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ABSTRACT: Mobile malware threats (e.g., on Android)  have recently become  a real concern.  In  this  paper,  we 
evaluate  the state-of-the-art commercial  mobile anti-malware products for Android  and test how resistant they 
are against  various  common obfuscation techniques (even with known malware). Such an evaluation   is  
important  for  not  only  measuring   the  available defense against  mobile malware  threats but also proposing  
effec- tive, next-generation solutions.  We developed  CarbonRom, a systematic  framework with various  
transformation techniques, and used it for our study. Our results on ten popular commercial anti-malware 
applications  for  Android  are  worrisome:  none  of these tools is resistant against  common  malware  
transformation techniques. Moreover, a majority of them can be trivially defeated by applying slight 
transformation over known malware  with little effort  for  malware  authors. Finally,  in the  light  of our  results, 
we propose  possible remedies for improving  the current state  of malware  detection  on mobile devices. 
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I. INTRODUCTION 
 

Mobile computing devices such as smartphones and tablets are becoming increasingly popular. Unfortunately, this 
popu- larity attracts malware authors too. In reality, mobile malware has already become a serious concern. It has been 
reported that on Android, one of the most popular smartphone platforms [2], malware has  constantly been on  the  rise  
and  the  platform is seen as “clearly today’s target” [3], [4]. With the growth of malware, the platform has also 
seen an evolution of anti- malware tools, with a range of free and paid offerings now available in the official Android 
app market, Google Play. 
 
In this paper, we aim to evaluate the efficacy of anti-malware tools on Android in the face of various evasion techniques. 
For example, polymorphism is used to evade detection tools by transforming a malware in different forms (“morphs”) 
but with the same code. Metamorphism is another common technique that can mutate code so that it no longer 
remains the same but  still  has  the  same  behavior.  For  ease  of  presentation, we  use  the  term  polymorphism 
inthis  paper  to  represent both  obfuscation techniques. In  addition, we  use  the  term ‘transformation’ broadly, to 
refer to various polymorphic or metamorphic changes. Polymorphic attacks have long been a plague for traditional 
desktop and server systems. While there exist earlier studies on the effectiveness of anti-malware tools on PCs [5], 
our domain of study is different in that we exclusively focus on mobile devices like smartphones, which require 
different ways for  anti-malware design. Also, malware on mobile devices have recently escalated their evolution 
but the capabilities of existing anti-malware tools  are  largely not  yet  understood. In the meantime, simple forms of 
polymorphic attacks have already been seen in the wild [6]. 
 
To  evaluate  existing  anti-malware  software,  we  develop a  systematic  framework  called  CarbonRom  with  sev- 
eral common transformation techniques that may be used to transform Android applications automatically. Some of 
these transformations are highly specific to the Android platform only. Based on the framework, we pass known 
malware sam- ples (from different families) through these transformations to generate new variants of malware, 
which are verified to possess the originals’ malicious functionality. We use these variants to evaluate the effectiveness 
and robustness of popular anti-malware tools. 
Our results on ten popular anti-malware products, some of which even claim resistance against malware 
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transformations, show that all the anti-malware products used in our study have little protection against common 
transformation techniques. The techniques themselves are simple. The fact that even without much technical difficulty, 
we can evade anti-malware tools, highlights the seriousness of the problem. Many of them succumb to even trivial 
transformations such as repacking or reassembling that do not involve any code-level transforma- tion. Our results also 
give insights about detection models used in existing anti-malware and their capabilities, thus shedding light on 
possible ways for their improvements. We hope that our findings work as a wake-up call and motivation for the 
community to improve the current state of mobile malware detection. 
 
To summarize, this paper makes the following contribu- tions. 
• We systematically evaluate anti-malware products for An- droid regarding their resistance against various 
transforma- tion techniques in known malware. For this purpose, we developed CarbonRom, a systematic framework 
with various transformation techniques to facilitate anti-malware evaluation. 
• We  studied  the  evolution of  anti-malware tools  over  a period  of  one  year.  Our  findings show  that  some  
anti- malware tools have tried to strengthen their signatures with a trend towards content-based signatures while 
previously they were evaded by trivial transformations not involving code-level changes. The improved signatures are 
however still shown to be easily evaded. 
• Based on our evaluation results, we also explore possible ways  to  improve current anti-malware solutions. 
Specif- ically, we point out that Android eases developing ad- vanced detection techniques because much code is high- 
level bytecodes rather than native codes. Furthermore, cer- tain platform support can be enlisted to cope with advanced 
transformations. 
The rest of this paper is organized as follows. We present in Section II the necessary background and detail in Section 
III the CarbonRom design. We then provide implementation details in Section IV and summarize our malware and 
anti- malware data sets in Section V. After that, we present our findings in  Section  VI,  followed  by  a  brief  
discussion  in Section VII on how to improve current anti-malware solutions. Finally, we examine related work in 
Section VIII and conclude in Section IX. 
 

II. BACKGROUND 
 
Android is an operating system for mobile devices such as smartphones and tablets. It is based on the Linux kernel and 
provides a middleware implementing subsystems such as tele- phony, window management, management of 
communication with and between applications, managing application lifecycle, and so on. 
 
