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ABSTRACT: Wildlife-originated zoonotic diseases are a major contributor to emerging infectious diseases.
Understanding the role of climate factors in shaping the dynamics of the natural host population is a central
challenge within the field of population ecology. Bank voles (Myodes glareolus) are reservoirs of the Puumala
hantavirus (PUUV), which can cause the disease nephropathia epidemica (NE) in human.

In this study we model the bank vole population dynamics in Belgium and Finland using a multiple—input, single-
output (MISO) transfer function. The output of the MISO models was the number of bank vole and the inputs were
monthly North Atlantics Oscillation (NAO), average monthly precipitation (mm), and temperature (°C).

In a first step, the bank vole populations in Belgium were modelled based on data from 1976 till 1982 with a R of
0.66. For Finland the modelled bank vole density dynamics using data from 1995-2001 resulted in a R% of 0.78. In
a next step, the MISO models were validated using bank vole populations time series from 2009 to 2011 (2% of
0.68) for Belgium and from 2002 till 2008 (R% of 0.66) for Finland.

Despite the difference in bank vole population dynamics between the Western European temperate zone (such as
Belgium) and boreal zones (such as Finland), the MISO model managed to describe the temporal characteristics of
the two time series and their different dynamic mechanisms.

Such modelling approach might be used as a step towards the development of new tools for the prediction of future
NE outbreaks.
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INTRODUCTION

Hanta viruses are rodent or insectivore borne viruses, some of which are recognized as a cause of hemorrhagic
fever with renal syndrome (HFRS) in humans [1]. In Europe, one of the most important hantavirus is the Puumala
virus (PUUV), which is transmitted to humans by infected bank voles (Myodes glareolus) [2]. PUUV causes a
general mild form of HFRS called nephropathia epidemica (NE) [3]. Fifteen emerging zoonotic or vector-borne
infections with increasing impact on humans in Europe were identified during the period 2000-2006. Rodent-borne
Hantaviruses are part of this list [4]. Global climate change might be a major contributor to the spread of these
vector-borne diseases [4, 5].

Rodent population dynamics in temperate zones (such as Belgium) and boreal zones (such as Finland) are very
different. Climate change is known to be able to drive animal population dynamics between stable and cyclic
phases [4,5]. For example, large scale climate fluctuations, such as the North Atlantic Oscillation (NAO) has been
suggested to cause the recent changes in cyclic dynamics of bank voles and their predators in boreal zones [6].
However, although predator-rodent interactions are commonly argued to be the cause of the bank vole cycles
[7,8,9], in boreal zones (such as Finland) the role of the environment in the modulation of such dynamics is often
poorly understood in natural systems. In temperate zones (such as Belgium) high summer temperature induces the
formation of flower buds of deciduous forest trees (oak and beech), resulting the next year in an abundance of seed
production. Acorn and beech mast fall down in autumn, contributing to the high winter survival and early breeding
of voles in a mast year (bottom-up regulation). This leads to high rodent densities and more human NE cases in
summer [10]. In the boreal zone, like in Finland, the primarily coniferous forests do not provide significant mast
production, so the vole cycles are determined predominantly by interactions between voles and their specialist
mammalian predators (top-down regulation) and winter food resources [7, 8,9]. However, there is a trade-off
between top-down and bottom-up regulation of summer population growth: shallow snow cover may reduce the
densities of the specialist predators but cold temperatures may expose food plants to frost and desiccation damage
and reduce their productivity during the following summer [11,12, 13]. Quantitative links (models) between
climate-driven processes and rodent dynamics have so far been lacking.

Mechanistic models play an important role in analysing the spread and control of infectious diseases. Many
attempts have been made to build mathematical models describing the dynamics of the bank voles’ population and
spread and survival of PUUV [14,15]. These models are typically based on components such as an epidemiological
compartment structure, the nature of the incidence, a demographical structure of the population, and the interaction
between the demographical structure and the epidemiological incidence of the disease.

Although these mechanistic models have important scientific merits, they also have limitations. Often, these
models just show the demographic variability of the population without considering the environment and its impact
on the target population.

