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ABSTRACT: Wildlife-originated zoonotic diseases are a major contributor to emerging infectious diseases. 
Understanding the role of climate factors in shaping the dynamics of the natural host population is a central 
challenge within the field of population ecology. Bank voles (Myodes glareolus) are reservoirs of the Puumala 
hantavirus (PUUV), which can cause the disease nephropathia epidemica (NE) in human. 
In this study we model the bank vole population dynamics in Belgium and Finland using a multiple–input, single-
output (MISO) transfer function. The output of the MISO models was the number of bank vole and the inputs were 
monthly North Atlantics Oscillation (NAO), average monthly precipitation (mm), and temperature (°C). 
In a first step, the bank vole populations in Belgium were modelled based on data from 1976 till 1982 with a  of 
0.66. For Finland the modelled bank vole density dynamics using data from 1995-2001 resulted in a  of 0.78. In 
a next step, the MISO models were validated using bank vole populations time series from 2009 to 2011 (  of 
0.68) for Belgium and from 2002 till 2008 (  of 0.66) for Finland. 
Despite the difference in bank vole population dynamics between the Western European temperate zone (such as 
Belgium) and boreal zones (such as Finland), the MISO model managed to describe the temporal characteristics of 
the two time series and their different dynamic mechanisms.  
Such modelling approach might be used as a step towards the development of new tools for the prediction of future 
NE outbreaks. 
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INTRODUCTION 
Hanta viruses are rodent or insectivore borne viruses, some of which are recognized as a cause of hemorrhagic 
fever with renal syndrome (HFRS) in humans [1]. In Europe, one of the most important hantavirus is the Puumala 
virus (PUUV), which is transmitted to humans by infected bank voles (Myodes glareolus) [2]. PUUV causes a 
general mild form of HFRS called nephropathia epidemica (NE) [3]. Fifteen emerging zoonotic or vector-borne 
infections with increasing impact on humans in Europe were identified during the period 2000-2006. Rodent-borne 
Hantaviruses are part of this list [4]. Global climate change might be a major contributor to the spread of these 
vector-borne diseases [4, 5].  
Rodent population dynamics in temperate zones (such as Belgium) and boreal zones (such as Finland) are very 
different. Climate change is known to be able to drive animal population dynamics between stable and cyclic 
phases [4,5]. For example, large scale climate fluctuations, such as the North Atlantic Oscillation (NAO) has been 
suggested to cause the recent changes in cyclic dynamics of bank voles and their predators in boreal zones [6]. 
However, although predator–rodent interactions are commonly argued to be the cause of the bank vole cycles 
[7,8,9], in boreal zones (such as Finland) the role of the environment in the modulation of such dynamics is often 
poorly understood in natural systems. In temperate zones (such as Belgium) high summer temperature induces the 
formation of flower buds of deciduous forest trees (oak and beech), resulting the next year in an abundance of seed 
production. Acorn and beech mast fall down in autumn, contributing to the high winter survival and early breeding 
of voles in a mast year (bottom-up regulation). This leads to high rodent densities and more human NE cases in 
summer [10]. In the boreal zone, like in Finland, the primarily coniferous forests do not provide significant mast 
production, so the vole cycles are determined predominantly by interactions between voles and their specialist 
mammalian predators (top-down regulation) and winter food resources [7, 8,9]. However, there is a trade-off 
between top-down and bottom-up regulation of summer population growth: shallow snow cover may reduce the 
densities of the specialist predators but cold temperatures may expose food plants to frost and desiccation damage 
and reduce their productivity during the following summer [11,12, 13]. Quantitative links (models) between 
climate-driven processes and rodent dynamics have so far been lacking. 
Mechanistic models play an important role in analysing the spread and control of infectious diseases. Many 
attempts have been made to build mathematical models describing the dynamics of the bank voles’ population and 
spread and survival of PUUV [14,15]. These models are typically based on components such as an epidemiological 
compartment structure, the nature of the incidence, a demographical structure of the population, and the interaction 
between the demographical structure and the epidemiological incidence of the disease. 
Although these mechanistic models have important scientific merits, they also have limitations. Often, these 
models just show the demographic variability of the population without considering the environment and its impact 
on the target population. 
Taking into account the role of the climate conditions, knowledge of these conditions can assist in (i) a better 
understanding the characteristics of the bank vole population dynamics, (ii) making forecasts about the bank vole 
population based on expected trends in future climatological conditions and (iii) analysing crucial data that 
influence the population of bank voles. Therefore, models that consider the dynamics of climate conditions may 
play an important role in improving modelling and predicting the voles population and therefore the NE cases. 
Because of the dynamic nature of the bank vole populations, a dynamic systems approach might be a valuable 
alternative to mechanistic models for investigating the underlying mechanisms. The resulting dynamic data-based 
models of this type are often simple in structure, inherently stochastic in form and are characterised by the 
minimum number of parameters required to justify the dynamic information content of the available data [16]. 
We previously demonstrated that NE outbreaks can be predicted based on climate and vegetation data or bank vole 
dynamics by using dynamic data-based models [17]. Kalio et al., [18] were first to show that the human NE cases 
in Finland are predicted by bank vole dynamics, even without any knowledge about hantavirus dynamics in the 
host population. The time variation in NE outbreaks in Finland could be predicted three months ahead with a 34% 
mean relative prediction error (MRPE) by taking into account the measured population dynamics of the carrier 
species (bank voles) [17]. Time series analysis revealed that the vegetation index, changes in forest phenology 
(which can be derived from satellite images) and climate fluctuation, which are all considered as an effect of 
climate change, affect the mechanisms of NE transmission.  
NE outbreaks in Belgium were predicted three months ahead with a 40% MRPE, based only on the climatological 
data and vegetation data, and without any knowledge of the bank vole population dynamics [17]. In another study, 
a multiple-input, single-output (MISO) model was developed, describing the NE cases as a function of three 
inputs: average measured monthly precipitation (mm), and temperature (°C), as well as the estimated carrying 
capacity (voles ha-1) from the SIR (Susceptible, Infective and Remove with immunity) model of Sauvage et.al., 
[14,15] for Belgium over an 11 years study period (1996-2008) [19]. 
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Since bank vole dynamics is a key factor in predicting and managing NE outbreaks on the one hand, but is very 
expensive and labour intensive to measure on the other hand, it would be a significant advantage if bank vole 
populations’ dynamics could be modelled as a function of climatic drivers. 
Therefore, the objective of this research was to build a multiple–input, single-output (MISO) transfer function to 
model the fluctuations of bank vole density dynamics. Because of the difference between the Western European 
temperate zone and boreal zones, we used time series data sets from Finland and Belgium. First, we modelled the 
bank vole population in Belgium from 1976 till 1982 as a function of measured average monthly air temperature 
(°C), monthly precipitation (mm) and NAO. We used the same approach to model the bank vole density in central 
Finland from 1995-2001. To validate the data based model we used the second part of the data set, namely the data 
derived from a bank voles trapping campaign in Belgium (from 2009-2011) and the dynamics of bank vole density 
in Finland from 2001-2008 and the average monthly air temperature (°C), monthly precipitation (mm) and NAO 
measured during these periods.  
 