Applications are programmed primarily in Java though the programmers are allowed to do native programming via 
JNI (Java native interface). Instead of running Java bytecode, Android runs Dalvik bytecode, which is produced from 
Java bytecode. In Dalvik, instead of having multiple .class files as in the case of Java, all the classes are packed 
together in a single .dex file. 
 
Android applications are made of four types of components, namely activities, services, broadcast receivers, and 
content providers.  These  application  components  are  implemented as classes in application code and are declared in 
the An- droidManifest (see next paragraph). The Android middleware interacts with the application through these 
components. 
 
Android application packages are jar files containing the application bytecode as a classes.dex file, any native 
code libraries, application resources such as images, config files and so on, and a manifest, called AndroidManifest. It 
is a binary XML file, which declares the application package name, a string that is supposed to be unique to an 
application, and the different components in the application. It also declares other things (such as application 
permissions) which are not so relevant to the present work. The AndroidManifest is written in human readable XML 
and is transformed to binary XML during application build. 
 
Only digitally signed applications may be installed on an Android device. Signing keys are usually owned by 
individual developers and not by a  central authority, and there is  no chain of trust. All third party applications 
run unprivileged on Android. 
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III.  FRAM EWORK DESIGN 

 
In this work, we focus on the evaluation of anti-malware products for Android. Specifically, we attempt to deduce the 
kind of signatures that these products use to detect malware and how resistant these signatures are against changes in 
the malware binaries. In this paper, we generally use the term transformation to denote semantics preserving changes 
to a program. Since we are dealing with malware, we only care about the interested semantics such as sending SMS 
message to a premium number and not things like change of application name in the system logs. 
 
In this work, we develop several different kinds of trans- formations that may be  applied to  malware samples while 
preserving their malicious behavior. Each malware sample un- dergoes one or more transformations and then passes 
through the anti-malware tools. The detection results are then collected and used to make deductions about the 
detection strengths of these anti-malware tools. 
 
We classify our transformations as trivial (which do not require code level changes), those which result in variants that 
can still be detected by static analysis (DSA), and those which can render malware undetectable by static analysis 
(NSA). In the rest of this section, we describe the different kinds of transformations that we have in the CarbonRom 
frame- work. Where appropriate we give examples, using original and transformed code. Transformations for 
Dalvik bytecode are given in Smali (as in Listing 1), an intuitive assembly  
 
const-string v10, "profile" 
const-string v11,  "mount -o  remount rw  system\nexit\n" invoke-static {v10, v11}, 
Lcom/android/root/Setting;-> 
runRootCommand(Ljava/lang/String;Ljava/lang/String;) Ljava/lang/String; 
move-result-object v7 
 
Listing 1: A code fragment from DroidDream malware 
 
A. Trivial Transformations 
 
Trivial transformations do not require code-level changes. We have the following transformations in this category. 
1) Repacking: Recall that Android packages are signed jar files. These may be unzipped with the regular zip 
utilities and then repacked again with tools offered in the Android SDK. Once repacked, applications are  signed 
with  custom keys (the original developer keys are not available). Detection signatures that match the developer keys 
or a checksum of the  entire  application  package  are  rendered  ineffective  by this transformation. Note that this 
transformation applies to Android applications only; there is no counterpart in general for Windows applications 
although the malware in the latter operating systems are known to use sophisticated packers for the purpose of 
evading anti-malware tools. 
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2) Disassembling and Reassembling: The compiled Dalvik bytecode in classes.dex of the application package 
may be disassembled and then reassembled back again. The various items  (classes,  methods,  strings,  and  so  on)  in  
a  dex  file may be arranged or represented in more than one way and thus  a  compiled  program  may  be  
represented  in  different forms. Signatures that match the whole classes.dex are beaten by this transformation. 
Signatures that depend on the order of different items in the dex file will also likely break with this transformation. 
Similar assembling/disassembling also applies to the resources in an Android package and to the conversion of 
AndroidManifest between binary and human readable formats. 
3) Changing Package Name: Every application is identified by a package name unique to the application. This name 
is defined in  the  package’s  AndroidManifest. We  change  the package name  in  a  given  malicious application to  
another name. Package names of apps are concepts unique to An- droid and hence similar transformations do not 
exist in other systems. 
 
