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Abstract— Frequent Pattern Mining plays an important 

role in the field of data mining community today. The 

concept of frequent pattern mining can be extended to 

dynamic databases and data streams. A data stream 

represents a massive input data that arrives at high speed 

and is unbounded. There are various data processing 

models in data streams. The challenge in frequent pattern 

mining is the presence of null transactions. Null 

transaction is a transaction that does not contain any 

itemset being examined. Most of the existing streaming 

algorithms did not consider the overhead of null 

transactions. Hence, they fail to discover the frequent 

patterns faster and occupy lot of memory space to 

represent frequent items. To overcome this issue, a new 

algorithm called Screening of Null Transactions-Frequent 

Pattern Mining over Data Streams (SNT-FPMoDS) has 

been proposed which extracts frequent patterns using 

landmark and sliding window models. Experimental 

results using real datasets on different models show that 

our proposed algorithm saves lot of computation time and 

memory. 

 

Keywords— Data Stream, Landmark Window Model, 

Sliding Window Model 

 

I. INTRODUCTION 

 

Data Mining is used to discover the patterns from huge 

databases. In the knowledge discovery process, frequent 

pattern mining [3] is one of the fundamental and 

interesting problems [10] to find the frequent patterns 

within the dataset. The problem of frequent pattern 

mining is not limited to static databases and also extended 

to dynamic databases [9] and data streams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data stream is a massive input data that arrives at high 

speed and is unbounded. Examples of data stream  include 

telecommunication, sensors, stock market analysis, web 

click streams data, etc. In data streams, concept change is 

one of the important phenomena because data is not static 

here. So, whenever a significant change occurs, it may 

require more memory and processing power and it may 

produce inaccurate results. 

There are three data processing models [7] namely 

Landmark Model, Damped Model or Time Fading Model, 

Sliding Window Model. Landmark Model extracts the 

frequent patterns over the entire history of data streams.  

Time Fading Model or Damped Model brings the 

frequent patterns with respect to time or based on the 

weight assigned to each transaction. Sliding Window 

Model processes only the recent transactions and gives the 

recent frequent patterns in the result. One of the three 

models should be chosen for stream mining process based 

upon the application selected.  

In  addition to that, a single item in a transaction does 

not give any association for pattern mining. This 

transaction is known as null transaction. The performance 

degrades due to the presence of null transactions in a 

dataset. 

Main Contribution of this paper is depicted as follows. 

The major work is to mine the frequent patterns over data 

streams using different models. A new algorithm called 

SNT-FPMoDS (Screening of Null Transactions-Frequent 

Pattern Mining over Data Streams) has been proposed and 

it was implemented using Landmark and Sliding Window 

models. Screening of null transactions contributes towards 

the reduction in number of frequent patterns, memory 

storage and executing time. 
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II. RELATED WORKS 

 

In 2002 [2], Manku and Motwani proposed an 

algorithm called lossy counting for frequent items mining 

and then extended it for frequent itemset mining. In this 

work, all frequent itemsets are outputted with an error 

bound and there are no false negatives in their result. In 

2004, Chris Gianella et al. [5] proposed a new algorithm 

using tilted time window model to mine the complete set 

of frequent patterns over data streams. In 2004, Li and 

Lee [4] proposed an algorithm called DSM-FI for 

approximate mining of frequent itemsets over an entire 

history of data streams. Here, lots of tree traversals are 

required to collect the frequency information. In 2006, 

Leung et al. [8] proposed an algorithm called DSTree, 

prefix tree based data structure is used to maintain recent 

frequent patterns. Here, Sliding window model is used to 

mine the complete set of recent frequent patterns. Each 

node of prefix tree contains the transaction information. In 

2008, Mozafari et al. [11] proposed an algorithm for 

mining frequent patterns using sliding window model. In 

2009, Tanbeer et al [12] proposed an algorithm CPS-tree, 

a prefix based data structure is used to maintain the recent 

and exact information. Insertion and Restructuring phases 

are repeatedly executed while data stream processing. In 

2009, Li et al. [13] proposed the efficient sliding window 

techniques called MFI-TransSW and MFI-TimeSW for 

frequent pattern mining over data streams. In 2010, 

Calders et al. [14] proposed an approximate algorithm for 

mining top-k frequent items with max-frequency. In 2011, 

Binesh Nair et al. [15] proposed an algorithm called 

CFIM-P, to mine the closed frequent patterns over static 

data with the elimination of null transactions.  

