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ABSTRACT 

 

With respect to ocean exploration, underwater robots, and environmental 

supervision, accurate localization in an underwater setting is perhaps among the 

principal hurdles that need to be overcome. For underwater localization, 

conventional acoustic-based methods usually suffer from high latency, short 

communications’ ranges, and vulnerability to multipath fading. The paper 

proposes a new approach to precise and successful positioning under water that 

exceeds specified constraints by pairing state-of-the-art artificial intelligence 

procedures using Optical Wireless Communication (OWG). In this study, we 

propose the establishment of a hybrid architecture that merges the advantages 

of LSTM networks, RNNs, SVMs, and CNNs. This integrated system is meant to 

process and examine efficiently the temporal evolution of underwater optical 

signals. The paper has proposed a dual-mode communication strategy that uses 

optical techniques like signals for transmission within the visual range and audio 

technologies for broadcasts out of line of sight. The hybrid optical-acoustic 

system acts as one of the key improvements towards better data transfer, 

position tracking, and underwater communication by blending the advantages of 

two different technologies. In this regard, reliable communication along the 

entire optical connection path length is highlighted, especially in relation to the 

continually changing target’s dynamics. This machine learning with OWC-

enabled localization method performs significantly better as compared to 

conventional acoustic-based approaches in terms of reduced latency, enhanced 

communication ranges, and improved positioning accuracy. In addition to this, 

the present work may be the first to reveal a considerable step forward in 

precise and fast subsea positioning, as well as the prospect of expanding the 

technologies for underwater inspection and interaction. 
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Networks; Network communication; Real-time attack; Analysis; Techniques 
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INTRODUCTION 

Effective localization has been a persistent problem in underwater operations research. Several applications 

require exact placement under the sea, such as environmental monitoring, underwater robots, and oceanographic 

research. Tradition is the hallmark of any underwater localization. Usually, these techniques are primarily audition 

based [1]. Although these techniques do have their limitations such as low communication range, severe multipath 

fading, and high delays. However, they make it necessary to explore other options because they hamper the 

accuracy and productivity of underwater operations. 

Optical wireless communication is a rapidly developing area with the capacity to offer an alternative to the 

mentioned challenges. Light propagation is a new and useful idea in underwater settings as the OWC system uses 

light propagation to transfer information. The combination of OWC and machine learning methods provides an 

effective and accurate underwater localization approach [2]. This is a type of artificial intelligence called machine 

learning algorithms, which relies on data to predict or decide on something [3]. They do this because complex and 

dynamic underwater signal patterns in the context of underwater localization can be handled by these algorithms. 

Convolutional Neural Networks (CNNs) 

This is why CNNs are usually used in image and video recognition tasks since such kind of data has a grid-like 

architecture. Optical signals patterns have spatial hierarchies where they allow information extraction necessary for 

accurate location during OWC [4]. 

Support Vector Machines (SVM) 

SVMs are very efficient in regression and classification of problems. Identifying the hyperplane that partitions data 

in the best possible way is what they do to put it in the different classes. Underwater Optical Wavelength 

Classification (OWC) is used for identifying different signal patterns which result from various environmental 

conditions and signal distortions [5]. 

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks 

These processes are particularly vital to understanding sequential operations in optical fluctuation analysis as they 

contribute to data processing. One important characteristic of RNNs and LSTMs is their ability to predict a signal’s 

future state when its history is known [6]. The new approach for underwater positioning uses an ensemble of these 

machine learning algorithms and OWC. This integration should also enhance the accuracy and efficacy of the 

localization procedures by overcoming the limitations of acoustic-based techniques (Figure 1). The use of modern 

underwater communication and localization systems with improved functionality in recent times enables 

application in areas ranging from deep-sea research to the oversight of aquatic environments [7]. 