 
B. Transformation  Attacks  Detectable   by  Static  Analysis (DSA) 
The application of DSA transformations does not break all types of static analysis. Specifically, forms of analysis that 
describe the semantics, such as data flows are still possible. Only simpler checks such as string matching or matching 
API calls may be thwarted. 
1) Identifier Renaming: Most class, method, and field iden- tifiers  in  bytecode  can  be  renamed.  We  note  that  
several free obfuscation tools such as ProGuard [7] provide identifier renaming. Listing 2 presents an example 
transformation for code in Listing 1. 
 
const-string v10, "profile" 
const-string v11,  "mount -o  remount rw  system\nexit\n" invoke-static  {v10, v11}, 
Lcom/hxbvgH/IWNcZs/jFAbKo;-> 
axDnBL(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/ String; 
move-result-object  v7 
 

Listing 2: Code in Listing 1 after identifier renaming 
2) Data Encoding: The dex files contain all the strings and array data that have been used in the code. These strings 
and arrays may be used to develop signatures against malware. To beat such signatures we can keep these in 
encoded form. Listing 3 shows code in Listing 1, transformed by string encoding. 
 
const-string  v10, "qspgjmf" 
invoke-static  {v10}, Lcom/EncodeString;->applyCaesar(Ljava/ 
lang/String;)Ljava/lang/String; 
move-result-object  v10 
const-string  v11, "npvou!.p!sfnpvou!sx!tztufn]ofyju]o" invoke-static  {v11}, 
Lcom/EncodeString;->applyCaesar(Ljava/ 
lang/String;)Ljava/lang/String; 
move-result-object  v11 
invoke-static  {v10, v11}, Lcom/android/root/Setting;-> 
runRootCommand(Ljava/lang/String;Ljava/lang/String;) Ljava/lang/String; 
 
Listing 3: Code in Listing 1 after string encoding. Strings are encoded with a Caesar cipher of shift +1. 
3) Call  Indirections:  This transformation can be seen as a simple way to manipulate call graph of the application to 
defeat automatic matching. Given a method call, the call is converted to a call to a previously non-existing method that 
then calls the method in the original call. This can be done for all calls, those going out into framework libraries 
as well as those within the application code. This transformation may be seen as trivial function outlining [8]. 

4) Code Reordering:  Code reordering reorders the instruc- 
tions in  the methods of  a  program. This transformation is accomplished  by  reordering  the  instructions  and  
inserting goto instructions to preserve the runtime execution sequence of the instructions. Listing 4 shows an 
example reordering. 
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goto :i_1 
:i_3 
invoke-static  {v10, v11}, Lcom/android/root/Setting;-> 
runRootCommand(Ljava/lang/String;Ljava/lang/String;) Ljava/lang/String; 
move-result-object v7 
goto :i_4   #  next instruction 
:i_2 
const-string v11,  "mount -o  remount rw  system\nexit\n" goto :i_3 
:i_1 
const-string v10, "profile" 
goto :i_2   
 

Listing 4: Code in Listing 1 reverse ordered 
 
5) Junk Code Insertion:  These transformations introduce code sequences that are executed but do not affect rest of the 
program. Detection based on analyzing instruction (or opcode) sequences may be defeated by junk code insertion. Junk 
code may constitute simple nop  sequences or more sophisticated sequences and branches that actually have no 
effect on the semantics.   
 
const/16  v0,  0x5 const/16  v1,  0x3 add-int  v0, v0, v1 add-int  v0, v0, v1 rem-int  
v0,  v0,  v1 if-lez v0, :junk_1 
 

Listing 5: An example of a junk code fragment 
 
6) Encrypting Payloads and Native Exploits:  In Android, native code is usually made available as libraries 
accessed via JNI. However, some malware such as DroidDream also pack  native  code  exploits  meant  to  run  from  
a  command line  in  non-standard  locations  in  the  application  package. All  such  files may  be  stored  encrypted  
in  the  application package and be decrypted at runtime. Certain malware such as DroidDream also carry payload 
applications that are installed once the system has been compromised. These payloads may also be stored encrypted. 
We categorize payload and exploit encryption as DSA because signature based static detection is still possible based on 
the main application’s bytecode. These are easily implemented and have been seen in practice as well (e.g., 
DroidKungFu malware uses encrypted exploit). 
 

7) Other  Simple Transformations:  There are a few other 
transformations as well, specific to Android. Debug informa- tion,  such  as  source  file names,  local  and  parameter 
vari- able names, and source line numbers may be stripped off. Moreover, non-code files and resources contained in 
Android packages may be renamed or modified. 
8) Composite Transformations:  Any of  the  above trans- formations may be combined with one another to generate 
stronger obfuscations. While compositions are not commuta- tive, anti-malware detection results should be agnostic to 
the order of application of transformations in all cases discussed here. 
 
C. Transformation Attacks Non-Detectable by Static Analysis 
(NSA) 
These transformations can break all kinds of static analysis. Some encoding or encryption is typically required so that 
no static analysis scheme can infer parts of the code. Parts of the encryption keys may even be fetched remotely. In 
this scenario, interpreting or  emulating the  code  (i.e.,  dynamic analysis) is still possible but static analysis becomes 
infeasible. 
 
