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Maintaining Privacy and Secrecy in Untrusted 
Network with Stile 

M. Anbu Chezhian1, S.Ramalakhsmi2 
ABSTRACT – Security and privacy issues have become critically important with the fast expansion of multi-agent 
systems. Most network applications such as pervasive computing, grid computing, and P2P networks can be viewed as 
multi-agent systems. sTile, a technique is proposed for distributing trust-needing computation onto insecure network 
systems which are open, anonymous, and dynamic in nature. sTile based implementation and empirically evaluate it on 
several physical networks of varying sizes, including the globally distributed system. Secure multiparty computational 
algorithm is used to ensure crystal neighbours do not learn each other’s data. Multifactor authentication process is 
proposed to provide security in the untrusted network.  
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I. INTRODUCTION 

The emergence of cloud computing is evolving the nature of computation. Instead of using private machines, users 
allow the cloud to maintain, manipulate, and safeguard their data. This evolution has allowed ubiquitous access to 
computation and data with higher availability and reliability than possible with personal machines and local servers. 
Simultaneously, this evolution has affected the meaning of the term privacy when referring to software systems. To 
ensure data remain private, not only must they be kept confidential from potential intruders, but also from the machines 
that execute computation on the data. 

 
II. MOTIVATING EXAMPLE: ADDITION 

   To describe adding using sTile, we explain three separate elements of our solution: the addition tile assembly, the 
distribution process, and the source of privacy. 

A. The Addition Tile Assembly 
   
    A tile assembly is a theoretical construct, similar to cellular automata. It consists of square tiles with static labels on 
their four sides. In Fig.1. Tiles can attach to one another or to a growing crystal of other tiles when sufficiently many of 
their sides match. 
 
B. The Distribution Process 
 
     sTile uses the theoretical tile assembly to decompose a computation into small parts. Each small part represents a 
tile execution might be deployed on eight network nodes. Each node only deploys tiles of a single type, designated by 
the client machine. The client sets up a seed on the network by asking nodes that can deploy tiles of appropriate types 
to deploy instances of those types. Each node knows only the tile instances it is deploying and maintains references to 
the geometrically adjacent tile instances on other nodes. Next, tiles with an empty adjacent location coordinate with 
their crystal neighbour’s to recruit matching tiles to attach this process uses a secure multiparty computation algorithm 
to ensure crystal neighbour’s do not learn each other’s data. Each of these steps replies on an algorithm that ensures the 
tiles are deployed uniformly randomly on the available nodes. Once the execution finishes, the tiles in the middle row 
report the solution to the client, indicating the node IDs of their crystal neighbour’s, which the client uses to reconstruct 
the output. 
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C. The Source of Privacy 
 
     Each tile instance is aware of only a single bit of the input, output, or intra computation data, and not of the bit’s 
global location. An adversary may attempt to reconstruct the confidential data from the nodes it controls. For example, 
Fig. 1f shows an adversary that has compromised three nodes (2, 3, and 6), and now has access to the data in five tiles. 
However, this adversary can only tell that there are some 0 and 1 bits scattered throughout the input, the computation, 
and the output, but not how many and not their relative positions. 
 

 
   Fig.1. A high-level overview of sTile 
 

 
III. STILE ARCHITECTURE AND ALGORITHMS 

 
      A sTile-based system is a software system that uses a network of computers to solve a computational problem. 
Intuitively, the network simulates a tile assembly: Each computer pretends to be a tile (or many tiles), and 
communicates with other computers to self-assemble a solution to a computational problem. Each computer deploys 
tile components, each representing a tile in a tile assembly, and facilitates the proper communication channels and 
algorithms to allow the tile component self-assembly. Thus, a tile architecture is based on a tile assembly; the software 
system employing that architecture solves the particular computational problem that the tile assembly solves. 