The Figure 1 seeks to compare different underwater communication systems with a particular focus on acoustic, 

RF, and OWC, whereby the primary emphasis is on the same. The comparison is based on various key performance 

benchmarks that are all important to underwater applications. The main performance characteristics that need to 

be considered here and used in deciding if a certain technology is suitable for a specific underwater application are 

data rates, range, latency, and power consumption. 
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Figure 1. Underwater communication technologies comparison. 

 

Thus, the Figure 2 would show all underwater localization methods possible through optical wireless 

communication i.e. ToA, TDoA, AoA and RSS. OWC is suggested as an alternative to acoustic communication for 

underwater localization because it may provide higher data rate, lower latency, and lower multipath propagation 

and doppler effect [8]. 

Figure 2. Underwater localization techniques. 
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Optical Wireless Communication (OWC) 

One of the new and innovative ways of communication is Optical Wireless Communication (OWC), which utilizes 

light to pass information. OWC is one of the recent developments of technology, which dates to a couple of previous 

decades. This is a compelling option compared to other traditional wireless communication technologies like the RF 

and microwave communication. OWC has come into prominence, courtesy of many advantages as compared to 

other wireless communication mediums [9].  

Advantages of OWC 

High data rates: For instance, OWC can supply several Gbps to support high bandwidth applications such as 

multimedia delivery and live communications. The speed of OWC system is usually much higher compared to RF 

systems. This is because OWC does not operate in the limited radio spectrum bandwidth. OWC can transfer data 

over a long distance at high speeds compared to RF systems. Besides, OWC systems can employ several light 

sources to enhance the data rate. They enable faster information flow or data rates compared to the single light 

one source systems. Apart from that, security is enhanced by incorporating OWC. OWCs are unaffected by external 

interference and therefore, can transport information safely. Secondly, encrypting the data using optics also 

prevents other people without authorization to use the information. 

Applications of OWC 

OWC is applicable to both commercial and military uses. OWC is employed in the commercial sector for internet, 

cellular data, and network connections within homes and offices. Apart from the government, it is also used by the 

military for secure communication like field communication, remote sensing, and surveillance. Also, OWC is gaining 

ground in industrial settings like factory automation and robotic controls.  

Underwater communication: OWC has applications in underwater localization, monitoring, and communication 

between underwater vehicles, sensors, and base stations.  

Visible Light Communication (VLC): VLC utilizes visible light for its communication processes, providing support for 

indoor positioning systems, car-to-car communicators, intelligent homes, and offices.  

Free-Space Optical Communication (FSO): FSO is a type of long-range and high-capacity communication between 

satellites, ground stations, and airborne platforms.  

Li-Fi: Li-Fi is a recent innovation in wireless communication that transmits data using light instead of the traditional 

Wi-Fi, with faster speeds and more security. 

MATERIALS AND METHODS 

Localization through optical wireless communication is possible using machine learning methodologies underwater. 

Underwater Optical Wireless Communication (UOWC) is the process of transmitting data wirelessly by means of 

optical signals in underwater environments. The underwater environment is characterized by processes like 

absorption, scattering, and turbulence, which makes UOWC very difficult in ensuring reliable and accurate 

communication. One of the key tasks in UOWC is localization, which enables the determination of the positions of 

underwater objects, such as AUVs and sensors required for navigation, tracking, and data collection. Machine 
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Learning (ML) approaches appear very promising for overcoming the problems of LS in UOWC. In this context, a 

machine-learning-based localization methodology can be divided into four main stages: collecting data, extracting 

features, training models, and predicting localization. The proposed advanced model is constructed based on the 

traditional J48 tree decision and employs the CNN, SVM, and KNN models for evaluation accuracy and efficiency. 

The node division value is a major issue in growing a decision tree; the value must be segmented into more than 

two portions. The first value is called the root node, while the last one is the leaf node, as is well known. The split 

rate represents a good measure for ordering the values within the decision tree. The selected split value, gain ratio, 

and IG for the construction of the decision tree is developed through a distinct approach in this approach. The 

process of splitting ends when each subset almost fits in one category. Here we tried to make J48 decision tree 

algorithm as much dependent upon standard deviation coefficients as possible.  

