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Abstract: Association rule mining algorithms focus on the discovery of valid rules by testing all the items or elements in the domain, rather testing some known 

elements, which makes the process inefficient as it generates a very large number of candidates. Also, most algorithms take multiple passes over the database and 

this results a very high I/O cost. As the database is disk resident and can't be managed completely in main memory, multiple passes over the database reduces the 

performance considerably for any known association rule mining algorithm . The proposed solution to this problem is to separate disjoint sub-domains, which are 

co-related.   

In this paper we concentrate over 

1. The separation of sub-domains  which are composed of co-related elements in the domain.  

2. Database summarization. 

The items of a large domain correlate with each other forming small sub groups i.e. the domain is clustered in small groups [3]. This property appears in many real 

world cases, e.g. Bioinformatics, e-commerce etc [3]. The element of a sub- group can be processed for discovery of association rules as in this case the size of 

candidate set is comparably small to the exponential size of candidates of Apriori in pure form. Most algorithms take multiple passes over the entire database 

which results in inefficiency and high IO overheads.  The proposed algorithm maintains a list of transactions that are related with the component in processing and 

hence only those transactions are processed instead of the entire database.  
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INTRODUCTION 

The mining of association rules involves the discovery of 

significant and valid correlations among items that belong to 

a particular domain [1]. The development of association rule 

mining algorithms has attracted a remarkable attention 

during the last years [2], which are concerned on the 

efficiency and scalability. 

Association rule mining, as originally proposed in [1] with 

its Apriori algorithm , has developed into an active research 

area. Many additional algorithms have been proposed for 

association rule mining [5], [6], [7] and [8]. Also, the 

concept of association rule has been extended in many 

different ways, such as generalized association rules, 

association rules with item constraints, sequence rules [9] 

etc. Apart from the earlier analysis of market basket data, 

these algorithms have been widely used in many other 

practical applications such as customer profiling, analysis of 

products and so on. We have used these algorithms in 

innovative applications such as warranty claims analysis and 

inventory analysis. Several commercial data mining tools 

now offer variants of the association rule mining algorithms.  

End users of association rule mining tools encounter several 

well-known problems in practice. First, the algorithms do 

not always return the results in a reasonable time. Typically, 

this happens because the algorithms generate an exponential 

number of candidate frequent itemsets. Although several 

different strategies have been proposed to tackle efficiency 

issues, they are not always successful. Also, in many cases, 

the algorithms generate an extremely large number of 

association rules, often in thousands or even millions. 

Further, the association rules are sometimes very large. It is 

nearly impossible for the end users to comprehend or 

validate such large number of complex association rules, 

thereby limiting the usefulness of the data mining results. 

Several strategies have been proposed to reduce the number 

of association rules, such as generating only “interesting” 

rules, generating only “non-redundant” rules, or generating 

only those rules satisfying certain other criteria such as 

coverage, leverage, lift or strength. While these are 

promising strategies, none of them seem to sufficiently 

“compress” or reduce the generated association rules, for 

easy comprehension by end users.  

And the second important problem is processing exponential 

number of candidates. This can be solved using the feature 

of correlated patterns. A database can be viewed as a group 

of small groups (clusters or small worlds). This is supported 

by the fact that the elements of the clustered domains are 

related closely to some elements defining a close proximity. 

In several cases it can be expected that items will correlate 

with each other (i.e., create patterns) in a way that small 

worlds [20] are formed. 

RELATED WORKS  

Since its introduction [1], the problem of association-rule 

mining has been studied thoroughly[10]. Earlier approaches 

are characterized as Apriori-like, because they constitute 

improvements over the Apriori algorithm [11]. They 

explore the search space in a BFS manner, resulting in an 

enormous cost when patterns are long and/or when the 

domain size is large. Techniques that reduce the number of 

candidates [12] may improve the situation in the latter case, 

but are unable to handle a very large domain. Algorithms 

for mining generalized association rules are also Apriori-

like. They do not operate on individual items but they focus 

on categories at different levels, by assuming that the items 

are categorized hierarchically. Therefore, a large domain 
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can be replaced by a much smaller number of categories. 

Nevertheless, this approach requires the existence of a 

predetermined hierarchy and the knowledge of the items 

that belong in each category. In contrast, we focus on a 

kind of grouping that is determined by the in-between 

correlations of items, which is not predefined and not 

hierarchical  

A different paradigm consists of algorithms that operate in 

a DFS manner. This category includes algorithms like Tree 

Projection [13], Eclat [14], and FP-growth, whereas 

extensions have been developed for mining maximal 

patterns. Eclat uses a vertical representation of the 

database, called covers, which allows for efficient support 

counting through intersections of item's covers. For large 

domains, this may lead to a significant overhead, since a 

large number of intersections have to be computed. FP-

growth uses a prefix tree, called FP-tree, as a condense 

representation of the database and performs mining with a 

recursive procedure over it. Both Eclat and FP-growth 

require that their representations have to fit entirely in main 

memory. For large domains, the aforementioned 

requirement may not always hold. Nevertheless, as will be 

shown, for very large domains this technique results in high 

execution times, since projection is performed for each 

item.  