 

III. PRELIMINARIES AND DEFINITIONS  

 

    Let S be a stream of transactions and I= {i1, i2,…, im} 

be the set of items. For an itemset Y, which is a subset of 

I, a transaction T in S which contains an itemset Y if Y ⊆ 

T. The Support of Y is defined as the fraction of received 

transactions that contains the itemset Y. If the support (Y) 

is greater than or equal to the user given minimum support 

threshold value, then the item is said to be frequent.  

 

Definition 1: (Landmark Window Model) 

Landmark window model is a data processing model in 

data stream which maintains the history information from 

the landmark starting point (tsp) to the current point (tcp).  

If transaction tm is valid,  

tsp ≤tm ≤tcp 

 

Definition 2: (Sliding Window Model) 

Sliding Window Model is one of the data processing 

model in data streams which process and maintains only 

the recent transactional data, 

tn-|w|+1 ≤tm ≤ti 

 

Where tn-|w|+1 and ti are the window’s identifier and i
th

  

received transaction. 

 

Problem Statement: Given the data stream s, size of 

window and minimum support threshold, the problem is 

to find the all frequent itemsets using Landmark and 

Sliding Window model by eliminating the null 

transactions. 

IV. PROPOSED METHOD 

 

The method proposed here is based on Eclat algorithm 

which is used for mining all frequent itemsets operating 

on the vertical layout of database [6]. A new algorithm 

has been proposed with elimination of null transactions 

for mining all frequent patterns over data streams using 

landmark window and sliding window models. The 

modules identified are Elimination of Null Transactions, 

Window Initialization, Pane Insertion and Frequent 

Patterns Maintenance. First three modules are common in 

both of these models. Maintenance of frequent patterns is 

done differently by each of the models.   

Elimination of Null Transactions: Null Transaction is a 

transaction which contains a single item in a dataset. This 

transaction does not give any information for association. 

An attempt has been made to eliminate the null 

transactions [15] in order to reduce the processing time for 

finding k-frequent itemsets. It saves lot of memory when 

the patterns are maintained in the tree. 

Window Initialization: The window initialization phase is 

activated while the number of transactions generated so 

far in a transaction data stream is equal to the window size 

(ws). 

Pane Insertion: Adding a single transaction or a batch of 

transaction to an existing window is called as pane 

insertion. Due to efficiency issues, addition or deletion of 

transactions from window is in batch wise. The number of 

transactions are added to a window is equal to the pane 

size (ps). 

These three phases are common for mining frequent 

patterns with elimination of null transactions over data 

streams using landmark (SNT-FPMoDSLW) and sliding 

window (SNT-FPMoDSSW) models but differ in frequent 

patterns maintenance phase. This phase is briefly 

explained along with algorithm for different models in 

following subsections. 

A. SNT-FPMoDSLW – Proposed Method of Landmark 

window model: 

In this section, the concept of our proposed method 

SNT-FPMoDSLW (Screening of Null Transactions-

Frequent Pattern Mining over Data Streams using 

Landmark Window Model) is briefly explained. This 

model is used for users who are interested in historical 

data from a landmark time. The modules of the algorithm 

are as follows: 

1. Elimination of Null Transactions 

2. Window Initialization 

3. Pane Insertion 

4. Maintenance of Frequent Pattern Tree for 

Landmark Window (FPT-LW).  

Window is initialized after eliminating the null 

transactions and frequent patterns are mined using Eclat 

algorithm [1]. This algorithm is operating on the vertical 
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layout of database [16, 19]. This layout contains the 

tidlists of items in the database. The support of all single 

items is directly extracted from the vertical layout of 

dataset in a single scan. If the support value is greater than 

or equal to the user defined minimum support threshold 

then those single items are considered as frequent items. 