A. Initializing Computation 
 
The client computer initializes the computation by performing three actions: creating the tile type map, distributing the 
map and tile type descriptions, and setting up a seed crystal. 
       Creating the tile type map. A tile type map is a mapping from a large set of numbers (e.g., all 128-bit IP addresses) to tile 
types. It determines the type of tile components a computer with a given unique identifier (e.g., IP or MAC address) 
deploys. The tile type map breaks up the set of numbers into k roughly equal-sized regions, where k is the number of 
types of tiles in the tile assembly. 
       Distributing the map and tile descriptions.  The client node distributes the tile type map and a short description of one tile 
type to a node that deploy that type, as determined by the tile type map. A tile type’s description consists of the four tile 
component interfaces, which can be described using a few bits. 
       Creating a seed. The client is responsible for creating the first seed on the network through a fairly straightforward 
procedure. For each tile in the seed crystal described by the underlying tile assembly, the client selects a node that 
deploys that tile type and asks that node to deploy a tile. 
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B. Discovery 
 
     The node discovery algorithm is central to sTile because initialization, replication, and recruitment all use it. The 
discovery operation, given a tile type, returns a uniformly random IP of some computer deploying tile components of 
that type. In Fig.2. Thus, every suitable computer has an equal chance of being returned, in the long run, which in turn 
guarantees that all nodes on the network perform a similar amount of computation. The algorithm uses a property of 
random walks to ensure uniform-randomness. 
 

 
 
 

Fig.3. A network with six nodes. We assume that every node in our 
Underlying network has p network neighbors (here p ¼ 3). 

C. Recruitment 
 
     The seed crystal grows into a full assembly by recruiting tile attachments. In a computational tile assembly (such as 
the assembly described in that solves 3-SAT), a tile component that has both an upper and a left crystal neighbor 
recruits a new tile to attach to its upper left. Fig. 3 indicates several places in a sample crystal where tile components 
are ready to recruit new tiles. A recruiting tile component X (highlighted in Fig. 3), for each tile type, picks a potential 
attachment node Y of that type from its node table, as described in Section III, and sends it an attachment request. 
 

 
Fig.2. Tile components that have both an upper and a left crystal neighbor (highlighted in the diagram) can recruit new components to 
attach to their upper left. 
 
D. Replication 
 
     Whenever network nodes have extra cycles they are not using for recruitment, they replicate the seed. Each node X 
uses its node table, as described in Section III, to find another node Y on the network that deploys the same type 
components as itself, and sends it a replication request. A replication request consists of up to two IP addresses (two 
128-bit numbers) of X’s crystal neighbors. X lets its crystal neighbors know that Y is X’s replica (by sending Y ’s IP to 
X’s crystal neighbors). Those crystal neighbors, when they replicate using this exact mechanism, will send their 
replicas’ IPs to Y . Thus, the entire seed replicates. Each component’s replication is thus a three-step process: X sends a 
replication request to Y , Y replies to X, and X tells its crystal neighbors about Y . We analyze these steps in Section 
IV. 
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E. Solution Reporting 
 
     One tile type, the black tile in Figs. 3 and 4e, includes in its encoding the identity (IP address) of the client. Recall 
that the black tile only attaches to a crystal when that crystal finds a solution. When that happens, the node deploying 
the black tile informs the client that the Boolean formula is satisfiable. While 3-SAT is a decision problem (i.e., the 
answer is either “yes” or “no”), the client may wish to also learn the Boolean assignment that satisfies the formula. To 
do so, the client may ask the node that notified it of the solution for its crystal neighbors’ identities (IP addresses), and 
those for their crystal neighbors’ identities, to reconstruct the entire crystal responsible for finding the solution. The 
client can then query the nodes that deploy the tiles encoding the assignment for their tile types. The cost of 
reconstructing the entire crystal is no more than contacting, and getting a response from each of the nodes deploying 
tiles in that crystal (310 tiles for the 3-SAT example from Fig. 4). However, since only part of the crystal is responsible 
for the assignment, it can be retrieved even more efficiently. To ensure privacy, all the relevant communication must be 
encrypted, and each involved node must verify the identity of the client. These requirements can be handled using 
standard public key encryption and authentication techniques, which we do not describe here. 
 