MATERIALS AND METHODS 
Bank vole population data 
Capture-mark-recapture data 
Remotely sensed data and geographic information system (GIS) information were used to select two sites for 
trapping bank voles. The main selection criterion for field measurements was based on the preferred habitat of 
bank voles. Therefore, the search was directed to broad-leaved forests located in the neighbourhood of water 
streams and with presence of an understorey. The selection was done after field visits which were preceded by a 
GIS-based pre-selection phase. The forest stand where measurements were taking place was located in the 
municipality of Gierle (Antwerp, Belgium, 51.288 N, 4.885311 E).  The trapping site had a dense understorey 
layer under an open canopy of beech (Fagus sylvatica) and native oak species (Quercus robur, Quercus petraea). 
Common understorey species belong to the genus Rubus, Corylus, Rhamnus, Ilex and Equisetum. 
In 2009, these trappings were organized monthly (12 times a year), and in the years thereafter the trappings were 
organized once every season (4 times a year). During the years 2009-2011, Capture-Mark-Recapture (CMR) 
studies enabled monitoring of vole population dynamics. 
In order to estimate the bank vole population density based on the CMR method we used the POPAN formulation 
(Schwarz & Arnason 1996) [20] of Jolly-Seber models [21] as implemented in the program Mark (version 4.10). 
Assumption of equal chances to capture-mark and recapture animals was made.  
In the Jolly-Seber model, the parameter ρ is the probability of recapture marked and unmarked animals that are 
alive at occasion i, Φ is the survival probabilities of both marked and unmarked animals between occasion i and 
i+1 and the parameters bi are referred to as the probability of entrance from the super population (N) between 
occasion i and i+1. 
We started by fitting a fully-time dependent model { } (where the apostrophe represents the time 
dependency of the parameter). 
Since the original sampling experience has approximately equal effort at all sampling occasions, a model with 
constant catchability over time might be suitable (i.e. model { }. But also another sub model can be fit where 
both the catchability and the apparent survival rate (per unit of time) are constant over all intervals (i.e. model 
{ }). This resulted in three possible candidate models: { }, { ’} and . 
Selection among candidate models was carried out using Akaike’s information criterion corrected for small sample 
sizes (hereafter AICc) (Burnham and Anderson, 1998). The smaller AICc, the better the model is relative to the 
other models in the set. We calculated the difference in AICc from the model with the lowest AICc score (noted 
∆AICc). Models with 0≤∆AICc≤2 were considered as substantially supported by the data. Models with larger 
∆AICc scores 4≤∆AICc≤7 were regarded as less supported or essentially not supported (∆AICc≥10) by the data 
(Burnham and Anderson, 1998). Models with ∆AICc≤2 are not statistically distinguishable; when this occurs the 
model with the smallest number of parameters is preferred [22].  
Existing bank vole population time series 
Bank vole population data in Belgium were derived from Verhagen et al. [23]. Bank voles were trapped every 
three or four weeks from May 1976 to August 1982 in the military domain in Zevendonck, one kilometre away 
from our bank voles trapping site in Gierle. 
Bank vole trapping index data in Finland were derived from Kallio et al. [18]. Trapping index (%), is equal to total 
number of rodents trapped/(total number of traps×total number of nights−1/2 of traps sprung not containing a 
rodent)×100 [24]. Bank voles were trapped in the Konnevesi area in Central Finland (628379 N, 268209 E) four 
times per year. They used the bank vole trapping index data of the captured bank voles from July 1995 to October 
2008. The trapping plots were situated in coniferous forest dominated by Scots pine (Pinus sylvestris), Norway 
spruce (Picea abies) and various shrubs (e.g. Calluna sp., Vaccinium spp). 
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Climate data 
Monthly indices of the NAO, defined as the difference of normalized sea level pressures (SLP) between Ponta 
Delgada, Azores and Stykkisholmur-Reykjavik, Iceland are available since 1865. These data were provided by the 
Climate Analysis Section, NCAR, Boulder, USA (Hurrell and Dickson, 2004). 
The Royal Meteorological Institute of Belgium (Ukkel) provided daily data on air temperature (°C) and 
precipitation (mm) for the periods 1976-1982 and 1996-2008. For modelling the dynamics of the NE cases, we 
calculated monthly average precipitation (mm) and average temperatures (°C) based on the daily reported climate 
data of Turnhout (Belgium). 
The Finnish Meteorological Institute provided climatological data of monthly values for the Konnevesi area in 
Central Finland (again, the most endemic region of the country). Mre specifically, for modelling the dynamics of 
the bank voles population, we obtained the sum of precipitation (mm) and average air temperature (°C) from 1996-
2008. 
 
