
Volume 2, No. 6, June 2011

Journal ofJournal ofJournal ofJournal of Global Research in Computer ScienceGlobal Research in Computer ScienceGlobal Research in Computer ScienceGlobal Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 110

MODEL TO IMPROVE CORRECTNESS AND QUALITY AND REDUCING

TESTING TIME (MCQRTT)

Sahil Batra
*1

, Dr. Rahul Rishi
2

* 1Department of Computer Science and Engineering

The Technological Institute of Textile and Science, Bhiwani-127021, Haryana – India

sahil.batra23@gmail.com
2Department of Computer Science and Engineering

The Technological Institute of Textile and Science, Bhiwani-127021, Haryana – India

rahulrishi@rediffmail.com

Abstract: Software testing is complex and time consuming. One way to reduce the effort associated with testing is to generate test data automatically. Testing is

very important part of software development. Quality is not an absolute term; it is value to some person. With that in mind, testing can never completely establish

the correctness of arbitrary computer software; testing furnishes a criticism or comparison that compares the state and behavior of the product against a

specification. Software testing process can produce several artifacts. So, we proposed a model to improve Quality and correctness and also we reduce the software

testing time.

Keywords: Software test cycle, test cases, time constraints, code coverage, Quality.

INTRODUCTION

Almost 80% software fails because of not testing properly.

Testing is performed by different types of strategies.

Generally testing is performed on code, but if the software

can be tested in the earlier phases then most of the errors can

be eliminated and can be stopped from propagating to next

phase. Thus there is a need to explore testing possibilities in

earlier phases.[1,5] The software testing document, which

consists of event, action, input, output, expected result, and

actual result. Clinically defined a test case is an input and an

expected result whereas other test cases described in more

detail the input scenario and what results might be expected.

It can occasionally be a series of steps but with one expected

result or expected outcome.

PRECEDING WORK

Software testing should develop a sufficient assessment of

quality, at a reasonable cost and at timely decisions to be

made concerning the software. Sufficient testing means

when all the necessary required testing is to be done to

check the functionality of software for all possible usage

scenarios. Over the years tester stops testing when following

6 conditions are satisfied: The first condition for testing is to

have good quality specifications for each software lifecycle

step, The second condition for testing is for all the

specifications for the different integration levels to be in

synchronized way, The third condition for testing is for each

of the specifications to contain the complete requirements

set for generating tests at that particular integration level,

The fourth condition for testing is to have additive, rather

than repetitive tests at the different integration stages, The

fifth condition for testing is to run each of the tests at the

integration stage that either yields the maximum information

about the product quality, or all things being equal, it is the

cheapest to run, A sixth and most obvious prerequisite to

software testing is to automate the test process as much as

possible. [4, 5, 6]

CRISIS AREA

“Complete Quality of software can never be fulfilled”,

Tester can never be able to achieve that software is

completely free from errors or Quality is achieved, but tester

can maximize the test coverage by using a smart test

approach to fulfill the desired software quality.

MODEL TO INCREASE CORRECTNESS AND

QUALITY AND REDUCING TESTING TIME

(MCQRTT)

Testing is endless process. Tester can not stop testing until

all the defects are removed, it is simply impossible. At some

point, tester has to stop testing and ship the software. After

observing all the details of Software testing we come to a

conclusion that “testing can never be considered complete”.

Tester can never be proved theoretically or scientifically that

our software is free from errors now. Basically testers stop

testing when:

a. The planned testing deadlines are about to expire.

b. Not able to detect any errors even after execution of all

the planned test Cases.

These two statements do not have any meaning and are

contradictory since we can satisfy the first statement even by

doing nothing while the second statement is equally

meaningless since it can not ensure the quality of our test

cases. Pin pointing the time when to stop testing is difficult.

Most of the today’s software are so complex and run in such

an Interdependent environment, that complete testing can

never be done. Other important factors which are helpful in

deciding when to stop the testing are:

Sahil Batra et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 111

a. When the test cases have been finished with some pass

percentage.

b. When the testing budget comes to its end.

c. When Functional coverage, code coverage, the client

requirements meets to certain point.

d. When bug rate drops below a prescribed level.

e. When the period of beta testing / alpha testing gets

over.

f. Beta or Alpha testing period finished.

g. When Resources are availability finished.

h. Prepare defined number of test cases before test

execution cycle.

i. Execution of all test cases in every testing cycle.

j. Stop testing process when all the test cases get Passed

k. Stop testing when percentage of failure in the last

testing cycle is observed to be extremely low.

l. Mean Time between Failures: - recording the average

operational time before the software failure.

m. Coverage metrics: - recording the percentage of number

of executions during tests.

n. Defect density: - recording the defects related to size of

software like the number of open bugs and their

severity levels.