1) Reflection: The Java reflection API allows a program to invoke a method by using the name of the methods. 
We can convert any method call into a call to that method via reflection. This makes it difficult to analyze statically 
which method is being called. A subsequent encryption of the method name can make it impossible for any static 
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analysis to recover the call. 
Listing 6 illustrates code in Listing 1 after reflection trans- formation. 
 
const-string v10, "profile" 
const-string v11,  "mount -o  remount rw  system\nexit\n" const/4  v13, 0x2 
new-array v14, v13, [Ljava/lang/Class; new-array v15, v13, [Ljava/lang/Object; 
const/4  v13, 0x0 
const-class v12, Ljava/lang/String; 
aput-object  v12, v14, v13 aput-object  v10, v15, v13 const/4  v13, 0x1 
const-class v12, Ljava/lang/String; 
aput-object  v12, v14, v13 aput-object  v11, v15, v13 
const-string  v13, "runRootCommand" 
const-class  v12, Lcom/android/root/Setting; 
invoke-virtual  {v12, v13, v14}, Ljava/lang/Class;-> 
getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/ lang/reflect/Method; 
move-result-object v13 const/4  v16, 0x0 
invoke-virtual  {v13, v12, v15}, Ljava/lang/reflect/Method 
;->invoke(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/ 
lang/Object; 
move-result-object  v7 
check-cast v7, Ljava/lang/String; 
 

Listing 6: Listing 1 with method call by reflection 
 
2) Bytecode Encryption:  Code  encryption tries  to  make the code unavailable for static analysis. The relevant 
piece of the application code is stored in an encrypted form and is decrypted at runtime via a decryption routine. Code 
encryption has long been used in polymorphic viruses; the only code available to signature based antivirus applications 
remains the decryption routine, which is typically obfuscated in different ways  at  each  replication  of  the  virus  to  
evade  detection. We discuss here code encryption alone; obfuscation of the decryption routine may be possible by other 
methods discussed above. 
We accomplish bytecode encryption by moving most of the application in a separate dex file (packed as a jar) and 
storing it in the application package in an encrypted form. When one of the application components (such as an activity 
or a service) is created, it first calls a decryption routine that decrypts the dex file and loads it via a user defined 
class loader. In Android, the  DexClassLoader provides  the  functionality to  load arbitrary dex files. Following 
this operation, calls can be made into the code in the newly loaded dex file. Alternatively, one could define a custom 
class loader that loads classes from a custom file format, possibly containing encrypted classes. We note that 
classes which have been defined as components need to be available in classes.dex (one that is loaded by 
default) so that they are available to the Android middleware in the default class loader. These classes then act as 
wrappers for component classes that have been moved to other dex files. 
 
 

IV.  IMPLEMENTATION 
 
We applied all the above CarbonRom transformations to the malware samples. We have implemented most of the 
transformations so that they may be applied automatically to the application. Automation implies that the malware 
authors can generate polymorphic malware at a very fast pace. Certain transformations such as native code encryption 
are not possible to completely automate because one needs to know how native code files are being handled in the 
code.1  Transformations that  require  modification of  the  AndroidManifest  (rename packages and renaming 
components) have not been completely automated because we felt it was more convenient to modify manually the 
AndroidManifest for our study. Nevertheless, it is certainly possible to automate this as well. Finally, we did not 
automate bytecode encryption, although there are no technical barriers to doing that. However, we have implemented a 
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proof- of-concept bytecode encryption transformation manually on existing malware. 
We utilize the Smali/Baksmali [9] and its companion tool Apktool [10] for our implementation. Our code-level 
transfor- mations are implemented over Smali. Moreover, disassembling and  assembling transformation uses  
Apktool.  This  has  the effect  of  repacking,  changing  the  order  and  representation of items in the classes.dex 
file, and changing the An- droidManifest (while preserving the semantics of it). All other transformations in our 
implementation (apart from repacking) make use of Apktool to unpack/repack application packages. Our overall 
implementation comprises about 1,100 lines of Python and Scala code. 
 
We verified that our implementation of transformations do not modify the semantics of the programs. Specifically, 
we tested our transformations against several test cases and ver- ified their correctness on two malware samples, 
DroidDream and Fakeplayer. In  general, verifying correctness on actual malware is challenging because some of 
the original samples have turned non-functional owing to, for example, the remote server not responding, and because 
being able to detect all the malicious functionality requires a custom, appropriately mon- itored environment. Indeed, 
our original DroidDream sample would not work because it failed to get a reply from a remote 
 
1 Native code stored in non standard locations is typically copied from the application package to the application 
directory by the application itself (possibly through an available Android API). 
 

TABLE I: Anti-malware products evaluated. 
 

Vendor Product Package  name Version # downloads 
AVG Antivirus Free com.antivirus 3.1 50M-100M 
Symantec Norton Mobile Security com.symantec.mobilesecur3.3.0.892 5M-10M 
Lookout Lookout Mobile Security com.lookout 8.7.1- 10M-50M 
ESET ESET Mobile Security com.eset.ems 1.1.995.1221 500K-1M 
Dr. Web Dr. Web anti-virus Light com.drweb 7.00.3 10M-50M 
Kaspersky Kaspersky Mobile com.kms 9.36.28 1M-5M 
Trend micro Mobile Security Personal com.trendmicro.tmmspers 2.6.2 100K-500K 
ESTSoft ALYac Android com.estsoft.alyac 1.3.5.2 5M-10M 
Zoner Zoner Antivirus Free com.zoner.android.antiviru1.7.2 1M-5M 
Webroot Webroot Security & com.webroot.security 3.1.0.4547 500K-1M 