Taking into account the role of the climate conditions, knowledge of these conditions can assist in (i) a better
understanding the characteristics of the bank vole population dynamics, (ii) making forecasts about the bank vole
population based on expected trends in future climatological conditions and (iii) analysing crucial data that
influence the population of bank voles. Therefore, models that consider the dynamics of climate conditions may
play an important role in improving modelling and predicting the voles population and therefore the NE cases.
Because of the dynamic nature of the bank vole populations, a dynamic systems approach might be a valuable
alternative to mechanistic models for investigating the underlying mechanisms. The resulting dynamic data-based
models of this type are often simple in structure, inherently stochastic in form and are characterised by the
minimum number of parameters required to justify the dynamic information content of the available data [16].

We previously demonstrated that NE outbreaks can be predicted based on climate and vegetation data or bank vole
dynamics by using dynamic data-based models [17]. Kalio et al., [18] were first to show that the human NE cases
in Finland are predicted by bank vole dynamics, even without any knowledge about hantavirus dynamics in the
host population. The time variation in NE outbreaks in Finland could be predicted three months ahead with a 34%
mean relative prediction error (MRPE) by taking into account the measured population dynamics of the carrier
species (bank voles) [17]. Time series analysis revealed that the vegetation index, changes in forest phenology
(which can be derived from satellite images) and climate fluctuation, which are all considered as an effect of
climate change, affect the mechanisms of NE transmission.

NE outbreaks in Belgium were predicted three months ahead with a 40% MRPE, based only on the climatological
data and vegetation data, and without any knowledge of the bank vole population dynamics [17]. In another study,
a multiple-input, single-output (MISO) model was developed, describing the NE cases as a function of three
inputs: average measured monthly precipitation (mm), and temperature (°C), as well as the estimated carrying
capacity (voles ha™) from the SIR (Susceptible, Infective and Remove with immunity) model of Sauvage et.al.,
[14,15] for Belgium over an 11 years study period (1996-2008) [19].
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Since bank vole dynamics is a key factor in predicting and managing NE outbreaks on the one hand, but is very
expensive and labour intensive to measure on the other hand, it would be a significant advantage if bank vole
populations’ dynamics could be modelled as a function of climatic drivers.

Therefore, the objective of this research was to build a multiple—input, single-output (MISO) transfer function to
model the fluctuations of bank vole density dynamics. Because of the difference between the Western European
temperate zone and boreal zones, we used time series data sets from Finland and Belgium. First, we modelled the
bank vole population in Belgium from 1976 till 1982 as a function of measured average monthly air temperature
(°C), monthly precipitation (mm) and NAO. We used the same approach to model the bank vole density in central
Finland from 1995-2001. To validate the data based model we used the second part of the data set, namely the data
derived from a bank voles trapping campaign in Belgium (from 2009-2011) and the dynamics of bank vole density
in Finland from 2001-2008 and the average monthly air temperature (°C), monthly precipitation (mm) and NAO
measured during these periods.

MATERIALS AND METHODS

Bank vole population data

Capture-mark-recapture data

Remotely sensed data and geographic information system (GIS) information were used to select two sites for
trapping bank voles. The main selection criterion for field measurements was based on the preferred habitat of
bank voles. Therefore, the search was directed to broad-leaved forests located in the neighbourhood of water
streams and with presence of an understorey. The selection was done after field visits which were preceded by a
GIS-based pre-selection phase. The forest stand where measurements were taking place was located in the
municipality of Gierle (Antwerp, Belgium, 51.288 N, 4.885311 E). The trapping site had a dense understorey
layer under an open canopy of beech (Fagus sylvatica) and native oak species (Quercus robur, Quercus petraea).
Common understorey species belong to the genus Rubus, Corylus, Rhamnus, llex and Equisetum.

In 2009, these trappings were organized monthly (12 times a year), and in the years thereafter the trappings were
organized once every season (4 times a year). During the years 2009-2011, Capture-Mark-Recapture (CMR)
studies enabled monitoring of vole population dynamics.

In order to estimate the bank vole population density based on the CMR method we used the POPAN formulation
(Schwarz & Arnason 1996) [20] of Jolly-Seber models [21] as implemented in the program Mark (version 4.10).
Assumption of equal chances to capture-mark and recapture animals was made.