 

 
 

Fig.4. sTile Architecture design 
 

 
IV. COMPUTATIONAL FEASIBILITY 

 
     To demonstrate that sTile is a feasible solution for building 
software systems that distribute computationally intensive problems on very large networks, we must show that 1) such 
systems’ computational speed is proportional to the size of the underlying network, 2) such systems are robust to 
network delay, and 3) real-world-sized problems can be solved on real-world-sized networks in reasonable time. 
 
A. sTile-Based Implementations 
 
    We have built and made public two Mahjong-based implementations, for 3-SAT and Subset Sum, as well as 
Simjong-based simulations of the same systems. Simjong is a Java-based discrete-event simulator with network-delay 
simulation capabilities. Simjong executes on a single machine and creates a user-specified number of virtual hardware 
Node components, each capable of deploying tiles. Simjong’s network model allows for message delivery time to be 
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constant, chosen at random from some distribution, or proportional to the geographic distance between locations 
assigned to each virtual node. Simjong’s network model is based on ns-2, simplified to abstract away the exact 
topology of the network. 
 
B. Experimental Setup 
 
     We use three distributed networks for our experimental evaluation: 1) a private heterogeneous cluster of 11 Pentium 
4 1.5-GHz nodes with 512 MB of RAM, running Windows XP or 2000; 2) a 186-node subset of USC’s Pentium 4 
Xeon 3-GHz High Performance Computing and Communications cluster; and 3) a 100-node subset of PlanetLab, a 
globally distributed network of machines of varying speeds and resources that were often heavily loaded by several 
experiments at a time. 
    Our experimental goals were to verify sTile’s scalability with respect to network size and robustness to network 
delay. Our experiments had three independent variables the number of nodes, the network communication speed 
between nodes, and the size of the NP-complete problem and one dependent variable the time the computation took to 
complete. 

 
TABLE I 

THE EFFECT OF DOUBLING THE NETWORK SIZE ON THE SYSTEM’S EXECUTION TIME. THE SPEEDUP RATIO IS THE FACTOR OF SPEED 
IMPROVEMENT OVER THE NETWORK OF HALF THE SIZE. 

 

 

C. Scalability 
 
    To verify that the speed of the computation is proportional to the number of nodes on the underlying network, for 
each of the three networks described above, we deployed Mahjong-based implementations on the entire network and on 
randomly selected halves of the network. We varied the size of the problem and measured the average time in which 
the implementations found the solution over 20 executions (except on PlanetLab, as explained above). We then also 
deployed Simjong on virtual networks of increasing size from 125,000 to 1,000,000 nodes (with a constant network 
delay of 100 ms for all packets). 

D. Robustness to Network Latency 
 
    Intuitively, high-network latency should adversely affect the speed of sTile-based systems: If the tile attachments 
happen sequentially, the latency affects every attachment and greatly slows down the overall computation. This 
intuition holds for the addition example from Section 2. However, in the case of NP-complete computations, this 
intuition is false. In such computations, many of the sub computations (tile attachments) happen independently[7][9], in 
parallel. Each node in our experiments deployed millions of lightweight tiles, and whenever a sTile packet traveled 
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between nodes, those nodes handled other tiles rather than waiting idly for the network communication to arrive. As a 
result, the throughput of sTile-based systems is not affected by the network latency. 
 

E. Efficiency 
 
     The final claim we address in demonstrating sTile’s feasibility for industrial systems is that real-world-sized 
problems can be solved on real-world-sized networks in reasonable time. In particular, we posit that sTile-based 
systems can outperform existing privacy-preserving methods for solving NP-complete problems[12][14]. There are 
three ways to solve a highly parallelizable problem while preserving the data privacy: 1) on a large insecure network by 
using sTile, 2) on a single private computer, or 3) on a private network of trustworthy computers. We will first discuss 
the time needed to solve such a problem using the three methods in terms of the number of required operations, and 
then discuss the actual time necessary to solve problems. 
 