 The standard deviation can be used to find out the extent of data dispersion and for the establishment of 

the various classes. Low SD indicates that the value is almost normal, while high SD means it is very 

random. Additionally, there is often a strong correlation between entropy and standard deviation. The stand 

deviation works together with the information gain and the entropy in selecting such attribute. 

 The decision trees in this research study have datasets that comprise attributes that may affect their 

efficiency. They have more values of greater dispersion. The author uses a large co-efficient, SD with 

information entropy, and the attribute information split that helps to select impotent features that may be 

relevant to decision tree building.  

 Hence, when an attribute has a high Standard Deviation (SD), the information entropy times with that of a 

high SD coefficient, but the information that was divided by a low SD coefficient. The following set of 

equations are used to calculate entropy and information splitting: 

Entropy is a measure of the impurity or randomness in a dataset, and it is commonly used in decision trees and 

other machine learning algorithms to determine the optimal split at each node. The equation for entropy is: 

2( ) ( ) log ( ( ))Entrophy S p i p i  
 

Where S is the dataset and p(i) is the probability of each class (label) i in the dataset. The sum runs over all the 

unique classes in the dataset. 

Information gain is a measure of the reduction in entropy achieved by partitioning a dataset based on a specific 

feature. It is used to decide the best feature to split a dataset at each step in a decision tree algorithm. The 

equation for information gain is: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑ [(
|𝑆_𝑣|

|𝑆|
) ×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆_𝑣)]  

This includes where A is the feature (attribute) to split, S_v for the subset of S with feature A=v, and S for the entire 

dataset. The dataset sizes are referred to as |S| and |S_v|, respectively. It is the sum of the different values of 

attribute A. Entropy and information gain are the central concepts in the decision tree algorithms CART, C4.5, and 

ID3. At each tree-building stage, the algorithm chooses which feature to use for splitting the data set, through which 

it develops a more precise and effective classification model. Entropy measures the amount of uncertainty or 
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impurity in a dataset. A dataset with a low entropy value is characterized by the dominance of one or a few class 

labels, as opposed to a dataset with a high entropy value that is characterized by a diversified blend of class labels. 

The aim of the use of decision trees is to obtain splits having subsets with lower entropies than the data set. This 

decreases impurities and increases the classification accuracy of the tree. Information gain is a measure of 

diminishing entropy observed through the splitting of a data set into subsets, each split based on a particular 

feature. This involves calculating the entropy of the original dataset and comparing it with the weighted average 

entropy of subgroups resulting from the split. At a particular decision tree node, the feature with the highest 

information gain becomes the best feature for the split. 

 To calculate information gain for a given feature: 

 Compute the entropy of the original dataset (S). 

For each unique value (v) of the feature (A), create a subset (S_v) of the dataset that contains only those instances 

with the value v for the feature A. 

 Calculate the entropy of each subset (S_v). 

Find the weighted average entropy for the subsets, the weight being a number from 0 to 1 that is proportional to 

the ratio of S_v and S. To calculate the information gain, subtract the weighted average entropy of the subgroups 

from the entropy of the original dataset. Through the decision tree method, this process is repeated to identify the 

best feature that can be used to split the cases at each node, resulting in the development of a tree that can 

classify new instances based on their features. Due to the depth of the tree, the subsets at the leaves generally 

have less entropy; therefore, they can offer more accurate classification predictions. It is necessary to monitor the 

tree depth and apply the pruning strategies to avoid overfitting that may limit the model’s ability to generalize to 

new data. 

The heart part of the J48 tree-building algorithm consists of choosing attributes with high information gain for each 

new split node. Herewith is the calculation formula for the SD collection factor: 

Compute the mean (μ) of the dataset: 

𝜇 =
(∑𝑋𝑖)

𝑛
 

Where x_i represents each value in the dataset, and n is the number of data points. 