Then, we do the intersection operation over tidlists of 

frequent single items to obtain the support value for 

candidate 2-itemsets. The process is repeated until all the 

frequent patterns are extracted from the initial window. 

When a pane or batch of transactions is inserted to the 

window, the frequent patterns are extracted in the same 

way from pane and the results are updated.  

 

i) Maintenance of Frequent Pattern Tree for Landmark 

Window (FPT-LW) 

     A new data structure namely FPT-LW has been 

proposed to maintain the frequent patterns during data 

stream processing. The extracted frequent patterns from 

the initial window are inserted into FPT-LW tree. After 

every pane insertion, frequent patterns are updated to this 

tree. 

Procedure for FPT-LW Updating 

Input: FPT-LW tree structure (Window) 

Output: Updated FPT-LW tree 

     1.  Search for node of item in FPT-LW tree 

     2.  if node does not exists then 

                   Create a node of item in that tree 

                   else 

                   Update the tid’s of item <p.tid’s> in  

                      corresponding node 

                   //p.tid’s= Item tid’s after pane insertion  

          end if 

Fig. 1 Procedure for FPT-LW Updating 

 

     Fig. 1 shows the procedure for updating the FPT-LW 

tree. FPT-LW tree contains two attributes: {itemset (Y), 

tid’s of itemset}. From this FPT-LW, it is possible to get 

history of information about frequent patterns in a stream 

of data. 

The sample structure of FPT-LW tree is shown in Fig 2.  

 
Fig. 2 FPT-LW Tree (Initial Window) 

 
Fig. 3 FPT-LW Tree Updation 

     Initially, the root node is null. The frequent patterns 

corresponding to the initial window are stored in 

upcoming levels with their tidsets. Fig. 3 shows the 

updated FPT-LW tree after the insertion of pane into the 

initial window. Due to pane insertion, some frequent 

patterns may newly emerge and some frequent patterns in 

the initial window may become infrequent or they 

continue to be frequent as such. They are shown in Fig 3. 

in different colors. 

     The algorithm SNT-FPMoDSLW is presented in   Fig. 

4. In this algorithm, ws, ps and σ are the parameters given 

by the user. In Step 1, the null transactions are dropped 

from the experimental dataset. In Step 2, the window is 

initialized using window size. Transactional window has 

been filled with transactions upto this window size. The 

set of frequent patterns are mined using Eclat algorithm 

and are stored in Frequent Patterns Set (FPSet). These 

frequent patterns are then inserted into the Frequent 

Pattern Tree-Landmark Window (FPT-LW). In Step 3, the 

pane size is initialized. After a pane is inserted into the 

initial window, the frequent patterns are mined 

incrementally. The results are updated in FPT-LW tree. 

This algorithm maintains the whole set of frequent 

patterns from the landmark time.  

 

Input: Data Stream (S), Window Size(ws), Pane Size               

(ps),Minimum Support Threshold % (σ) 

Output: a set of frequent patterns 

Procedure: 

Step 1: Scan the original dataset and drop the null 

              transactions. 

 for each transaction (T) in S do 

  if (tid → single item(i)) 

  delete (T[tid,i]); 

 end if 

 end for 

Step 2:  Window Initalization (ws,σ) 

Initialize FPT-LW = {empty} 

 

for each transaction Ti in S do 

insert transaction (Ti) in TW  

 if (TWws=FULL) then 

  FPSet = Eclat (TW, σ) 

  insert (FPT-LW,FPSet) 

 end if 

end for 

Step 3: Pane Insertion (ps, σ) 

Initialize p=1; 

while (p≤psize) 

 insert transaction (Ti) in TW 

 p++; 

end while 

for each transaction in TW not in ws do 

if (TWps = FULL) then 

 //Compute Support  

  Update FPSet (TWps , σ) 

 Update (FPT-LW, FPSet) 

end if 

end for 

Fig. 4 SNT-FPMoDS LW Algorithm 

B. SNT-FPMoDSSW - Proposed Method of Sliding Window 

Model:  



