
Volume 1, No. 2, September 2010

�Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 31

Mining association rules for clustered domains by separating disjoint sub-domains in

Large Databases

Kanhaiya Lal

1
 and N. C. Mahanti

2
1Department of Computer Science, BIT, Patna Campus, Patna, India

2Department of Applied Mathematics, BIT, Mesra, Ranchi, India

Abstract: Association rule mining algorithms focus on the discovery of valid rules by testing all the items or elements in the domain, rather testing some known

elements, which makes the process inefficient as it generates a very large number of candidates. Also, most algorithms take multiple passes over the database and

this results a very high I/O cost. As the database is disk resident and can't be managed completely in main memory, multiple passes over the database reduces the

performance considerably for any known association rule mining algorithm . The proposed solution to this problem is to separate disjoint sub-domains, which are

co-related.

In this paper we concentrate over

1. The separation of sub-domains which are composed of co-related elements in the domain.

2. Database summarization.

The items of a large domain correlate with each other forming small sub groups i.e. the domain is clustered in small groups [3]. This property appears in many real

world cases, e.g. Bioinformatics, e-commerce etc [3]. The element of a sub- group can be processed for discovery of association rules as in this case the size of

candidate set is comparably small to the exponential size of candidates of Apriori in pure form. Most algorithms take multiple passes over the entire database

which results in inefficiency and high IO overheads. The proposed algorithm maintains a list of transactions that are related with the component in processing and

hence only those transactions are processed instead of the entire database.

Keywords: Pattern Clustering; Localized Pattern; Domain Partitioning; Database Partitioning;

INTRODUCTION

The mining of association rules involves the discovery of

significant and valid correlations among items that belong to

a particular domain [1]. The development of association rule

mining algorithms has attracted a remarkable attention

during the last years [2], which are concerned on the

efficiency and scalability.

Association rule mining, as originally proposed in [1] with

its Apriori algorithm , has developed into an active research

area. Many additional algorithms have been proposed for

association rule mining [5], [6], [7] and [8]. Also, the

concept of association rule has been extended in many

different ways, such as generalized association rules,

association rules with item constraints, sequence rules [9]

etc. Apart from the earlier analysis of market basket data,

these algorithms have been widely used in many other

practical applications such as customer profiling, analysis of

products and so on. We have used these algorithms in

innovative applications such as warranty claims analysis and

inventory analysis. Several commercial data mining tools

now offer variants of the association rule mining algorithms.

End users of association rule mining tools encounter several

well-known problems in practice. First, the algorithms do

not always return the results in a reasonable time. Typically,

this happens because the algorithms generate an exponential

number of candidate frequent itemsets. Although several

different strategies have been proposed to tackle efficiency

issues, they are not always successful. Also, in many cases,

the algorithms generate an extremely large number of

association rules, often in thousands or even millions.

Further, the association rules are sometimes very large. It is

nearly impossible for the end users to comprehend or

validate such large number of complex association rules,

thereby limiting the usefulness of the data mining results.

Several strategies have been proposed to reduce the number

of association rules, such as generating only “interesting”

rules, generating only “non-redundant” rules, or generating

only those rules satisfying certain other criteria such as

coverage, leverage, lift or strength. While these are

promising strategies, none of them seem to sufficiently

“compress” or reduce the generated association rules, for

easy comprehension by end users.

And the second important problem is processing exponential

number of candidates. This can be solved using the feature

of correlated patterns. A database can be viewed as a group

of small groups (clusters or small worlds). This is supported

by the fact that the elements of the clustered domains are

related closely to some elements defining a close proximity.

In several cases it can be expected that items will correlate

with each other (i.e., create patterns) in a way that small

worlds [20] are formed.

RELATED WORKS

Since its introduction [1], the problem of association-rule

mining has been studied thoroughly[10]. Earlier approaches

are characterized as Apriori-like, because they constitute

improvements over the Apriori algorithm [11]. They

explore the search space in a BFS manner, resulting in an

enormous cost when patterns are long and/or when the

domain size is large. Techniques that reduce the number of

candidates [12] may improve the situation in the latter case,

but are unable to handle a very large domain. Algorithms

for mining generalized association rules are also Apriori-

like. They do not operate on individual items but they focus

on categories at different levels, by assuming that the items

are categorized hierarchically. Therefore, a large domain

K Lal et. al., Journal of Global Research in Computer Science, 1 (2), September 2010,31-34

© JGRCS 2010, All Rights Reserved 32

can be replaced by a much smaller number of categories.