METHODS 
Dynamic data-based modelling 
The objective of the next step was to quantify the dynamics of the bank voles population in North of Belgium and 
Central of Finland and to relate it with environmental data. Therefore, a multiple–input, single-output (MISO) 
transfer function (TF) was used to model the bank vole population from 1976 until 1982 as function of the 
climatological data of average measured temperature, precipitation and NAO. The used model structure could be 
described as follows: 

+ +   Equation 1 

Where R(t) is the number of bank voles per hectare; t represents discrete-time instants with a measurement interval 
of one month, N(t), T(t) and P(t) represent the three inputs of the model namely: monthly NAO, average monthly 
air temperature (°C) and monthly precipitation (mm) respectively. nti is the number of the time delays (expressed 
in month) between each input i and their first effects on the output; A(z−1) is the denominator polynomial and 
equals to 1+a1 z−1+a2 z−2+ +ana z−na; Bi(z−1) are the numerator polynomials linked with the inputs i and equals to 
b0i+b1i z−1+b2i z−2+ +bnbi z−nbi; aj, bi are the model parameters to be estimated; z−1 is the backward shift operator, 
defined as z−1 y(t)=y(t−1); na, nbi are the orders of the respective polynomials; ε(t) is additive noise, a serially 
uncorrelated sequence of random variables with variance σ2 that accounts for measurement noise, modelling errors 
and effects of unmeasured inputs to the process (assumed to be a zero mean). 
In order to be able to use the estimated dynamics of bank vole density by the MISO model we had to interpolate 
the bank vole population data since the estimated numbers were not equidistant. The interpolation was performed 
using a dynamic harmonic regression model (DHR) which is fully described in Taylor et al. [25]. The same 
approach was used to interpolate the bank vole population in Finland [17]. 
The model parameters of the MISO model were estimated by means of a refined instrumental variable approach 
using the Captain toolbox in Matlab® [16, 25]. 
The dynamics of bank vole density in Belgium were modelled based on data from 1976 till 1982 and the dynamics 
of bank voles density in central Finland were modelled based on data from 1995-2001. In a next step, the MISO 
models were validated using bank vole population time series in Belgium from 2009 to 2011 and bank vole 
trapping index in Finland from 2002 till 2008. For each data set, the model parameters of Equation 1 were 
estimated. The resulting models were evaluated by the coefficient of determination ( ; Young & Lees, 1993). 
The ability to estimate the parameters of a transfer function model represents only one side of the model 
identification problem. Equally important is the problem of objective model order identification. This involves the 
identification of the best choice of orders of the polynomials A(z-1) and Bi(z-1). The process of model order 
identification can be assisted by the use of well-chosen statistical measures that indicate the presence of over 
parameterisation. A good identification procedure used to select the most appropriate model order [na, nbi] is based 
on the minimisation of the Young Identification Criterion [26]. 
The YIC is a heuristic statistical criterion that consists of two terms. The first term provides a normalised measure 
of how well the model fits the data. The smaller the variance of the model residuals in relation to the variance of 
the measured output, the more negative this term becomes. The second term is a normalised measure of how well 
the model parameter estimates are defined. This term tends to become less negative when the model is over 
parameterised (more complex) and the parameter estimates are poorly defined. Consequently, the model that 
minimises the YIC provides a good compromise between goodness of fit and parametric efficiency (which is 
equivalent to complexity). 
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Next to the YIC, the standard errors on the parameter estimates were calculated as the root of the diagonal 
elements of the covariance matrix. Based on the standard errors the 95% confidence interval (CI95%) for each 
parameter estimated (θ