 
 
     Now, suppose a user wishes to solve the 3-SAT instance on a single computer. That computer would need to 
examine 2n possible assignments, and check each n-variable assignment against the m clauses. Equation (2) describes 
the time this procedure would take using the most efficient available technique, assuming r is the amount of time each 
operation takes to execute: For each assignment, create a hash set containing the n literal-selection elements and check 
for each of the 3m literals whether the hash set contains that literal. 
 
 

TABLE 2 
 

COMPARISON OF EXECUTION TIME FOR SOLVING D AS MEASURED BY 
SIMJONG AND ESTIMATED BY (1) 

 

 
 
 

V. PRIVACY PRESERVATION 
 
     In this section, we formally argue that sTile systems preserve privacy. Specifically, we analytically argue that, as 
long as no adversary controls more than half the network, the probability of that adversary learning the input can be 
made arbitrarily low. 
     sTile’s privacy preservation comes from each tile being exposed only to a few intermediate bits of the computation 
(see Fig. 4) and the tiles’ lack of awareness of their global position. To learn meaningful portions of the data, an 
adversary needs to control multiple, adjacent tiles. We call a distributed software system privacy preserving if, with 
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high probability, a randomly chosen group of nodes smaller than half of the network cannot discover the entire input to 
the computational problem the system is solving[15][17]. (We will also discuss, at the end of this section, the 
probability of discovering parts of the input.) We argue that neither 1) a node deploying a single tile, nor 2) a node 
deploying multiple tiles can know virtually any information about the input; moreover, 3) controlling enough 
computers to learn the entire input is prohibitively hard on large networks. 
 

 
 

Fig. 5. The probability that an adversary controlling c fraction of the 
network can reconstruct an entire 20-, 38-, and 56-bit input. 

 
VI. RELATED WORK 

 
       Distributing computation. The growth of the Internet has made it possible to use public computers to distribute 
computation to willing hosts. This notion focuses the underpinning of computational grids. Among systems that 
concentrate on distributed computation are BOINC systems (such as SETI@home and Folding@home ), MapReduce , 
and the organic grid. A unique approach—FoldIt—uses the competitive human nature to solve the protein-folding 
problem[11]. These systems try to solve exactly the highly parallelizable problems toward which our work is geared, 
but unlike sTile, they do not preserve privacy. 
 
       Cloud privacy. Cloud computing has reemphasized the importance of data privacy[3][6], causing the emergence of 
numerous approaches for keeping data private on the cloud. Most such approaches concentrate on private data storage 
and user-authorized data retrieval and require some trusted agents whereas our work concentrates on preserving privacy 
during computation and requires no trusted agents. 
 
     Privacy-preserving computation. In classical (as opposed to quantum) computing, it is not possible to get help from a single 
entity in solving an NP-complete problem without disclosing most of the information about the input and the problem 
one is trying to solve[14]. Our approach avoids this shortcoming by distributing such a request over many machines 
without disclosing the entire problem to any small-enough subset of them. 
 

VII. CONCLUSION 
 

    sTile distributes computation onto large, insecure, public networks in a manner that ensures privacy preservation, 
fault and adversary tolerance, and scalability. We presented a rigorous theoretical analysis of sTile and formally proved 
that the resulting systems are efficient and scalable, and that they preserve privacy as long as no adversary controls half 
of the public network. 
 
    We deployed two sTile implementations on several networks, including the globally distributed PlanetLab [36], to 
empirically verify 
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     1. the correctness of sTile algorithms, 
     2. that the speed of sTile computation is proportional to the number of nodes, 
     3. that network delay has a negligible effect on the speed of the computation, and 
     4. that our mathematical analysis of the time needed to solve large problems on large networks is accurate. For        
networks larger than about 4,000 nodes, sTile outperforms optimized solutions that assume privately owned, secure 
hardware. 
     sTile explores the fundamental cost of achieving privacy through data distribution and bounds the extent to which a 
privacy-preserving system is less efficient than a nonprivate one. While that cost is not trivial, we have demonstrated 
that sTile-based systems execute orders of magnitude faster than homomorphic encryption systems, the alternative 
promising approach to preserving privacy.  
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