 
TABLE II: Malware samples used for testing anti-malware tools 
 

V.  THE DATASET 
 

This section describes the anti-malware products and the malware samples we used for our study. We evaluated ten 
anti- malware tools, which are listed in Table I. There are dozens of free and paid anti-malware offerings for Android 
from various well-established anti-malware vendors as well as not-so-well- known developers. We selected the most 
popular products; in addition, we included Kaspersky and Trend Micro, which were then not very popular but are well 
established vendors in the security industry. We had to omit a couple of products in the most popular list because they 
would fail to identify many original, unmodified malware samples we tested. One of the tools, Dr. Web, actually 
claims that its detection algorithms are resilient to malware modifications. 
 
Our  malware  set  is  summarized  in  Table  II.  We  used a few criteria for choosing malware samples. First, all 
the anti-malware tools being evaluated should detect the original samples. We  here  have  a  question of  
completeness of  the signature set, which is an important evaluation metric for antivirus applications. In this work 
however, we do not focus on this question. Based on this criterion, we rejected Tapsnake, jSMSHider and a variant of 
Plankton. Second, the malware samples should be sufficiently old so that signatures against them  are  well  stabilized. 
All  the  samples in  our  set  were discovered in or before October 2011. All the samples are publicly available on 
Contagio Minidump [11]. 
 
Our malware set spans over multiple malware kinds. Droid- Dream [12] and BaseBridge [13] are malware with root 
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ex- ploits packed into benign applications. DroidDream tries to get root privileges using two different root exploits, rage 
against the cage, and exploid exploit. BaseBridge includes only one exploit, rage against the cage. If these exploits are 
successful, both DroidDream and BaseBridge install payload applications. Geinimi [14] is a trojan packed into benign 
applications. It communicates with remote C&C servers and exfiltrates user information. Fakeplayer [15], the first 
known malware on An- droid, sends SMS messages to premium numbers, thus costing money to the user. Bgserv [16] 
is a malware injected into Google’s security tool to clean out DroidDream and distributed in third party application 
markets. It opens a backdoor on the device and exfiltrates user information. Plankton [17] is a malware family that 
loads classes from additional downloaded dex files to extend its capabilities dynamically. 
 

VI.  RESULTS 
 
As has already been discussed, we transform malware samples using various techniques discussed in Section III and 
pass them through anti-malware tools we evaluate. We will now briefly describe our methodology and then discuss 
the findings of our study. 
We describe our methodology through Figure 1 and through Tables IV and V, which depict the series of 
transformations applied to DroidDream and Fakeplayer samples and the detec- tion results on various anti-malware 
tools. Empty cells in the tables indicate positive detection while cells with ‘x’ indicate that the corresponding anti-
malware tool failed to detect the malware sample after the given transformations were applied to the sample. The 
tables reflect a general approach of our study. We begin testing with trivial transformations and then proceed with 
transformations that are more complex. Each transformation is  applied to  a  malware sample (of  course, TABLE 
III: Key to Tables IV, V and VI. Trans- formations coded with single letters are trivial transformations. All others are 
DSA. We did not need NSA transformations to thwart anti-malware tools. some  like  exploit  encryption  apply  only  
in  certain  cases) and the transformed sample is passed through anti-malware. If  detection  breaks  with  trivial  
transformations,  we  stop.2 
Next,  we  apply  all  the  DS 
A  transformations. If  detection still does not break, we apply combinations of DSA trans- formations. In general 
there is no well-defined order in which transformations should be applied (in some cases a heuristic works; for 
example, malware that include native exploits are likely to be detected based on those exploits). Fortunately, in our 
study, we did not need to apply combinations of more than two transformations to break detection. When applying 
combinations of transformations, we stopped when detection broke. We do not show the redundant combinations in 
the tables for the sake of conciseness. The last rows do not form part of our methodology; we construct them manually 
to show the set of transformations with which all anti-malware tools yield. 
 
Our results with all the malware samples are summarized in Table VI. This table gives the minimal transformations 
necessary to evade detection for malware-anti-malware pairs. For example, DroidDream requires both exploit 
encryption and call indirection to evade Dr. Web’s detection. These minimal transformations also give insight into what 
kind of detection signatures are being used. Our tool produces actual malware; we take special precaution to avoid 
spreading these samples and are careful with whom we share these samples. We next describe our key findings in the 
light of the detection results. These findings are not meant to be statistical conclusions; yet they give a general idea of 
the capabilities of anti-malware tools. 
Finding  1 All the studied anti-malware  products are  vul- nerable  to common transformations. All the 
transformations appearing in Table VI are easy to develop and apply, redefine only certain syntactic properties of the 
malware, and are common  ways  to  transform  malware.  Transformations like identifier renaming and data 
encryption are easily available 
 
2 All DSA and NSA transformations also result in trivial transformations because of involving disassembling, 
assembling and repacking. Hence, there is no use in proceeding further. 
using free and commercial tools [7], [18]. Exploit and pay- load encryption is also easy to achieve. Although most of 
current  Android  malware  uses  simple  techniques,  without the use of sophisticated transformations, we point out 
that some of these transformations may already be seen in the wild in current malware. For example, Geinimi 
variants have encrypted strings [19]. Similarly, the DroidKungFu malware uses encrypted exploit code [20]; a similar 
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transformation to DroidDream allows easy evasion across almost all the anti- malware tools we studied. Finally, there 
are reports of similar server-side polymorphism as well [6]. In future, it is likely that more and more malware will 
adopt sophisticated techniques for polymorphism. No transformations just discussed thwart static analysis. 
 