)
) could be calculated as: 

       Equation 2 

Where t 0.025,N-np is the value given by the two tailed student t distribution with N the number of data used to 
estimate the parameters and np the number of the parameters. In this study, the value for the t 0.05,N-np was 
approximately two. This means that the parameter estimation was considered to be reliable when the observed 
value of the parameter estimate was at least twice the value of its standard error (meaning that the parameters value 
was significantly different from zero) [16]. 
Finally, the model stability was calculated for the selected TF models as part of the model evaluation. 
Stability was determined by quantifying the poles (roots of the A(Z-1) polynomial) of the models. The 
model is considered stable when all the poles lie within the unity circle in the complex plane or z plane 
[27]. 
In order to identify the models for the whole period 1976-1982 for Belgium, different combinations for na, nbN, 
nbT, nbP, ntN,, ntT and ntP were calculated. More specifically for the MISO model with three inputs, na, nbT, nbP and 
nbN ranged from1 up to 2, ntN, ntT  and ntP ranged from 0 up to 6. Therefore, to identify the first MISO model of 
three inputs and one output in total 5488 ( ) possible TF models were calculated. 
All these models were ranked based on the YIC (from low to high values). Only the first 20 best models as 
indicated by the YIC were selected for further evaluation. Using the resulting 20 models, the TF order 
identification was made on the basis of the goodness of fit, expressed as the coefficient of determination , the 
confidence interval of the estimated model parameters and the stability of the resulting model. This approach was 
used to identify one final model (i.e. model structure with specific model parameters) for the whole period from 
1976 until 1982. The identified model structure was validated by applying the same model structure (i.e. using the 
same model order but different time delays) to input-output data from 2009-2011. Validation can be defined as the 
process that determines the accuracy of with which a model represents a real system [26]. 
The same approach was used to model the dynamics of bank vole density in Finland for the period 1995-2001. 
More specifically for the MISO model with three inputs, na, nbT and nbN ranged from1 up to 2, ntN, ntT and ntP 
ranged from 0 up to 12. Therefore, to identify the first MISO model of three inputs and one output in total 35152 
( ) possible TF models were calculated. The identified model was validated by 
applying the same model structure to input-output data of Finland from 2002-2008. 

RESULTS 
According to ∆AICc we selected the model {  (Table1). The bank vole abundance estimated by POPAN 
formulation in Mark together with the resulting interpolated series using the DHR model is demonstrated in Figure 
1. 

Table 1. Selection summary of three models examine by MARK to estimate the bank voles population in 
Belgium based on the capture-mark-recapture in Gierle from 2009 till 2011. 

models AICc ∆AICc 

 336.5520 0.0000 

 343.7631 7.2111 

 352.8824 16.3304 
The apostrophe represents the time dependent parameter. 

 

The aim of this study was to quantify the dynamics of the bank vole density in Belgium and Finland and to relate it 
with climatological data (average monthly temperature, precipitation and NAO) only. When applying the 
modelling approach to the period from, 1976 until 1982, YIC selected models that were predominantly second 
order (na = 2, equation 1). There was one model structure that (i) was selected by YIC as being one of the 20 best 
models, and (ii) was stable (all poles within the unit-circle in the z-plane). This model structure was described by 
na =2, nbT =1, nbP =1, ntN = 5, ntT= 4 and ntP= 5. The resulting TF model structure is represented in Equation (3, 
4): 
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  Equation 3 

or written in time series notation as: 

 Equation 4 

From the modelling results in Figure 2, it is clear that the model was able to describe the dynamics of bank vole 
density quite well (with  of 0.66). The specific values for the model parameters and their standard errors are 
presented in Table 2. 

 

Figure 1. Bank voles population estimated by POPAN formulation in MARK (*) and interpolated bank 
voles population by DHR model (--•-----). 

The second part of the Belgium data set (from 2009 till 2011) was used for validation, more specifically to test 
whether the model structure (na =2, nbN = 1, nbT = 1 and nbP = 1) described in equation 3 was adequate for 
describing the recently generated field data. The selected models, based on the YIC, had time delays of ntN = 6 , ntT 
= 3 and ntP = 4 respectively (Table 2). From figure 3, it is clear that the second order model (equation 5) allowed 
describing the bank vole density dynamics as well (with  of 0.68) as on the original training data. 