Calculate the standard deviation (SD) of the dataset:  

𝑆𝐷 = √
(∑𝑋𝑖 − 𝜇2

𝑛
 

Subtract the mean (μ) from each data point (x_i) and square the result. Sum up these squared differences and 

divide the result by the number of data points (n). Finally, take the square root of the result to obtain the standard 

deviation. 
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Calculate the coefficient of variation (CV): 

𝐶𝑉 =
𝑆𝐷

𝜇
× 100 

Substitute the mean (μ) with the standard deviation (SD) and multiply this outcome by 100 to obtain a percentage 

of variation. The C.V. is the most flexible measure of variability that can be employed to compare relative variability 

between two datasets regardless of the units or scales that they are used. A higher CV shows more variability in 

relation to the mean and a lower CV indicates more uniformity. For regulatory information, the feature that has the 

most gain is selected when making decisions. 

Data collection 

Therefore, the development of a localization technique based on ML-signal must start from gathering numerous 

underwater optical signals and mapping them to their actual locations. This dataset should either be measured in 

an experiment or simulated and must feature many different environmental situations and scenarios to enable a 

good generalization from unknown cases by the ML model. Underwater, a data collection process can use 

underwater optical sensors or AUVs equipped with optical communication devices. 

Feature extraction 

Feature extraction refers to identifying important and informative factors from the raw data, which will provide input 

to the ML model. In the case of UOWC, extractable features include signal power, SNR, or any other signal 

parameters. Besides that, other environmental factors such as temperature, depth and turbidity can also be 

included in the features. Feature extraction can involve anything from simple statistical measures to wavelet 

transforms, PCA, or deep learning-based feature extraction. 

Model training 

With the relevant features extracted, the next step is to train an ML model to learn the mapping between these 

features and the ground-truth positions of the underwater objects. Different ML calculations can be utilized for this 

assignment, counting directed learning strategies like k-Nearest Neighbours (kNN), Bolster Vector Machines (SVM), 

Choice Trees, or profound learning-based strategies like Convolutional Neural Systems (CNN) or Repetitive Neural 

Systems (RNN) and J48 choice tree calculations. The choice of calculation depends on the issue necessities, the 

accessible computational assets, and the specified level of localization precision. The demonstration preparation 

includes partitioning the dataset into preparation and approval sets and iteratively updating the show parameters 

to play down the localization mistake.  

RESULTS AND DISCUSSION 

Tests were used to emphasize the calculation time, error distance measurement, and accuracy comparison 

between the proposed algorithms and other machine learning approaches. 

Second, we assess the outcomes of a single system run to validate the precision of our findings. The numerous 

potential beam orientations, defined as the angle between the horizontal axis and the beam axis, are the ones we 

choose as the states set. For this technique, the sets of states, actions, and reward functions are specified. The 
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light beam width is kept constant at 20 degrees while the beam orientation is adjusted. The 2-D depiction of the 

resultant beam orientation for the scenario under consideration is shown in Figure 3. 

Figure 3. Comparison of the suggested algorithm methods success rate with the S success rate. Note:  

Transmitter;  Receiver;  Optimal orientation;  Higher orientation;  Lower orientation. 

 

By randomly determining the beam direction for each simulation run, the random technique allows us to assess the 

success rate of our suggested methods. After 600 runs, the approach produced a rising success rate function that 

achieves a value of roughly 0.9. The success rate of the suggested technique is like a function that increases with 

time and converges more quickly than the algorithmic method, hitting 0.85 in around 50 iterations. While the 

approach converged more rapidly, learning algorithm produced superior results. On the other hand, the success 

rate of the random technique is a constant function cantered at 0.3. This is since this approach does not improve 

with time and does not converge to an ideal beam position. As a result, in this instance, there is a trade-off between 

dependability and convergence speed. In such a case, the Q-learning algorithm ought to be selected. It's important 

to remember that the RL algorithm constantly learns its surroundings via trial and error or down may be achieved by 

going one step down or up on the map, respectively. By translating the beam width by moving one step to the right 

or left on the map, respectively. 