We found that only Dr. Web uses a somewhat more so- phisticated algorithm for detection. Our findings indicate that 
the general detection scheme of Dr. Web is as follows. The set of method calls from every method is obtained. 
These sets  are  then  used  as  signatures  and  the  detection  phase consists of matching these sets against sets 
obtained from the sample under test. We also tested Dr. Web against reflection transformation (not shown in the tables) 
and were able to evade it. This offers another confirmation that signatures are based on  method  calls.  Furthermore, 
we  also  found  (by  limiting our transformations) that only framework API calls matter; calls within the application 
make no difference. It seems that the matching is somewhat fuzzy (requiring only a threshold percentage of matches) 
because we found on DroidDream and Fakeplayer that results are positive even when a few classes are removed from 
the dex file. For these two families, we could create multiple minimal sets of classes that would result in pos- itive 
detection. As mentioned earlier, Dr. Web indeed claims it has signatures that are resilient to malware 
modifications. It is difficult to say if the polymorphic resistance of these signatures is any stronger than other 
signatures depending on identifier names and string and data values. In particular, such signatures do not capture 
semantic properties of malware such as data and control flow. Our results aptly demonstrate the low resistance. 
  
TABLE IV: DroidDream transformations and anti-malware failure. Please see Table III for key. ‘x’ indicates failure 
in detection. 
 

 AVG Symantec Lookout ESET Dr. Web Kaspersky Trend M. ESTSoft Zoner Webroot 
P           
A         x  
RP x       x x  
EE   x      x  
RI  x       x x 
ED         x  
CR         x  
CI         x  
JN         x  
RI+EE  x x x     x x 
EE+ED   x   x   x  
EE+RF   x    x  x  
EE+CI   x  x    x  
RP+RI+EE+ED+RF+CI x x x x x x x x x x 

 
TABLE  V:  Fakeplayer  transformations and  anti-malware failure.  Please  see  Table  III  for  key.  ‘x’  indicates  
failure  in  detection.  EE 
transformation does not apply for lack of native exploit or payload in Fakeplayer. 
 

 AVG Symantec Lookout ESET Dr. Web Kaspersky Trend Micro ESTSoft Zoner Webroot 
P           
A       x  x  
RP       x x x x 
RI    x  x x  x  
ED       x  x  
CR       x  x  
CI     x  x  x  
JN       x  x  
RP+RI x x x x  x x x x x 
RP+RI+CI x x x x x x x x x x 

 
TABLE VI: Evaluation summary. Please see Table III for key. ‘+’ indicates the composition of two transformations. 
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 DroidDream Geinimi Fakeplayer Bgserv BaseBridge Plankton 
AVG RP RI RP + RI RI RI RP + RI 
Symantec RI RI RP + RI RI + ED ED P 
Lookout EE RI + ED RP + RI RI + ED EE + ED RI 
ESET RI + EE ED RI RI EE + ED RI + ED 
Dr. Web EE + CI CI CI CI EE + CI CI 
Kaspersky EE + ED RI RI RI + ED EE + ED A 
Trend M. EE + RF RI A A EE + RF A 
ESTSoft RP RP RP RP RP RP 
Zoner A RI A A A RI 
Webroot RI RI RP RI RP RI 

 
 
Finding  2 At least 43% signatures are not based on code- level artifacts. That is, these are based on file names, 
check- sums (or binary sequences) or information easily obtained by the PackageManager API. We also found all 
AVG signatures to be derived from the content of AndroidManifest only (and hence that of  the PackageManager 
API). In  case of  AVG, the  signatures are  based  on  application component classes or package names or both. 
Furthermore, this information is derived from  AndroidManifest only. We  confirmed this  by placing  a  fake  
AndroidManifest in  malware  packages  and assembling them with the rest of the package kept as it is. This 
AndroidManifest did not have any of the components or package names declared by the malware applications. The 
detection was negative for all the malware samples. 
Finding  3 90% of signatures do not require static analysis of bytecode. Only one of ten anti-malware  tools was 
found to be using static analysis.   Names of classes, methods, and fields, and all the strings and array data are 
stored in  the classes.dex file as they are and hence can be obtained by content matching. The only signatures 
requiring static analysis of bytecode are those of Dr. Web because it extracts API calls made in various methods. 
Finding  4 Anti-malware tools have evolved towards content-based signatures over the past one year. We studied 
compare  our  findings  that  we  obtained  in  February  2012 (Table VII) to our present findings obtained in February 
2013 (Table  VI).  Some  of  the  anti-malware tools  have  changed considerably for the same malware samples. Last 
year, 45% of the signatures were evaded by trivial transformations, i.e., repacking and assembling/disassembling. Such 
signatures have virtually no resilience against polymorphism. Our present results  show  a  marked  decrease  in  this  
fraction  to  16%. We find that in all such cases where we see changes, anti- malware authors have moved to content-
based matching, such 
  