 Equation 5 

The same approach was used to model the dynamic of bank vole density in Finland. The selected model for the 
training data set (from 1995 till 2001) was described by na =2, nbT = 1, nbP = 1, ntN = 9 , ntT = 6 and ntP = 4 with 

 of 0.78 (Figure 4). The resulting model structure is represented in Equation (6). The specific values for the 
model parameters are presented in Table 2. 
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Figure 2. The resulting model simulation (- - - - -) of the data-based MISO model with 3 inputs (average 
monthly temperature, precipitation and NAO) versus measured (--•-----) bank voles population in Belgium for 
the training data from 1976 till 1982 (  of 0.66). The first data and model points fall together because of 

the time delay between the inputs (climate variables) and the output (bank vole density) we assumed at the 
beginning of the time series that the model simulation is equal to the data. 

Table 2. Parameter estimation results with bank voles population as the output and monthly NAO, average 
monthly temperature (°C) and average monthly precipitation (mm) as inputs. Note: for each model the 

parameters ( , , , ) with corresponding standard error (SE), the time delay , , ) and 
the coefficient of determination ) are shown. 
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Figure 3. The resulting model simulation (- - - - -) of the data-based MISO model with 3 inputs (average 

monthly temperature, precipitation and NAO) versus measured (--•-----) bank voles population in Belgium for 
the evaluation data from 2009 till 2011. The model described the data with the  of 0.68. The first data and 

model points fall together because of the time delay between the inputs (climate variables) and the output 
(bank vole density) we assumed at the beginning of the time series that the model simulation is equal to the 

data. 

 
Figure 4. The resulting model simulation (- - - - -) of the data-based MISO model with 3 inputs (average 

monthly temperature, precipitation and NAO) versus measured (--•-----) bank voles population in Finland for 
the training data from 1995 till 2001. The model described the data with the  of 0.78. The first data and 
model points fall together because of the time delay between the inputs (climate variables) and the output 

(bank vole density) we assumed at the beginning of the time series that the model simulation is equal to the 
data. 
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 Equation 6 

The second part of the data set (from 2002 till 2008) was used for validation, namely to determine whether the 
model structure (na =2, nbN = 1, nbT = 1 and nbP = 1) described in equation 3 was adequate for describing the 
second data set. The selected model had a time delays of ntN = 5, ntT= 8 and ntP= 1 respectively (Table 2, equation 
7). From figure 5, it is clear that the model was able to describe the bank vole density dynamics quite well (with 

 of 0.66). 

 Equation 7 
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Figure 5. The resulting model simulation (- - - - -) of the data-based MISO model with 3 inputs (average 

monthly temperature, precipitation and NAO) versus measured (--•-----) bank voles population in Finland for 
the training data from 2002 till 2008. The model described the data with the  of 0.78. The first data and 
model points fall together because of the time delay between the inputs (climate variables) and the output 

(bank vole density) we assumed at the beginning of the time series that the model simulation is equal to the 
data. 