In the Jolly-Seber model, the parameter p is the probability of recapture marked and unmarked animals that are
alive at occasion i, @ is the survival probabilities of both marked and unmarked animals between occasion i and
i+1 and the parameters b; are referred to as the probability of entrance from the super population (N) between
occasion i and i+1.

We started by fitting a fully-time dependent model {p'@'b’} (where the apostrophe represents the time

dependency of the parameter).
Since the original sampling experience has approximately equal effort at all sampling occasions, a model with
constant catchability over time might be suitable (i.e. model {p@'b"}. But also another sub model can be fit where

both the catchability and the apparent survival rate (per unit of time) are constant over all intervals (i.e. model
{peb"}). This resulted in three possible candidate models: {#'@'b"}, {p@'b"} and [p¢b'].

Selection among candidate models was carried out using Akaike’s information criterion corrected for small sample
sizes (hereafter AICc) (Burnham and Anderson, 1998). The smaller AICc, the better the model is relative to the
other models in the set. We calculated the difference in AICc from the model with the lowest AICc score (noted
AAICc). Models with 0<AAICc<2 were considered as substantially supported by the data. Models with larger
AAICc scores 4<AAICc<7 were regarded as less supported or essentially not supported (AAICc>10) by the data
(Burnham and Anderson, 1998). Models with AAICc<2 are not statistically distinguishable; when this occurs the
model with the smallest number of parameters is preferred [22].

Existing bank vole population time series

Bank vole population data in Belgium were derived from Verhagen et al. [23]. Bank voles were trapped every
three or four weeks from May 1976 to August 1982 in the military domain in Zevendonck, one kilometre away
from our bank voles trapping site in Gierle.

Bank vole trapping index data in Finland were derived from Kallio et al. [18]. Trapping index (%), is equal to total
number of rodents trapped/(total number of trapsxtotal number of nights—1/2 of traps sprung not containing a
rodent)x100 [24]. Bank voles were trapped in the Konnevesi area in Central Finland (628379 N, 268209 E) four
times per year. They used the bank vole trapping index data of the captured bank voles from July 1995 to October
2008. The trapping plots were situated in coniferous forest dominated by Scots pine (Pinus sylvestris), Norway
spruce (Picea abies) and various shrubs (e.g. Calluna sp., Vaccinium spp).
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Climate data

Monthly indices of the NAO, defined as the difference of normalized sea level pressures (SLP) between Ponta
Delgada, Azores and Stykkisholmur-Reykjavik, Iceland are available since 1865. These data were provided by the
Climate Analysis Section, NCAR, Boulder, USA (Hurrell and Dickson, 2004).

The Royal Meteorological Institute of Belgium (Ukkel) provided daily data on air temperature (°C) and
precipitation (mm) for the periods 1976-1982 and 1996-2008. For modelling the dynamics of the NE cases, we
calculated monthly average precipitation (mm) and average temperatures (°C) based on the daily reported climate
data of Turnhout (Belgium).

The Finnish Meteorological Institute provided climatological data of monthly values for the Konnevesi area in
Central Finland (again, the most endemic region of the country). Mre specifically, for modelling the dynamics of
the bank voles population, we obtained the sum of precipitation (mm) and average air temperature (°C) from 1996-
2008.

METHODS

Dynamic data-based modelling

The objective of the next step was to quantify the dynamics of the bank voles population in North of Belgium and
Central of Finland and to relate it with environmental data. Therefore, a multiple—input, single-output (MISO)
transfer function (TF) was used to model the bank vole population from 1976 until 1982 as function of the
climatological data of average measured temperature, precipitation and NAO. The used model structure could be
described as follows

_Briz _
R(t) = =T N(t nt..,)+

v'Z' v'Z

T(t - tl-}+

P(t —ntp) +=(t) Equation 1

Where R(?) is the number of bank voles per hectare; t represents discrete-time instants with a measurement interval
of one month, N(?), 7(¢) and P(¢) represent the three inputs of the model namely: monthly NAO, average monthly
air temperature (°C) and monthly precipitation (mm) respectively. nt; is the number of the time delays (expressed
in month) between each input i and their first effects on the output; A(z ') is the denominator polynomial and
equals to /+a, a2+ +a,, " B, (zfl ) are the numerator polynomials linked with the inputs i1 and equals to
botbyiz ! +b2, 2 by z ™ ; a;, b; are the model parameters to be estimated; z "'is the backward shift operator,
defined as z ' y(t)=y(t—1); na, nb; are the orders of the respectlve polynomials; &(?) is additive noise, a serially
uncorrelated sequence of random variables with variance ¢” that accounts for measurement noise, modelling errors
and effects of unmeasured inputs to the process (assumed to be a zero mean).