Mining Frequent Patterns with Screening of Null Transactions using different models 

 

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14                                                                                                    1869 

 

     In this section, the Screening of Null Transactions-

Frequent Pattern Mining over Data Streams using Sliding 

Window (SNT-FPMoDSSW) algorithm is explained 

briefly. Sliding window model finds the frequent patterns 

over data streams by considering only the recent set of 

transactions. When the window slides, the old invalid 

transactions are deleted and new valid transactions are 

inserted into the window. The frequent patterns are 

updated in the tree because of this deletion. There are two 

types of sliding window: i) Transaction-Sensitive Sliding 

Window ii) Time-Sensitive Sliding Window. The mining 

process used in this paper is based on transaction-sensitive 

sliding window model which maintains the fixed size of 

transactions in a window. The sliding window model is 

appropriate for those users who are interested to know 

only the recent information. 

 

The modules of this algorithm are as follows: 

1. Elimination of Null Transactions 

2. Window Initialization 

3. Pane Insertion 

4. Maintenance of Frequent Pattern Tree for Sliding 

Window (FPT-SW)  

The concept of first three modules is same as that of 

landmark window model except the frequent patterns 

maintenance phase.  

i) Maintenance of Frequent Pattern Tree for Sliding 

Window (FPT-SW) 

     A new data structure called FPT-SW is used to store 

the frequent patterns mined using sliding window model. 

Initially, the extracted frequent patterns from the initial 

window are stored in FPT-SW tree. Then after every pane 

insertion, window sliding phase is activated.  During this 

window sliding phase, old information is deleted from the 

FPT-SW tree and new patterns are inserted into the tree. 

In Fig. 5, the procedure for updating the frequent patterns 

after pane insertion is given. 

Fig. 5 Procedure for FPT-SW Updating 

     Each node in a FPT-SW tree includes 2 fields: {itemset 

(Y), a set of transactions that contains the itemset (Y)}. 

The sample FPT-SW tree is given below: 

 

 
Fig. 6 FPT-SW Tree (Initial Window) 

 

     Fig. 6 stores the set of frequent patterns for initial 

window. Each node contains an itemset with their 

corresponding tidlists. 

    
Fig. 7 FPT-SW Tree Updation 

 

     In Fig. 7, the updated frequent patterns are shown after 

a pane was inserted and processed. The old information in 

FPT-SW tree is deleted because the sliding window model 

considers only the recent transactions. 

 

Input: Data Stream (S), Window  Size(ws), Pane Size 

(ps),Minimum Support Threshold % (σ) 

Output: a set of frequent patterns 

Procedure: 

Step 1: Scan the original dataset and drop the null 

transactions. 

for each transaction (T) in S do 

 if (tid → single item(i)) 

  delete (T[tid,i]); 

 end if 

end for 

Step 2:  Window Initalization (ws,σ) 

Initialize FPT-SW = {}, CP= Last-Tid (TSW) 

for each transaction Ti in S do 

insert transaction (Ti) in TSW  

 if (TSWws=FULL) then 

  FPSet = Eclat(TSW, σ) 

  insert (FPT-SW,FPSet) 

 end if 

end for 

Step 3: Pane Insertion (ps, σ) 

Initialize p=1; 

while (p≤psize) 

 insert transaction (Ti) in TSW 

 p++; 

end while 

for each transaction in TSW not in ws do 

if (TSWps = FULL) then 

  //Compute Support  

  Update FPSet (TSWps , σ) 

  Stale = Cut (CP,TSW) 

   DeleteEffect[FPT-SW] 

Procedure for FPT-SW Updating 

Input: FPT-SW tree structure (Window) 

Output: Updated FPT-SW tree 

1. Search for node of item in FPT-SW tree 

2. if  node does not exists then 

Create a node of item in that tree 

  else 

Modify the tid’s of item <p.tid’s>  

    in corresponding node 

//p.tid’s= Item tid’s after pane  

                 insertion 

 end if 
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  Update(FPT-SW, FPSet) 

end if 

end for 

 

Fig. 8 SNT-FPMoDSSW Algorithm 

 

     The SNT-FPMoDSSW algorithm is presented in Fig.8. 