DISCUSSION 
Our analysis suggests that there is a delay of around half a year between the bank vole density and the NAO index. 
This, and the negative value of the parameter b0N (Table 2), is in agreement with the study of Post and 
Forchhammer (2002) in which it was concluded that a low NAO index (corresponding to cold winters) half a year 
previously corresponds to high current vole density. This result was also in agreement with the work of Palo [6], 
showing a significant negative correlation between the NAO and the bank vole population in Sweden. Palo [6] and 
Amirpour Haredasht et al. [17] showed that the NAO index does not have a significant effect on the human NE 
cases in both Belgium and Finland. Therefore, we can conclude that colder winters (low NAO) will not increase 
the likelihood of the higher transfer of virus from bank voles to man.  
The value of the parameter in the data-based model related with average monthly temperature (b0T) (°C) is positive 
(Table 2). Weather condition affects bank vole number both directly and indirectly, through food supply. In the  
Western European temperate zone (Belgium in our study) the high bank vole abundance has been related to mast 
years which are mainly induced by summer temperature, especially by elevated average temperature [28]. In boreal 
zones, such as Finland, there is a positive correlation between the spruce seed production and the mean summer 
temperature which leads to increases in the bank vole’s population [29].  
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However, the bank vole number is lagged with one year relative to the seed crop, i.e. if seeds of forest trees are 
important, there should be two year time lag between summer temperature and bank voles number. In the areas 
where bilberry plants are important winter food, there may rather be a negative 1-2 years delay relationship 
between summer temperatures and bank vole number [29, 30]. Because our data time series covers a short period, 
we could not analyse the mast phenomena and our results showed the direct effect of the temperature on bank 
voles. In this regard, we can refer to the paper of Tersago et al. [30] that indicated that higher temperatures mean a 
lower use of resources to maintain the high metabolic rate of bank voles. Furthermore, reduced autumn snow cover 
and mild winter temperatures benefit vole populations during the summer [31]. 
The negative value of the parameter in the data-based model derived for average monthly precipitation (b1P) (mm) 
(Table 2) indicates a negative correlation between the bank vole density and monthly precipitation. This is in 
agreement with the studies of Linard et al. [32] in which it was concluded that the bank voles are negatively 
influenced by high winter and spring precipitations. In east central part of Finland (e.g. Konnevesi area), the 
increasing autumn temperatures and decreasing snow depth are expected to increase summer and winter population 
growth rates as well as cycle amplitude. The increasingly warm and long growing seasons may contribute to 
weaker direct and stronger delayed density dependence during summers [31].  
The bank vole population time series in Finland covered a period of 14 years, during which bank vole populations 
did not fluctuate in a multiannual manner (1995-2001) as well as years when bank vole population fluctuate in full 
three-year cycles (2002-2008). The positive gain value (parameters bP) derived for the average monthly 
precipitation in the period 2002-2008 could be an indicator of the effect of climate variation in the mechanism 
which affects the fluctuations of the bank voles. In order to take into account disturbances, such as climate 
fluctuations, time varying parameter models could be suitable tools in future to monitor and predict the bank vole 
population [17].   
Andreo et al. [33] performed a non-linear logistic population model to model yearly population dynamics of two 
rodent species (Calomys. venustus & Akodon azarae) in agro-ecosystems of central Argentina using climate factors 
(monthly temperature -minimum, average, and maximum- and precipitation) as well as normalized vegetation 
index (NDVI) as inputs. They generated several models to model the population dynamics of the two mentioned 
rodents with different combinations of inputs. In their models, they assumed a positive constant representing the 
maximum finite reproductive rate, a constant representing competition and resource depletion. They modelled the 
yearly population of C. venustus (from 1990-2007) with a R2 of 0.63 using the spring mean temperature as an 
input. Their selected model indicated that the dynamics of A. azarae seems to be mainly affected by the annual 
minimum NDVI (R2 of 0.76). Although Andreo et al. [33] used a dynamic data-based model, called R-function 
(Berryman 1999), their analyses were based on some assumptions. In our study we used data-based mathematical 
procedures, where the model parameters were directly estimated from experimental data using more objective 
statistically based methods. 
Although the modelling results look promising compared to the available literature, several limitations can be 
identified which are related to the applied modelling methodology. The first limitation we faced when identifying 
the data-based model was that the used recent bank voles’ time series in Belgium cover a period of only three years 
(from 2009 till 2011) with a caption intervals of four month. In order to be able to use the dataset in our analysis 
the bank vole data had to be interpolated. The interpolation smoothed the data and therefore influenced the 
estimation of the model parameters. 
The second limitation in identifying the data-based model was that the available bank vole series in Belgium 
covering a periods of only three years (from 2009 till 2011) and six years (1978-1982) in Belgium. Although the 
number of samples was theoretically sufficient in order to estimate the model parameters of the used model 
structure, as indicated by the acceptable standard errors on the parameter estimates (Table 2), a dataset covering a 
longer period might improve the modelling results.  
It is also known that bank voles populations fluctuate regionally, but the frequency and timing of these fluctuations 
vary in different regions, due to latitudinal and longitudinal variation in the environment [31]. Because of 
nonlinearities and thresholds in ecological responses to climate change [34], the short term, potentially even 
transient [35], impacts of climate may be different from those observed in the long term. Therefore, neither 
geographic gradients in climate nor local temporal variation in weather are alone directly applicable to predict the 
effects of climate change; both sources of variation should be considered. Combining data on a latitudinal, climatic 
gradient with long-term local temporal variation will allow a robust analysis of how animal populations respond to 
climate change [31].  
Another limitation is that in this study we only analysed the effect of climate factors in relation to the dynamics of 
the bank voles. However, also other processes such as the availability of food and space have an important role in 
regulation of the bank vole population.  
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Therefore, determining a dynamic data-based model for bank vole density which includes factors such as 
vegetation coverage and abundance of food for bank voles’ may provide us with an expert tool to monitor and 
predict the fluctuations in bank voles population by making use of remote sensing tools for measuring broad leaves 
forest phenology and monitoring the vegetation dynamics together with climatological data. 
We managed to quantify the dynamics of the bank vole density as a function of climate data. Previous studies 
(Amirpour Haredasht et al., 2011, 2012) quantified the NE cases based on the climate and vegetation data. In order 
to monitor the NE incidence it is necessary to understand the effect of climate and vegetation on the bank vole 
population. This approach can be used to predict the dynamics of the bank vole population under different climate 
scenarios and hence to predict the NE incidence.  
We showed that the dynamic data-based modelling approach is a useful tool for monitoring and predicting the 
dynamics of bank vole population in different ecosystems.  The results of our study might be used as a tool in 
future to predict the temporal dynamics of bank vole population and thus the NE occurrence, and to evaluate 
strategies to control the epidemics.  
 
