96	89	84	196	163	81	
	85	40	85	93	40	40	81	99	- 93	163	95	93	162	40	93	99	
	40	163	86	163	85	95	95	88	- 96	167	40	163	95	87	85	40	
l	96	96	88	85	164	96	81	95	40	163	96	162	40	99	89	86	J

(3.3)

On using the XOR operation, given by (2.2), we get the modified plaintext P in the form

	133	120	147	136	31	73	139	58	188	107	23	45	17	34	55	238)
	67	109	95	65	180	153	9	6	109	64	202	190	103	241	220	12	
	243	145	2	207	70	129	104	101	37	40	120	173	4	172	255	205	
	238	210	34	174	158	209	145	174	45	- 4	23	158	31	32	230	34	
	190	208	39	35	81	169	45	158	131	51	53	107	124	167	60	87	
	- 59	0	224	93	219	132	122	103	1	117	246	- 96	61	239	40	163	
	104	182	3	56	23	100	176	213	141	203	12	125	177	37	137	73	
P =	136	162	- 3	178	213	229	208	107	181	171	99	27	199	252	179	56	(3.6)
	100	145	210	143	184	123	253	241	131	82	60	109	5	76	163	52	
	218	230	227	153	187	175	195	23	72	55	169	145	240	63	248	199	
	130	186	90	25	174	129	183	249	11	231	241	137	248	69	60	229	
	159	31	132	24	65	67	32	236	44	128	119	188	86	251	0	129	
	213	215	159	183	186	177	200	181	33	251	192	79	79	197	205	24	
	- 79	112	161	32	31	150	244	73	249	228	133	23	85	251	174	53	
	209	49	121	15	37	231	157	4	160	12	19	159	164	185	191	200	
	158	64	29	52	158	89	223	13	- 96	171	78	142	139	181	65	80	J

As explained in section 2, let us now see how the steganography of the modified plaintext (3.6) can be carried out basing upon the key K given by (3.4). Here we have $K_{11=}$ 208. From (3.6), we have P_{11} =85. On converting 85 into binary form, we get a string of 8 binary bits, given by 01010101. Now we focus our attention on the 208 th column of the image. We consider the element F(1,208) and convert it into its binary form. Then we take the first 6 bits of the binary string, and concatenate with the first 2 bits (01) of the binary string corresponding to 85.Similarly the next 2 bits (01) of P_{11} are placed in F(2,208). The same procedure is carried out with the 3rd and 4th pairs of bits by putting them in F(3,208) and F(4,208). Now, consider K12 = 41 and $P_{12=}$ 81. By following the procedure, discussed earlier, we concatenate the strings of binary bits and obtain F(i,41), i=1 to 4.

The afore mentioned process is repeated for the rest of the columns of the image by considering the succeeding values of the key elements (in a row wise manner) and the corresponding values of the modified plaintext elements ,one after another, till we exhaust all the columns of F, and the elements of K and P. However, it is to be remembered that we carry out the steganography of the next portion of the plaintext (consisting 256 characters) by considering the next 4 rows of the image. The resulting image after carrying out the steganography of a plaintext in the first 4 rows is shown in Fig. 2

Figure 2. Image after hiding the first plaintext

To assure that the procedure applied in the key dependent steganography is working accurately, we have reversed the entire procedure of the key based steganography (by applying the algorithm given in section 2) and obtained the original plaintext.

STRENGTH OF THE STEGANOGRAPHY

In this steganography process, the key is containing 256 numbers (0 to 255). Here these numbers are arranged in a random manner. Thus the size of the key space is 256!. If the time required for processing the steganography with one value of the key is 10^{-7} sec, then the time required for the execution with all possible keys in the key space is

(256!) $x10^{-7}/(365x24x60x60) = (256!)x3.17x10^{-15}$ years. As the time required is a formidable one, it is impossible to find the key with which the steganography is carried out. Thus the process of steganography is a very strong one.

© JGRCS 2011, All Rights Reserved

In this paper, we have developed a procedure for carrying out the steganography of a plaintext in a gray level image. In this analysis, the key is playing a prominent role in modifying the plaintext, and in the process of hiding the plaintext in the image. As the numbers in the key are in a random fashion, the portions of the plaintexts are concealed in different columns of the image in a thorough haphazard manner.

The programs required in this analysis are written in MATLAB.

The remnant of the plaintext (3.1) contains 250 characters. We make this also a string of 256 characters by appending six more blanks. This plaintext is hidden in the image, in rows 5 to 8, by introducing it, as discussed earlier. The image containing both the plaintexts is shown in Fig. 3.

Figure 3. Image containing the entire plaintext

Here it is to noted that 64 plaintexts, each consisting of 256 characters, can be concealed in the image, one after another. Now we conclude that the modification of the plaintext which is achieved by the permutation, using the key, and by applying the XOR operation is quite significant. Further, we notice that the placement of the plaintext in the image, being guided by the key, strengthens the steganography in a remarkable manner.

REFERENCES

- [1] William Stallings, Cryptography and Network Security, Principles and Practice, Fourth Edition, Pearson, 2006.
- [2] Katzenbeisser, S., ed. Information Hiding Techniques for Steganography and Digital Watermarking. Boston: Artech House, 2000.
- [3] Wayner, P. Disappearing Cryptography. Boston: AP Professional Books, 1996.
- [4] Atul Kahate, Cryptography and network security, First Edition, TMH,