 
<manifest ... package= "com.crazyapps.angry.birds.rio.unlocker"  ... > 
<application  android:label="@string/app_name" android:icon="@drawable/icon"> 
<activity android:label="@string/app_name" android:name=  
".AngryBirdsRioUnlocker"   ... > 

: 
</activity> 
<service android:name= "com.plankton.device.android.AndroidMDKProvider"   ... /> 
</application> 
 
<manifest ... package= "com.hDEWJu.oYlCvk.hFYkwc.FgDOHA.UPkmVF"   ... > 
<application  android:label="@string/app_name" android:icon="@drawable/icon"> 
<activity android:label="@string/app_name" android:name=  ".LncHMH"   ... > 

: 
</activity> 
<service android:name= "com.rawJbA.DKPTQc.aaMYse.QUivSk"   ... /> 
</application> 
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Figure 2: An example evasion. Changes required in AndroidManifest of Plankton to evade AVG (original first and 
modified second; only relevant parts are shown with differences highlighted). No other changes are required. The 
application will not work though until the components are also renamed in the bytecode. We confirm that AVG’s 
detection is based on AndroidManifest alone (see Finding 2). 
 
TABLE VII: Summary of results from anti-malware tools downloaded in February 2012. Please see Table III for key. 
‘+’ indicates the composition of two transformations. Results that have changed since then are depicted in bold (see 
Table VI for comparison). 
 

 DroidDream Geinimi Fakeplayer Bgserv BaseBridge Plankton 
AVG RP RI RP + RI RI RI RP + RI 
Symantec P RI RP P P P 
Lookout P ED P P EE + ED RI 
ESET EE ED RI RI EE A 
Dr. Web EE + CI CI CI CI EE + CI CI 
Kaspersky EE RI RI RI + ED EE + ED A 
Trend M. EE RI A A EE A 
ESTSoft P P P P P P 
Zoner A A A A A A 
Webroot RP P RP P P RP 

 
 
as matching identifiers and strings. 
Furthermore, for malware using native code exploits, many anti-malware tools previously matched on the native 
exploits and payloads alone. The situation has changed now as all of these additionally match on some content in the 
rest of the application as well. Although the changes in the signatures over  the  past  one  year  may  be  seen  as  
improvement, we point out that the new signatures still lack resilience against polymorphic malware as our results 
aptly demonstrate. 
 

VII. DEFENSES 
 
Semantics-based Malware  Detection. We point out that ow- ing to the use of bytecodes, which contain high-level 
structural information, analyses of Android applications becomes much simpler than those of native binaries. Hence, 
semantics-based detection schemes could prove especially helpful in the case of Android. For example, 
Christodorescu et al. [21] describe a technique for semantics based detection. Their algorithms are based on 
unifying nodes in a given program with nodes in a signature template (nodes may be understood as abstract 
instructions),  while  preserving  def-use  paths3   described  in the template. The signature template abstracts data 
flows and control flows, which are semantics properties of a program. Since  this  technique  is  based  on  data  flows 
rather  than  a 
 
3 A def-use path for a variable signifies a definition of that variable in a program and all uses of that variable, 
reachable from that definition. 
superficial property of the program such as certain strings or names of methods being defined or called, it is not 
vulnerable to  any  of  the  transformations (all  of  which  are  trivial  or DSA) that show up in  Table VI. These 
techniques further have  a  potential  for  a  very  low  false  positive  rate  as  the authors demonstrate in their work. 
Such a detection scheme is arguably slower than current detection schemes but offers higher confidence in detection. 
This is just another instance of the traditional security-performance tradeoff. Christodorescu et al. had actually 
reported the running times to be in the order of a couple of minutes on their prototype and had suggested real 
performance is possible with an optimized implementation [21]. Developing signature templates manually may be 
challenging. Automatic signature generation has been discussed in the context of dynamic analysis [22], [23] but 
may be adapted to static analysis as well. 
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Semantics-based detection is quite challenging for native codes; their analyses frequently encounters issues such as 
missing information on function boundaries, pointer aliasing, and so on [24], [25]. Bytecodes, on the other hand, 
preserve much of the source-level information, thus easing analysis. We therefore believe that anti-malware tools have 
greater incen- tive to implement semantic analysis techniques on Android bytecodes than they had for developing 
these for native code. 
 