CONCLUSION 
Estimating the bank vole population dynamic is a key in predicting the NE outbreaks. However, trapping bank vole 
is an expensive and time consuming activity and therefore there is a need for less demanding methods for 
estimating the bank vole population. 
In this study the bank voles population in the North of Belgium were modelled based on data from 1976 till 1982 
with a  of 0.66 and the bank voles density in Central Finland from 1995-2001 with a  of 0.78. In the next step 
the MISO model was validated for bank vole density in Belgium from 2009 to 2011 (  of 0.68) and bank vole 
density in Central Finland from 2002 till 2008 (  of 0.66).  
Despite the difference in bank vole population dynamics and NE cases between the Western European temperate 
zone (i.e. Belgium) and boreal zones (i.e. Finland) the MISO model managed to describe temporal characteristic of 
the two time series and their different dynamic mechanisms. 
Such a modelling approach might be used as a step towards the development of new tools for the prevention of 
future NE outbreaks by making use of satellite remote sensing tools for forest phenology and monitoring the 
vegetation dynamics together with climatological data. 
 

REFERENCES 
 
[1]    Lee, H W. and G Van der Groen. 1998. “Hemorrhagic fever with renal syndrome.” Progress in Medical 

Virology. Fortschritte der Medizinischen Virusforschung. Progres en Virologie Medicale 62-102. 
[2]   Olsson, G, H Leirs, and H Henttonen. 2010. “Hantaviruses and their hosts in Europe: reservoirs here and there, 

but not everywhere?” Vector borne and zoonotic diseases 10(6):549-561. 
[3]   Clement, J, P Maes, and M Van Ranst 2006. “Hantaviruses in the old and new world.” Pp. 161-177 in In 

Emerging Viruses in Human Populations, edited by A.J Zuckerman and I.K Mushahwar. London: Elsevier. 
[4]    Vorou, R M., V G. Papavassiliou, and S Tsiodras. 2007. “Emerging zoonoses and vector-borne infections 

affecting humans in Europe.” Epidemiology and Infection 135(8):1231–1247. 
[5]   Epstein, Paul R. 2002. “Climate change and infectious disease: stormy weather ahead?” Epidemiology 13:373 

-375. 
[6]   Palo, R T. 2009. “Time series analysis performed on nephropathia epidemica in humans of northern Sweden in 

relation to bank vole population dynamic and the NAO index.” Zoonoses and Public Health 56(3):150-
156. 

[7]   Hanski, I, L Hansson, and H Henttonen. 1991. “Specialist predators, generalist predators, and the microtine 
rodent cycle.” Journal of animal ecology 60(1):353-367. 

[8]   Korpimäki, E, , K. Norrdahl, O Huitu, and T Klemola. 2005. “Predator–induced synchrony in population 
oscillations of coexisting small mammal species.” Proceedings of the Royal Society B: Biological Sciences 
272(1559):193-202. 

[9]  Huitu, O, I Jokinen, E Korpimäki, E Koskela, and T Mappes. 2007. “Phase dependence in winter physiological 
condition of cyclic voles.” Oikos 116(4):565 -577. 

[10]  Clement, J, J Vercauteren, W W. Verstraeten, G Ducoffre, J M. Barrios, A M. Vandamme, P Maes, and M Van 
Ranst. 2009. “Relating increasing hantavirus incidences to the changing climate: the mast connection.” 
International Journal of Health Geographics 8(1):1-11. 

[11]  Tahkokorpi, M, E Taulavuori, K Taulavuori, and K Laine. 2004. “Snow removal reduces the growth of 
bilberry (Vaccinium myrtillus L.) early in the growing season.” Acta Physiologiae Plantarum 26:242–243. 

 

International Journal of Plant, Animal and Environmental Sciences               Page: 22                             
Available online at www.ijpaes.com 



Amirpour Haredasht et al                                                                    Copyrights@2016 ISSN 2231-4490 

[12]  Tahkokorpi, M, K Taulavuori, K Laine, and E Taulavuori. 2007. “After-effects of drought related winter stress 
in previous and current year stems of Vaccinium myrtillus L.” Environmental and experimental botany 
61:85–93. 

[13]   Bokhorst, S, JW Bjerke, FW Bowles, J Melillo, TV Callaghan, and GK Phoenix. 2008. “Impacts of extreme 
winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland RID D-1858-2009.” 
Global Change Biology 14:1269–1284. 

[14]   Sauvage, Frank, Michel Langlais, Nigel G. Yoccoz, and Dominique Pontier. 2003. “Modelling hantavirus in 
fluctuating populations of bank voles: the role of indirect transmission on virus persistence.” The Journal 
of Animal Ecology 1-13. 

[15]   Sauvage, F, M Langlais, and D Pontier. 2007. “Predicting the emergence of human hantavirus disease using a 
combination of viral dynamics and rodent demographic patterns.” Epidemiology and Infection 135:46-56. 