All the previous methods are based on column enumeration 

(also denoted as feature enumeration). For mining closed 

patterns over databases with much more columns than 

rows, e.g., gene-expression data, row enumeration has been 

proposed. CARPENTER [15] is such an algorithm, which 

finds closed patterns by testing combination of rows. 

CARPENTER works on the basis that its entire database 

representation is held in main memory, which holds for 

relatively small data sets like microarray data. As the 

number of rows increases, pure row enumeration may 

become inefficient.  

Other algorithms that are influenced by the characteristics 

of gene-expression data include FARMER algorithm , 

which mines a particular type of closed patterns from 

microarray data, and BSC- and FIS-trees [16], which mine 

regular association rules from gene-expression data. 

Although [16] shows an improvement over FP-growth, it is 

limiting because it runs in main memory and only considers 

data sets with few hundred transactions.  

Finally, the concept of finding localized patterns is 

presented in [17]. This work inspired us to consider that 

patterns may not always exist globally. Instead, in several 

applications the data set may contain clusters that provide 

their own (local) patterns. Nevertheless, [17]is based on the 

different direction of clustering the transactions, whereas 

we are interested in clustering the domain. For this reason, 

[17] does not pay attention to the problems resulting from a 

large domain.  

Algorithm 

The proposed method of discovering association rules 

progress phase by phase. The proposed method can be 

informally stated as:: 

  

Phase 1 

 

1. The database is partitioned in small sub databases 

according to the available computational memory, 

which can be processed entirely once at a time. 

This approach is adopted from [4]. 

2. This partitioned database is scanned to obtain 

localized patterns[3]. 

3. All obtained localized patterns from the different 

partitions are merged to obtain disjoint patterns. 

4. These disjoint patterns give the groups of items 

which can be used as the base itemset for candidate 

generation. 

 

Phase 2 

 

1. These localized patterns are processed one at a 

time. 

2. A special number pattern_num is added to the 

transactions in the database, which represent the 

localized pattern they belong to. 

At the time of processing of some localized pattern 

only those transactions will be searched/ processed 

whose pattern_num 

Matches with that of the localized pattern under 

processing.  

 

The Algorithm can be represented as : 

 

Algorithm: mine_database 

Input: D, where D = {T1, T2, T3, T4,…………. Tn}   

Output: X � Y,  

Pi  = partition_database ( D ), where i= 1 to m 

LPj  = find_patterns (P1,P2,…..,Pm) where j = 1 to k 

for LP1 to LPj 

Si= group transactions with same pattern_num that of the 

localized pattern 

generate_rule (LPi ) 

end 

  

The database is partitioned as the entire database is disk 

resident and very large which can't be handled by the 

present hardware i.e. entire database can't be kept in the 

memory at a time. Thus, the divide and conquer approach is 

applied and the database is partitioned in small partitions 

which can be accommodated in the memory in entirety at 

one time. The partitioning approach is same as presented in 

[4].  

As mentioned, it is not practical to generate all the 

candidates from all the elements ( items in the market basket 

data)  present in the database. It will result in the 

exponential number of candidates, and testing support and 

confidence for each of them is not practical. Hence it is 

necessary to reduce the number of items, that are above the 

minimum support. This is done by identifying the localized 

patterns which are related to each other and  each such 

component is such a group which can be processed  for all 

valid rules present within them. The algorithm can be stated 

as: 

 

Algorithm: find_patterns(P1,P2,…..,Pm) where j = 1 to k 

 Sup=minimum_support 

 Begin 

 Initialize the graph structure 

 Foreach partition Pi  

 foreach transaction in Pi 
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 foreach pair of items(i, j) in T  

if i,j belong to the same component do nothing 

else if i and j belong to different components C and C' 

find support of i and j 

else if support of i and j is greater than sup 

merge_components C and C' as C'' 

return C'' 

end     

     

A component C refers to a disjoint set hence, the meging 

can be done using disjoint set data structures. Each different 

component C returned by the algorithm is a separate domain 

containing items which are non overlapping. All items 

present in one component form a localized pattern. Thus, the 

entire domain size is reduced and divided into small groups 

which can be used as base 1-itemset and can be mined for 

valid rules.  