Nevertheless, this approach requires the existence of a

predetermined hierarchy and the knowledge of the items

that belong in each category. In contrast, we focus on a

kind of grouping that is determined by the in-between

correlations of items, which is not predefined and not

hierarchical

A different paradigm consists of algorithms that operate in

a DFS manner. This category includes algorithms like Tree

Projection [13], Eclat [14], and FP-growth, whereas

extensions have been developed for mining maximal

patterns. Eclat uses a vertical representation of the

database, called covers, which allows for efficient support

counting through intersections of item's covers. For large

domains, this may lead to a significant overhead, since a

large number of intersections have to be computed. FP-

growth uses a prefix tree, called FP-tree, as a condense

representation of the database and performs mining with a

recursive procedure over it. Both Eclat and FP-growth

require that their representations have to fit entirely in main

memory. For large domains, the aforementioned

requirement may not always hold. Nevertheless, as will be

shown, for very large domains this technique results in high

execution times, since projection is performed for each

item.

All the previous methods are based on column enumeration

(also denoted as feature enumeration). For mining closed

patterns over databases with much more columns than

rows, e.g., gene-expression data, row enumeration has been

proposed. CARPENTER [15] is such an algorithm, which

finds closed patterns by testing combination of rows.

CARPENTER works on the basis that its entire database

representation is held in main memory, which holds for

relatively small data sets like microarray data. As the

number of rows increases, pure row enumeration may

become inefficient.

Other algorithms that are influenced by the characteristics

of gene-expression data include FARMER algorithm ,

which mines a particular type of closed patterns from

microarray data, and BSC- and FIS-trees [16], which mine

regular association rules from gene-expression data.

Although [16] shows an improvement over FP-growth, it is

limiting because it runs in main memory and only considers

data sets with few hundred transactions.

Finally, the concept of finding localized patterns is

presented in [17]. This work inspired us to consider that

patterns may not always exist globally. Instead, in several

applications the data set may contain clusters that provide

their own (local) patterns. Nevertheless, [17]is based on the

different direction of clustering the transactions, whereas

we are interested in clustering the domain. For this reason,

[17] does not pay attention to the problems resulting from a

large domain.

Algorithm

The proposed method of discovering association rules

progress phase by phase. The proposed method can be

informally stated as::

Phase 1

1. The database is partitioned in small sub databases

according to the available computational memory,

which can be processed entirely once at a time.

This approach is adopted from [4].

2. This partitioned database is scanned to obtain

localized patterns[3].

3. All obtained localized patterns from the different

partitions are merged to obtain disjoint patterns.

4. These disjoint patterns give the groups of items

which can be used as the base itemset for candidate

generation.

Phase 2

1. These localized patterns are processed one at a

time.

2. A special number pattern_num is added to the

transactions in the database, which represent the

localized pattern they belong to.

At the time of processing of some localized pattern

only those transactions will be searched/ processed

whose pattern_num

Matches with that of the localized pattern under

processing.

The Algorithm can be represented as :

Algorithm: mine_database

Input: D, where D = {T1, T2, T3, T4,…………. Tn}

Output: X � Y,

Pi = partition_database (D), where i= 1 to m

LPj = find_patterns (P1,P2,…..,Pm) where j = 1 to k

for LP1 to LPj

Si= group transactions with same pattern_num that of the

localized pattern

generate_rule (LPi)

end

The database is partitioned as the entire database is disk

resident and very large which can't be handled by the

present hardware i.e. entire database can't be kept in the

memory at a time. Thus, the divide and conquer approach is

applied and the database is partitioned in small partitions

which can be accommodated in the memory in entirety at

one time. The partitioning approach is same as presented in

[4].