[16]   Young, p c. 1984. Recursive Estimation and Time Series Analysis. Berlin: Springer-Verlag. 
[17]    Amirpour Haredasht, Sara, C.J Taylor, P Maes, W W.Verstraeten, J Clement, M Barrios, K Lagrou, M Van 

Ranst, P Coppin, Daniel Berckmans, and J.M Aerts. 2012. “Model-based Prediction of nephropathia 
epidemica outbreaks based on climatological and vegetation data and bank voles population dynamics".” 
Zoonoses and Public Health doi: 10.1111/zph.12021. 

[18]  Kallio, E.R, M Begon, H Henttonen, P Koskela, and T Mappes. 2009. “Cyclic hantavirus epidemics in 
humans--predicted by rodent host dynamics.” Epidemics 1(2):101-107. 

[19]  Amirpour Haredasht, Sara, José M. Barrios González, Piet Maes, Willem W. Verstraeten, Jan Clement, 
Geneviève Ducoffre, Katrien Lagrou, Marc Van Ranst, P Coppin, D Berckmans, and J.M Aerts. 2011. “A 
dynamic data-based model describing nephropathia epidemica in Belgium.” Biosystems engineering 
109(1):77-89. 

[20]   Schwarz, C. J. and A. N. Arnason. 1996. “A general methodology for the analysis of open-model capture 
recapture experiments.” Biometrics 52:860-873. 

[21]   Jolly, G.M. 1965. “Explicit estimates from capture-recapture data with both death and immigration -.” 
Biometrika 52:225-247. 

[22]   Richard, S A. 2005. “Testing ecological theory using the information-theoretic approach: examples and 
cautionary results.” Ecology 86(10):2805–2814. 

[23]   Verhagen, R, H Leirs, and W Verheyen. 2000. “Demography of Clethrionomys glareolus in Belgium.” Polish 
Journal of Ecology 48 sup:113-123. 

[24]   Escutenaire, S, P Chalon, R Verhagen, P Heyman, I Thomas, L Karelle-Bui, T Avsic-Zupanc, A Lundkvist, A 
Plyusnin, and P P. Pastoret. 2000. “Spatial and temporal dynamics of Puumala hantavirus infection in red 
bank vole (Clethrionomys glareolus) populations in Belgium.” Virus research 67(1):91-107. 

[25]   Taylor, C J., D J. Pedregal, P C. Young, and W Tych. 2007. “Environmental time series analysis and 
forecasting with the Captain toolbox.” Environmental Modelling & Software 22(6):797-814. 

[26]   Young, P C. and M Lees 1993. “The active mixing volume: a new concept in modelling environmental 
systems.” Pp. 2-43 in Statistics for the Environment. John Wiley, Chichester. 

[27]  Young, P C. and C Wang 1987. “ldentification and estimation of multivariable dynamic systems.” Pp. 244-
270 in Multivariable control for industrial applications. London: Peter. 

[28]    Klempa, B. 2009. “Hantaviruses and climate change.” Clinical microbiology and infection 15(6):518-523. 
[29]  Selås, V, E Framstad, and T K. Spidsø. 2002. “Effects of seed masting of bilberry, oak and spruce on 

sympatric populations of bank vole (Clethrionomys glareolus) and wood mouse (Apodemus sylvaticus) in 
southern Norway.” Journal of Zoology 258(4):459-468. 

[30]  Tersago, K, A Servais, P Heyman, G Ducoffre, and H Leirs. 2009. “Hantavirus disease (nephropathia 
epidemica) in Belgium: effects of tree seed production and climate.” Epidemiology Infection 137:250-256. 

[31]   Korpela, K, M Delgado, H Henttonen, E Korpimäki, E Koskela, O Ovaskainen, H Pietiäinen, J Sundell, N G. 
Yoccoz, and O Huitu. 2013. “Nonlinear effects of climate on boreal rodent dynamics: mild winters do not 
negate high-amplitude cycles.” Global Change Biology 19(3):697-710. 

[32]  Linard, C, K Tersago, H Leirs, and E F. Lambin. 2007. “Environmental conditions and Puumala virus 
transmission in Belgium.” International Journal of Health Geographics 6(55?). 

[33]   Andreo, V, M Lima, C Provensal, J Priotto, and J Polop. 2009. “Population dynamics of two rodent species 
in agro-ecosystems of central Argentina: intra-specific competition, land-use, and climate effects.” 
Population Ecology 51(2):297-306. 

[34]   Fischlin, A, GF Midgley, JT Price, R Leemans, B Gopal, C Turley, M Rounsevell, P Dube, J Tarazona, and A 
Velichko 2007. “Ecosystems, their properties, goods, and services.” Pp. 211-272 in Climate change 2007: 
impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report 
of the Intergovernmental Panel on Climate Change, edited by ML Parry, OF Canziani, JP Palutikof, PJ van 
der Linden, and CE Hanson. Cambridge University Press, Cambridge, UK. 

[35]   Hein, AM and JF Gillooly. 2011. “Predators, prey, and transient states in the assembly of spatially structured 
communities.” Ecology 92:549–555. 

International Journal of Plant, Animal and Environmental Sciences               Page: 23                             
Available online at www.ijpaes.com 



 

 

 

 