In order to be able to use the estimated dynamics of bank vole density by the MISO model we had to interpolate
the bank vole population data since the estimated numbers were not equidistant. The interpolation was performed
using a dynamic harmonic regression model (DHR) which is fully described in Taylor et al. [25]. The same
approach was used to interpolate the bank vole population in Finland [17].

The model parameters of the MISO model were estimated by means of a refined instrumental variable approach
using the Captain toolbox in Matlab® [16, 25].

The dynamics of bank vole density in Belgium were modelled based on data from 1976 till 1982 and the dynamics
of bank voles density in central Finland were modelled based on data from 1995-2001. In a next step, the MISO
models were validated using bank vole population time series in Belgium from 2009 to 2011 and bank vole
trapping index in Finland from 2002 till 2008. For each data set, the model parameters of Equation 1 were
estimated. The resulting models were evaluated by the coefficient of determination (R r= Young & Lees, 1993).

The ability to estimate the parameters of a transfer function model represents only one side of the model
identification problem. Equally important is the problem of objective model order identification. This involves the
identification of the best choice of orders of the polynomials A(z”’) and B;z”). The process of model order
identification can be assisted by the use of well-chosen statistical measures that indicate the presence of over
parameterisation. A good identification procedure used to select the most appropriate model order [na, nb;] is based
on the minimisation of the Young Identification Criterion [26].

The YIC is a heuristic statistical criterion that consists of two terms. The first term provides a normalised measure
of how well the model fits the data. The smaller the variance of the model residuals in relation to the variance of
the measured output, the more negative this term becomes. The second term is a normalised measure of how well
the model parameter estimates are defined. This term tends to become less negative when the model is over
parameterised (more complex) and the parameter estimates are poorly defined. Consequently, the model that
minimises the YIC provides a good compromise between goodness of fit and parametric efficiency (which is
equivalent to complexity).
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Next to the YIC, the standard errors on the parameter estimates were calculated as the root of the diagonal
elements of the covariance matrix. Based on the standard errors the 95% confidence interval (Clyso;) for each

parameter estimated (é ) could be calculated as:

Clgsy, = 0 + tg 92550y SE(O) Equation 2

Where ¢ 925n.np 1S the value given by the two tailed student ¢ distribution with N the number of data used to
estimate the parameters and np the number of the parameters. In this study, the value for the ¢ g5, Was
approximately two. This means that the parameter estimation was considered to be reliable when the observed
value of the parameter estimate was at least twice the value of its standard error (meaning that the parameters value
was significantly different from zero) [16].

Finally, the model stability was calculated for the selected TF models as part of the model evaluation.
Stability was determined by quantifying the poles (roots of the A(Z™") polynomial) of the models. The
model is considered stable when all the poles lie within the unity circle in the complex plane or z plane
[27].

In order to identify the models for the whole period 1976-1982 for Belgium, different combinations for na, nby,
nbg, nbp, nty, nty and ntp were calculated. More specifically for the MISO model with three inputs, na, nbr, nbp and
nby ranged from1 up to 2, nty, nty and ntp ranged from 0 up to 6. Therefore, to identify the first MISO model of
three inputs and one output in total 5488 (2 % 2 % 2 X 2 X 7 x 7 X 7) possible TF models were calculated.

All these models were ranked based on the YIC (from low to high values). Only the first 20 best models as
indicated by the YIC were selected for further evaluation. Using the resulting 20 models, the TF order
identification was made on the basis of the goodness of fit, expressed as the coefficient of determination RZ the

confidence interval of the estimated model parameters and the stability of the resulting model. This approach was
used to identify one final model (i.e. model structure with specific model parameters) for the whole period from
1976 until 1982. The identified model structure was validated by applying the same model structure (i.e. using the
same model order but different time delays) to input-output data from 2009-2011. Validation can be defined as the
process that determines the accuracy of with which a model represents a real system [26].