As mentioned, it is not practical to generate all the

candidates from all the elements (items in the market basket

data) present in the database. It will result in the

exponential number of candidates, and testing support and

confidence for each of them is not practical. Hence it is

necessary to reduce the number of items, that are above the

minimum support. This is done by identifying the localized

patterns which are related to each other and each such

component is such a group which can be processed for all

valid rules present within them. The algorithm can be stated

as:

Algorithm: find_patterns(P1,P2,…..,Pm) where j = 1 to k

 Sup=minimum_support

 Begin

 Initialize the graph structure

 Foreach partition Pi

 foreach transaction in Pi

K Lal et. al., Journal of Global Research in Computer Science, 1 (2), September 2010,31-34

© JGRCS 2010, All Rights Reserved 33

 foreach pair of items(i, j) in T

if i,j belong to the same component do nothing

else if i and j belong to different components C and C'

find support of i and j

else if support of i and j is greater than sup

merge_components C and C' as C''

return C''

end

A component C refers to a disjoint set hence, the meging

can be done using disjoint set data structures. Each different

component C returned by the algorithm is a separate domain

containing items which are non overlapping. All items

present in one component form a localized pattern. Thus, the

entire domain size is reduced and divided into small groups

which can be used as base 1-itemset and can be mined for

valid rules.

Lemma 1: The total space requirement for the algorithm

find_pattern algorithm is given as O(gs2), where g is the

pace required by one node and s is the number of items in

the domain[Appendix].

The next stage of this algorithm is focused on summarizing

the database for efficient processing. Apriori needs frequent

passes over the database to generate the frequent itemset

which is not possible with disk resident database as it will

result in a very high IO cost. This can be reduced if the

transactions which are related to one component are present

when processing the component. i.e. transactions are

grouped separately for each separate component/ localized

pattern. The next stage of mining association rules can be

merged in this phase of algorithm. Algorithm can be

represented as :

Algorithm: summarize_database(component C)

Begin

For all partitions Pi

Begin loop

For all transactions Ti

If Ti
contains any item i which is in C

Add pattern num to Ti

End loop

Forall items i in C

Generate_rules(C, Si)

For generation of valid rules we can use any efficient

frequent itemset mining algorithm based on Apriori.[1].

Lemma 2: Maximum number of pattern_num associated

with each transaction can't be greater than the total number

of transactions in a partition [Appendix].

CONCLUSIONS

The proposed method employees the divide and conquer

approach in successive stages and as a result a very large

database is treated as a optimal chunk of data which can be

handled efficiently. Also, the number of possible candidates

is educed to a remarkable extent by partitioning the domain

into localized patterns, which is because of the presence of

the clusters.

The proposed algorithm generates frequent itemsets for each

localized pattern or the clustered sub domain one by one.

This method can be employed to obtain valid rules for the

desired localized pattern, which is useful when the end user

needs the rule to be generated for only some elements of the

domain and not for the entire elements. This solves the

problem of generation of large number of rules which may

not seem much useful to the end user.

The independent processing of localized patterns adds an

additional field pattern_num to the transactions which

contain the elements of the pattern. The transactions without

this number are neglected when the frequent itemset mining

algorithm processes the transactions for calculating support

and confidence. This saves the computational effort at the

cost of one additional field 'pattern_num'.

The proposed approach is highly parallelizable, as each

clustered sub domain can be processed individually and

independently.

APPENDIX

Lemma 1: The total space requirement for the algorithm

find_pattern algorithm is given as O(gs2), where g is the

pace required by one node and s is the number of items

in the domain.

Proof

Step 1: For a given set A = {x1,x2,………….,xn} the total

number of pairs generated is n(n-1)/2. Formally, this can

be represented as:

|A| = n(n-1)/2 = 0.5 * (n2 – n);

Which can be expressed as O(n2). As the total number of

the elements in one partition (ie. the domain size in the

partition) is s, the space requirement is O(s2).

Step 2: Assuming that the support of all the pairs generated

is greater than the minimum support threshold. Then the

total number of nodes needed to represent the graph is

equal to the size of domain. In our case the domain size is

s. Hence, the space required to represent this graph

structure in memory is s2 * g , where g is the space needed

to represent one node. This can be represented as O(gs2).