Support from Platform.  Note that the use of code encryption and reflection (NSA transformations) can still defeat the 
above scheme. Code encryption does not leave much visible code on which signatures can be developed. The use of 
reflection sim- ply hides away the edges in the call graph. If the method names used for reflective invocations are 
encrypted, these edges are rendered completely opaque to static analysis. Furthermore, it is possible to use function 
outlining to thwart any forms of intra-procedural analysis as well. Owing to these limitations, the use of dynamic 
monitoring is essential. 
Recall that anti-malware tools in Android are unprivileged third party applications. This impedes many different kinds 
of dynamic monitoring that may enhance malware detection. We believe special platform support for anti-malware 
applications is essential to detect malware amongst stock Android appli- cations. This can help malware detection in 
several ways. For example, a common way to break evasion by code encryption is to scan the memory at runtime. The 
Android runtime could provide all the classes loaded using user-defined class loaders to the anti-malware application. 
The loaded classes are already decrypted and anti-malware tools can analyze them easily. 
 
Google Bouncer performs offline dynamic analysis for malware detection [26]. Such scanning has its own problems, 
ranging from detection of the dynamic environment to the malicious activity not getting triggered in the limited time 
for which the emulation runs [27], [28]. We therefore believe of- fline emulation must be supplemented by strong static 
analysis or real-time dynamic monitoring. 
 

VIII. RELATED WORK 
 
Evaluating Anti-malware Tools. Zheng et al. [29] also stud- ied the robustness of anti-malware against Android 
malware recently using a tool called ADAM. ADAM implements only a few transformations, renaming methods, 
introducing junk methods, code reordering, and string encoding, in addition to repacking and 
assembling/disassembling. Our set of transfor- mations is much more comprehensive and includes renaming packages, 
classes, encoding array data, inserting junk state- ments, encrypting payloads and native exploits, reflection, and 
bytecode encryption as well. Finally, we also have compos- ite transformations. Many of the additional 
transformations, including the composite ones, were crucial for evading anti- malware tools. Based on the above, we 
point out that ADAM is not always able to evade an anti-malware tool. Rather than attempting complete evasion, it 
simply offers percentages de- picting how many variants were detected by the anti-malware tools (and these 
percentages are also very high). In contrast, our  framework  is  comprehensive, aimed  towards  complete evasion of 
all anti-malware tools. We believe our results make a clear statement – all anti-malware tools can be evaded using 
common obfuscation techniques. Unlike ADAM, our result is able to highlight the severity of the problem and is 
easily accessible. 
 
Christodorescu and Jha [5] conducted a study similar to ours on desktop anti-malware applications nine years ago. 
They also arrived at the conclusion that these applications have low resilience against malware obfuscation. Our study 
is based on Android anti-malware, and we include several aspects in our study that are unique to Android. 
Furthermore, our study dates after many research works (see below) on obfuscation resilient detection, and we would 
expect the proposed techniques to be readily integrated into new commercial products. Obfuscation  Techniques.  
Collberg et al. [30] review and pro- pose different types of obfuscations. CarbonRom provides only a few of the 
transformations proposed by them. Nonethe- less, the set of transformations provided in CarbonRom is  
comprehensive in  the  sense  that  they  can  break  typical static detection techniques used by anti-malware. Off-the-
shelf tools like Proguard [7] and Klassmaster [18] provide renaming of classes and class members, flow obfuscation, 
and string encryption. While the goal of these tools is to evade manual reverse engineering, we aim at thwarting 
analysis by automatic tools. 
Obfuscated Malware  Detection. Obfuscation resilient detec- tion is based on semantics rather than syntac. As 
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discussed earlier, Christodorescu et al. [21] present one such technique. Christodorescu et al. [31] and Fredrikson et 
al. [22] attempt to generate semantics based signatures by mining malicious behavior automatically. Kolbitsch et al. 
[23] also propose similar  techniques. The  last  three  works  are  for  behavior- based detection and use different 
behavior representations such as  data  dependence graphs and  information flows between system calls. Due to 
lower privileges for anti-malware tools on Android, these approaches cannot directly apply to these tools presently. 
Sequence alignment from bioinformatics [32], [33] has also been applied to malware detection and related problems 
[34], [35]. Further work is also there to compute statistical significance of scores given by these classical se- quence 
alignment algorithms [36], [37]. It may be possible to adapt such techniques to detect transformed malware with 
high performance. 
Smartphone  Malware   Research.   Many  works  have  been done towards discovery and characterization of 
smartphone malware [38], [39], [40], [41], [42], [43], [44]. Our work is distinct from these as we try to evaluate the 
efficacy of existing tools against transformed malware. 
 

IX. CONCLUSION 
 

We  evaluated ten  anti-malware products on  Android for their resilience against malware transformations. To 
facilitate this, we developed CarbonRom, a systematic framework with  various transformation techniques. Our  
findings using transformations of  six  malware  samples  show  that  all  the anti-malware products evaluated are 
susceptible to common evasion techniques and may succumb to even trivial trans- formations not involving code-level 
changes. Finally, we ex- plored possible ways in which the current situation may be improved and  next-generation 
solutions may be  developed. As future work, we plan to perform a more comprehensive evaluation using a much 
larger number of malware samples and anti-malware tools. Interested readers are referred to 
http://list.cs.northwestern.edu/mobile for related source code and technical reports. 
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