The same approach was used to model the dynamics of bank vole density in Finland for the period 1995-2001.
More specifically for the MISO model with three inputs, na, nby and nby ranged froml up to 2, nty, nty and ntp
ranged from O up to 12. Therefore, to identify the first MISO model of three inputs and one output in total 35152
2XR2X2ZIXK2KX 1313 X 13) possible TF models were calculated. The identified model was validated by

applying the same model structure to input-output data of Finland from 2002-2008.

RESULTS
According to AAICc we selected the model {pgb'} (Tablel). The bank vole abundance estimated by POPAN

formulation in Mark together with the resulting interpolated series using the DHR model is demonstrated in Figure
1.

Table 1. Selection summary of three models examine by MARK to estimate the bank voles population in
Belgium based on the capture-mark-recapture in Gierle from 2009 till 2011.

models AICc AAICc
pob' 336.5520 0.0000
pd'b' 343.7631 72111
p'g'b' 352.8824 16.3304

The apostrophe represents the time dependent parameter.

The aim of this study was to quantify the dynamics of the bank vole density in Belgium and Finland and to relate it
with climatological data (average monthly temperature, precipitation and NAO) only. When applying the
modelling approach to the period from, 1976 until 1982, YIC selected models that were predominantly second
order (na = 2, equation 1). There was one model structure that (i) was selected by YIC as being one of the 20 best
models, and (ii) was stable (all poles within the unit-circle in the z-plane). This model structure was described by

na =2, nbr =1, nbp =1, nty =5, nt;= 4 and ntp= 5. The resulting TF model structure is represented in Equation (3,
4):
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hrz~! hoz~! bzt

R(t) = = N(t —nty) +

1+@27 a2

T(t—nt;) + —P(t—ntp) Equation 3

l+aq,2" 14,22 1+a,2" 1-a,2

or written in time series notation as:
R(t) =—a,R(t—1) —a,R(r —2) +byN(t—5) + b;T(t—4) + b, P(t — 5) Equation 4

From the modelling results in Figure 2, it is clear that the model was able to describe the dynamics of bank vole
density quite well (with R% of 0.66). The specific values for the model parameters and their standard errors are

presented in Table 2.
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Figure 1. Bank voles population estimated by POPAN formulation in MARK (*) and interpolated bank
voles population by DHR model (-------).

The second part of the Belgium data set (from 2009 till 2011) was used for validation, more specifically to test
whether the model structure (na =2, nby = 1, nby = 1 and nbp = 1) described in equation 3 was adequate for
describing the recently generated field data. The selected models, based on the YIC, had time delays of nty =6 , ntr
= 3 and ntp= 4 respectively (Table 2). From figure 3, it is clear that the second order model (equation 5) allowed
describing the bank vole density dynamics as well (with R% of 0.68) as on the original training data.

R(t) =—a,R(t —1)— a,R(t—2)+ byN(t—6) +b;T(t —3) + bP(t —4) Equation5

The same approach was used to model the dynamic of bank vole density in Finland. The selected model for the
training data set (from 1995 till 2001) was described by na =2, nbr =1, nbp = 1, nty =9 , nty= 6 and ntp = 4 with
R of 0.78 (Figure 4). The resulting model structure is represented in Equation (6). The specific values for the
model parameters are presented in Table 2.
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Figure 2. The resulting model simulation (- - - - - ) of the data-based MISO model with 3 inputs (average

monthly temperature, precipitation and NAO) versus measured (=) bank voles population in Belgium for
the training data from 1976 till 1982 (R_i of 0.66). The first data and model points fall together because of

the time delay between the inputs (climate variables) and the output (bank vole density) we assumed at the
beginning of the time series that the model simulation is equal to the data.

Table 2. Parameter estimation results with bank voles population as the output and monthly NAO, average
monthly temperature (°C) and average monthly precipitation (mm) as inputs. Note: for each model the
parameters ( . o4 2, by, by, bp) with corresponding standard error (SE), the time delay (ty, t,, t) and

the coefficient of determination (R3) are shown.