Lemma 1: The total space requirement for the algorithm 

find_pattern algorithm is given as O(gs2), where g is the 

pace required by one node and s is the number of items in 

the domain[Appendix].  

The next stage of this algorithm is focused on summarizing 

the database for efficient processing. Apriori needs  frequent 

passes over the database to generate the frequent itemset 

which is not possible with disk resident database as it will 

result in a very high IO cost. This can be reduced if the 

transactions which are related to one component are present 

when processing the component. i.e. transactions are 

grouped separately for each separate component/ localized 

pattern. The next stage of mining association rules can be 

merged in this phase of algorithm. Algorithm can be 

represented as : 

 

Algorithm: summarize_database(component C) 

  

Begin 

For all partitions Pi 

Begin loop 

For all transactions Ti
 

If Ti 
contains any item i which is in C 

Add  pattern num to Ti  

End loop 

Forall items i in C 

Generate_rules(C, Si)  

 

For generation of valid rules we can use any efficient 

frequent itemset mining algorithm based on Apriori.[1]. 

 

Lemma 2: Maximum number of pattern_num associated 

with each transaction can't be greater than the total number 

of transactions in a partition [Appendix]. 

CONCLUSIONS 

The proposed method employees the divide and conquer 

approach in successive stages and as a result a very large 

database is treated as a optimal chunk of data which can be 

handled efficiently. Also, the number of possible candidates 

is educed to a remarkable extent by partitioning the domain 

into localized patterns, which is because of the presence of 

the clusters. 

The proposed algorithm generates frequent itemsets for each 

localized pattern or the clustered sub domain one by one. 

This method can be employed to obtain valid rules for the 

desired localized pattern, which is useful when the end user 

needs the rule to be generated for only some elements of the 

domain and not for the entire elements. This solves the 

problem of generation of large number of rules which may 

not seem much useful to the end user. 

The independent processing of localized patterns adds an 

additional field pattern_num to the transactions which 

contain the elements of the pattern. The transactions without 

this number are neglected when the frequent itemset mining 

algorithm processes the transactions for calculating support 

and confidence. This saves the computational effort at the 

cost of one additional field 'pattern_num'. 

The proposed approach is highly parallelizable, as each 

clustered sub domain can be processed individually and 

independently.  

APPENDIX 

Lemma 1: The total space requirement for the algorithm 

find_pattern algorithm is given as O(gs2), where g is the 

pace required by one node and s is the number of items 

in the domain.  

 

Proof 

Step 1: For a given set A = {x1,x2,………….,xn} the total 

number of pairs generated is n(n-1)/2.  Formally, this can 

be represented as: 

|A| = n(n-1)/2 = 0.5 * (n2 – n); 

Which can be expressed as O(n2). As the total number of 

the elements in one partition (ie. the domain size in the 

partition) is s, the space requirement is O(s2).  

Step 2: Assuming that the support of all the pairs generated 

is greater than the minimum support threshold. Then the 

total number of nodes needed to represent the graph is 

equal to the size of domain. In our case the domain size is 

s. Hence, the space required to represent this graph 

structure in memory is s2 * g , where g is the space needed 

to represent one node. This can be represented as O(gs2). 

From above we can see the space requirement of this 

complete algorithm is   max {O(s2) , O(gs2)} = O(gs2) 

 for g >= 1      

  

The next stage of this algorithm is focused on summarizing 

the database for efficient processing. Apriori needs  frequent 

passes over the database to generate the frequent itemset 

which is not possible with disk resident database as it will 

result in a very high IO cost. This can be reduced if the 

transactions which are related to one component are present 

when processing the component. i.e. transactions are 

grouped separately for each separate component/ localized 

pattern. The next stage of mining association rules can be 

merged in this phase of algorithm. Algorithm can be 

represented as : 

 

Algorithm: summarize_database(component C) 

Begin 

For all partitions Pi 

Begin loop 
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For all transactions Ti
 

If Ti 
contains any item i which is in C 

Add  pattern num to Ti  

End loop 

Forall items i in C   

Generate_rules(C, Si)  

 

For generation of valid rules we can use any efficient 

frequent itemset mining algorithm based on Apriori.[1]. 

 

Lemma 2: Maximum number of pattern_num associated 

with each transaction can't be greater than the total 

number of transactions in a partition. 

 

Proof 

For n transactions the total number of localized pattern is 

always less than or equal to the number of transactions. 

i.e. In the worst case no two transaction will ever be present 

in the same localized pattern and all transaction will form its 

own localized pattern. 

 

Pattern_num <= total number of transactions , and 

In the worst case:  

Pattern_num = total number of transactions . 
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