From above we can see the space requirement of this

complete algorithm is max {O(s2) , O(gs2)} = O(gs2)

 for g >= 1

The next stage of this algorithm is focused on summarizing

the database for efficient processing. Apriori needs frequent

passes over the database to generate the frequent itemset

which is not possible with disk resident database as it will

result in a very high IO cost. This can be reduced if the

transactions which are related to one component are present

when processing the component. i.e. transactions are

grouped separately for each separate component/ localized

pattern. The next stage of mining association rules can be

merged in this phase of algorithm. Algorithm can be

represented as :

Algorithm: summarize_database(component C)

Begin

For all partitions Pi

Begin loop

K Lal et. al., Journal of Global Research in Computer Science, 1 (2), September 2010,31-34

© JGRCS 2010, All Rights Reserved 34

For all transactions Ti

If Ti
contains any item i which is in C

Add pattern num to Ti

End loop

Forall items i in C

Generate_rules(C, Si)

For generation of valid rules we can use any efficient

frequent itemset mining algorithm based on Apriori.[1].

Lemma 2: Maximum number of pattern_num associated

with each transaction can't be greater than the total

number of transactions in a partition.

Proof

For n transactions the total number of localized pattern is

always less than or equal to the number of transactions.

i.e. In the worst case no two transaction will ever be present

in the same localized pattern and all transaction will form its

own localized pattern.

Pattern_num <= total number of transactions , and

In the worst case:

Pattern_num = total number of transactions .

REFERENCES

1. R. Aggarwal, T. Imielinski and A. Swami, Mining

association rules between sets of items in very large

databases, Proceedings of the ACM SIGMOD

Conference(1993), pp.207-216

2. J. Hipp, U. Guntzer and G. Nakhaeizadeh, Algorithms

for association rules mining—a general survey and

comparison, SIGKDD Explor. 2 (2000) (1), pp. 58–64.

3. Alexandrous Nanopoulus, Apostolos N. Padopoulos

and Yannis Manolopoulous, Mining Association Rules

in very large clustered domains, Science direct 16 April

2006

4. A. Savasere, E. Omiecinski and S. Navathe, An

efficient algorithm for mining association rules in large

databases, Proceedings of the VLDB Conference

5. R.J. Hilderman, H.J. Hamilton Knowledge discovery

and interestingness measure : a survey, Tech. Report

CS-99-04, Dept. of Computer Science, Univ. of Regina,

1999.

6. R.M. Karp, S. Shenker and C.H. Papadimitrious, A

simple algorithm for finding frequent elements in

streams and bags, ACM Trans. Database Syst. 28

(2003) (1), pp. 51–55.

7. D. Lin and Z.M. Kedem, Pincer-search: an efficient

algorithm for discovering the maximum frequent set,

IEEE Trans. Knowledge Data Eng. 14 (2002) (3), pp.

553–556.

8. M. J. Zaki C. Hsiao, Charm: an efficient algorithm for

closed itemset mining, in: Proc. SIAM International

Conference on Data Mining, 2002.

9. S. Ramaswamy, S. Mahajan, A. Silberschatz, On the

discovery of interesting patterns in association rules, in:

Proc. 24th Int. Conf. Very Large Data Bases (VLDB

1998), 1998, pp. 368–379.

10. B. Goethals, M. Zaki, Advances in frequent itemset

mining implementations: introduction to FIMI03, in:

Proceedings of the FIMI Workshop, 2003

11. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and

A.I. Verkamo, Fast discovery of association rules,

Advances in Knowledge Discovery and Data Mining

(1996), pp. 307–328.

12. J.S. Park, M.-S. Chen and P. Yu, Using a hash-based

method with transaction trimming for mining

association rules, IEEE Trans. Knowl. Data Eng. 9

(1997) (5), pp. 813–825.

13. R. Agarwal, C. Aggarwal and V.V. Prasad, A tree

projection algorithm for generation of frequent itemsets,

J. Parallel Distrib. Comput. 61 (2001), pp. 350–371.

14. M.J. Zaki, Scalable algorithms for association mining,

IEEE Trans. Knowl. Data Eng. 12 (2000) (3), pp. 372–

390.

15. F. Pan, G. Cong and A.K.H. Tung, Carpenter: finding

closed patterns in long biological datasets, Proceedings

of the SIGKDD Conference (2003).

16. X.-R. Jiang and L. Gruenwald, Microarray gene

expression data association rules mining based on BSC-

tree and FIS-tree, Data Knowl. Eng. 53 (2005) (1), pp.

3–29.

17. C. Aggarwal, C. Procopiuc and P. Yu, Finding localized

associations in market basket data, IEEE Trans. Knowl.

Data Eng. 14 (2002) (1)