In Step1, all the null transactions from the dataset are 

removed. In Step2, window size is initialized and 

checkpoint is marked at the last transaction id (tid) of 

initial window. The mining of frequent patterns was as 

similar to the landmark window model. The frequent 

patterns (FPSet) are inserted into FPT-SW tree. 

     After inserting the batch of transactions, the set of 

frequent patterns are updated in FPSet. The stale 

transactions denoting previous concept upto the 

checkpoint was deleted by removing corresponding 

tidlists from window and effect of these transactions are 

also deleted from the FPT-SW tree. Now the FPT-SW tree 

stores only the updated / recent frequent patterns.  

 

V. PERFORMANCE ANALYSIS 

 

In this section, we first describe the experimental setup 

and then illustrate the results of the proposed algorithms. 

A. Experimental Setup 

The algorithms were written in Java and compiled 

using Netbeans IDE 7.3 version. The operating system 

used to run these algorithms is windows7 and the 

processor was Intel® Core i5-3230M, CPU@2.60GHz 

with 4GB of RAM.  

The experiments were done on two real life 

benchmark datasets namely BMS-WebView-1 and BMS-

WebView-2. Table1. gives some features of above 

mentioned datasets as follows: 

TABLE I. DATASET CHARACTERISTICS 

 

Name of 

Dataset 

No. of 

Transactions 

No.of 

Unique 

Items 

Average 

TL 

BMS-

WebView-1 

 

 

59,602 

 

497 

 

2.50 

 

BMS-

WebView-2 

 

 

77,512 

 

3340 

 

5.0 

 

     BMS-WebView-1 and BMS-WebView-2 are the real 

life dataset from a small dot com company named as 

Gazelle.com. It contains several months of click stream 

data from an ecommerce website. These datasets were 

considered as stream data because clicking behaviors of    

 

 

 

 

 

 

 

 

the customers was changed over a time. We executed 

experiments on these datasets for mining frequent patterns 

by setting up the following parameters: Window Size 

(ws), Pane Size (ps), and Minimum Support (σ). The 

parameter which is used for mining frequent pattern is σ 

(minimum support). The pattern which is greater than or 

equal to σ is considered as a frequent pattern. 

In this paper, the performance of the proposed 

algorithm SNT-FPMoDS is compared with FPMoDS on 

landmark and sliding window models. 

 

B. Experimental Results- Performance for SNT-                                    

FPMoDSLW & SNT-FPMoDSSW   

 

In this section, the performance evaluation of 

proposed algorithms SNT-FPMoDSLW and SNT-

FPMoDSSW is presented. First, we compared the number 

of frequent patterns produced by proposed and existing 

algorithms for the landmark model (FPMoDSLW & SNT-

FPMoDSLW) under varying minimum support thresholds 

using BMS WebView-1 and BMS WebView-2 datasets 

and the results are shown in Fig. 9. In the second 

experiment, we compared the running time of two 

algorithms for landmark model and it is shown in Fig. 10.  

     Fig. 11 shows the comparison of number of frequent 

patterns and memory storage for the sliding window 

model with different window size and pane size. It is 

observed from the figure that screening of null 

transactions gives better result than the existing algorithm. 

We also compared the execution time of the proposed 

algorithm with the existing algorithm in Fig. 12 for the 

sliding window model. 

     Depending upon the type of the application, the 

landmark or sliding window model can be used to mine 

frequent patterns by eliminating all null transactions 

earlier. 
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VI.  CONCLUSION 

      In this paper, we proposed new methods namely SNT-

FPMoDS (SNT-FPMoDSLW & SNT-FPMoDSSW) to 

efficiently mine the frequent patterns from data streams 

using landmark and sliding window models. The selection 

of algorithm and the data processing model is based upon 

the application requirements. Landmark model is best 

suited for applications where users are interested in 

mining patterns over a period of time whereas sliding 

window model is used to analyze frequent patterns genera 
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