Testing metrics helps the testers to take better and accurate

decisions; like when to stop testing or when the application

is ready for release, how to track testing progress & how to

measure the quality of a product at a certain point in the

testing cycle. The best way for tester is to have a fixed

number of test cases ready well before the beginning of test

execution cycle. Finally measure the testing progress by

recording the total number of test cases executed using the

following metrics which are quite helpful in measuring the

quality of the software product.

Percentage Completion: - [(Total executed test cases) /

(Total test cases)]*100.

Percentage Test cases Passed: - [(Total passed test cases) /

(Total executed test cases)]*100

Percentage Test cases Failed: - [(Total failed test cases) /

(Total executed test cases)]*100.

A test case is declared Failed when just one bug is found

while executing it, otherwise it is considered as Passed.

Practically tester’s feels that the decision of stopping testing

is based on the level of the risk acceptable to the

management. As testing is a never ending process tester can

never assume that 100 % testing has been done, we can only

minimize the risk of shipping the software to end user with

some type of testing done. The risk can be measured for the

small duration, low budget, low resources project; risk can

be reduced simply by Risk analysis.

IMPORTANT NECESSITIES

For implementing the purposed scheme we use Seleinum,

Junit, Eclipse, Mozilla firefox, and a web-based application,

to prove that the proposed scheme is correct and efficient.

Selenium IDE (Integrated Development Environment) is a

prototyping tool for building test scripts.

Implementation

Generating Interface

To prove the proposed scheme we can use a web based

application, some ‘java’ base test cases. Firstly we configure

Selenium-RC with Eclipse.

Selenium acts as interface between Eclipse and the Mozilla

firefox. So, the first step to make the interface for mozilla

firefox is to create a profile of selenium in the mozilla

firefox with the following steps:

a. Go to the start

b. Start RUN option.

c. Then write firefox –profilemanager in run.

d. It opens Firefox- choose user profile window.

e. Then click on the create profile named selenium.

f. Then click on start firefox.

g. Exit.

To prove the proposed scheme we can use a web based

application, some ‘java’ base test cases. Firstly we configure

Selenium-RC with Eclipse. General configuration of

Selenium-RC with any java IDE would have following

steps:

a. Start Selenium IDE.

b. Start new project in eclipse.

c. Add to project classpath selenium-java-client-driver.jar.

d. Record the test from Selenium-IDE and translate it to

java code.

e. Run test in the IDE.

And test the web based application, and then test cases are

run through eclipse in which Junit is embedded. We take a

following test case to check whether login button perform

accordingly or not. [13, 14]

Outcome

For correct test case, the Seleinum starts the Mozilla firefox

and open the web page of the application, on which the

login page is redirected (Shown in figure 1, 2, 3). If test case

executes successfully then the web page window shown in

figure 3 is open after window (in figure 1 and 2). And if the

test case contains an error or web application do not found

on the required URL, then the Seleinum starts (figure 1) and

then an error is shown in figure 2.

Figure.1 selenium interface

Sahil Batra et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 112

Figure.2command history

Figure.3 output

CONCLUSION

We have proved with the help of above purposed scheme

Model to increase Correctness and Quality and Reducing

Testing Time (MCQRTT) that we can reduce software

testing time considerably and improve the software quality

and increase the correctness of the software.

REFERENCES

[1] Carl Erickson, Ralph Palmer, David Crosby, Michael

Marsiglia, Micah Alles“Make Haste, not Waste:

Automated System Testing” in 2004

[2] Cem Kaner” Inefficiency and Ineffectiveness of

Software Testing: A Key Problem in Software

Engineering” in 2004.

[3] Rex Black” Investing in Software Testing: The Cost of

Software Quality” in 2003.

[4] Alan Kusinitz ”Software Testing—How Much Is

Enough?” in june 2003.

[5] Inspection vs. Testing in 2003.

[6] Pentti Pohjolainen”SOFTWARE TESTING TOOLS” in

march 2003.

[7] B.Baudry, F.Fleurey, J.M Jezequel and Y.L.Traon

“Automatic Test Cases Optimization using a

Bacterological Adaption Model: Application to .NET

Components” Published in IEEE 2002, pp.253-256

[8] Harish V. Kantamneni Sanjay R. Pillai Yashwant K.

Malaiya “Structurally Guided Black Box Testing” in

2002

[9] Gerry Gaffney “Conducting a Walkthrough” in 2002.

[10] Thom Garrett” Useful Automated Software Testing

Metrics” in 2000.

[11] Tom Chen, Mehmet Sahinoglu, Anneliese von

Mayrhauser, Amjad Hajjar”How Much Testing is

Enough? Applying Stopping Rules to Behavioral Model

Testing” in 2001.

[12] David Banks, William Dashiell, Leonard Gallagher,

Charles Hagwood, Raghu Kacker, Lynne Rosenthal

“Software Testing by Statistical Methods” in 2001

[13]www.google.com

[14]http://www.wikipedia.org/