Data distribution of receivers and transmitters refers to the arrangement, density, and allocation of communication 

nodes in a network to ensure efficient and effective transmission and reception of information (Figure 4). 

Figure 4. Data distribution of receivers and transmitter. 
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The accuracy, error distance, and computational time are shown in Table 1 below. The technique suggested by CNN 

has the greatest accuracy and error distance results, but an average computational time result. 20 and 40 percent 

are the training sizes. In this research study, we examine the performance metrics of a Convolutional Neural 

Network (CNN) proposed method algorithm, as shown in Table 1. The table presents the accuracy, error distance, 

and computational time for different training sizes (20% and 40%). This analysis focuses on understanding the 

strengths and weaknesses of the proposed method in terms of these key performance indicators. 

Table 1. Machine learning is based on different classification model performance. 

Sno 
Classification 

Algorithm 

Accuracy 

Measure % 

Error 

distance  
Time 

1 KNN 53.9 10.9 0.001 

2 CNN 79.1 2.9 0.22 

3 RNN 72.052 4 0.4 

4 SVM 59.19 41.9 3.85 

 

Visualizing data of ML proposed models refers to the process of illustrating and assessing the nature, results, and 

outcomes of various machine learning models while going through the model selection and assessment phase 

(Figure 5). 

Figure 5. Data visualization of ML proposed model. 

 

This way, researchers and practitioners can see which model performs better on a given dataset and on the given 

task. Data visualization techniques can be applied to various aspects of machine learning models (Figure 6), 

including Exploratory Data Analysis (EDA): Looking at the data to detect patterns, trends, and the relations among 

the independent variables prior to construction of the model. Model Performance Visualization: For example, 

accuracy, precision, and recall, F1 score and area under the ROC curve as performance metrics (Figure 7). 

Figure 6.  Precision analysis of ROC curve for performance metrics. Note:  KNN;  CNN;  RNN;  RNN;  

SVM. 
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Figure 7.  Measurement of the accuracy of different machine learning model and proposed model CNN and RNN. 

Note:  CNN;  RNN. 

 

CONCLUSION 

In summary, a rigorous investigation of OWC-based machine learning localization is presented in a nutshell. The 

study has provided relevant insight into the design of new underwater communication and localization techniques 

that offer solutions to existing traditional devices like the acoustic and radio frequency systems. Through the 

studies on different machine learning algorithms, the best models with unparalleled precision and applicability can 

be found. In addition, it is evident that environmental considerations, such as water turbidity, absorption, 

scattering, and temperature, play a vital role in the performance of OWC systems. The development and validation 

of a stable, scalable, efficient localization system based on machine learning methodologies has demonstrated a 

satisfactory degree of accuracy, speed, and dependability. The system can change itself in accordance with 

different underwater conditions and learn the environment. The ability to change enables reliable communication 

and localization, even in unreliable underwater scenarios. The study has also shown that combining intelligent 

machine learning models with hardware optimization for optimal localization using OWCs. Such an integration can 

open a whole new range of applications in marine exploration, environmental monitoring, and underwater 

communication for improved efficient and environmentally friendly operations. However, with the advancements 

made in machine learning based localization underwater optical wireless communication, certain sections need 

further investigations. Further research areas can be related to utilizing deep learning algorithms in more 

complicated underwater environments, accounting for extra environment parameters into the localization models, 

and creating procedures to boost the reliability of OWC systems in the face of impairment and background 

disturbances. Summarily, this thesis has proved that a machine learning based localization using OWC is possible 

underwater, which provides a basis for future exploration and innovation in this area. Thus, the findings of the study 

could change forever how the world explores, monitors and interacts with the underwater world and lead to 

significant developments in marine science. 
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