Belgim Belginn Fmnland Finland
Date set (from 1276 till (from 2000 till | (from 1995 till (from 2002 till
1982) 2011) 2001) 2009)
ay -1.8437 0.8125 1.7543 19210
SE(a,) 0.0360 0.2443 0.0424 0.4347
Qs 0.8760 0.6324 0.9525 0.9577
SE(a,) 0.0355 0.1661 0.0403 0.3304
by -1.3699 -9.0873 -1.1416 -1.3729
SE(by) 0.2348 1.5252 0.3268 0.3523
Ey 5 & 9 5
br 0.1174 1.0683 0.2543 0.4265
SE(by) 0.0236 03112 0.0352 0.0984
tr 4 3 & 3
bp 05188 6.4778 -0.2378 0.0630
SE(by) 0.0987 17016 0.0283 0.0130
tp 5 4 4 1
Ry 0.66 0.68 0,78 0.66
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Figure 3. The resulting model simulation (- - - - - ) of the data-based MISO model with 3 inputs (average

monthly temperature, precipitation and NAO) versus measured (=) bank voles population in Belgium for
the evaluation data from 2009 till 2011. The model described the data with the R of 0.68. The first data and
model points fall together because of the time delay between the inputs (climate variables) and the output

(bank vole density) we assumed at the beginning of the time series that the model simulation is equal to the
data.

120 T T T T T

Bankvole trapping index

1 1 1 1
[ecHs Aprr Sepo= Jard0 Pl i1

M arth
Figure 4. The resulting model simulation (- - - - - ) of the data-based MISO model with 3 inputs (average

monthly temperature, precipitation and NAO) versus measured (=) bank voles population in Finland for
the training data from 1995 till 2001. The model described the data with the R of 0.78. The first data and
model points fall together because of the time delay between the inputs (climate variables) and the output

(bank vole density) we assumed at the beginning of the time series that the model simulation is equal to the
data.
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R(t)=—a,R(t—1) —a,R(t—2) + b,N(t—9) + b, T(t —6) + b, P(t —4) Equation 6

The second part of the data set (from 2002 till 2008) was used for validation, namely to determine whether the
model structure (na =2, nby = 1, nbr = 1 and nbp = 1) described in equation 3 was adequate for describing the
second data set. The selected model had a time delays of nty = 5, nt;= 8 and ntp= 1 respectively (Table 2, equation
7);‘ From figure 5, it is clear that the model was able to describe the bank vole density dynamics quite well (with
R of 0.66).

R(t) =—a,R(t —1)— a,R(t—2) + byN(t—5) +b;T(t —8) + bP(t —1) Equation 7

140

120

100

[e]
o

D
o

Bank vole trapping index

N
o

20

Figure 5. The resulting model simulation (- - - - - ) of the data-based MISO model with 3 inputs (average
monthly temperature, precipitation and NAO) versus measured (=) bank voles population in Finland for
the training data from 2002 till 2008. The model described the data with the R of 0.78. The first data and

model points fall together because of the time delay between the inputs (climate variables) and the output
(bank vole density) we assumed at the beginning of the time series that the model simulation is equal to the
data.

DISCUSSION

Our analysis suggests that there is a delay of around half a year between the bank vole density and the NAO index.
This, and the negative value of the parameter byy (Table 2), is in agreement with the study of Post and
Forchhammer (2002) in which it was concluded that a low NAO index (corresponding to cold winters) half a year
previously corresponds to high current vole density. This result was also in agreement with the work of Palo [6],
showing a significant negative correlation between the NAO and the bank vole population in Sweden. Palo [6] and
Amirpour Haredasht et al. [17] showed that the NAO index does not have a significant effect on the human NE
cases in both Belgium and Finland. Therefore, we can conclude that colder winters (low NAO) will not increase
the likelihood of the higher transfer of virus from bank voles to man.

The value of the parameter in the data-based model related with average monthly temperature (by7) (°C) is positive
(Table 2). Weather condition affects bank vole number both directly and indirectly, through food supply. In the
Western European temperate zone (Belgium in our study) the high bank vole abundance has been related to mast
years which are mainly induced by summer temperature, especially by elevated average temperature [28]. In boreal
zones, such as Finland, there is a positive correlation between the spruce seed production and the mean summer
temperature which leads to increases in the bank vole’s population [29].

International Journal of Plant, Animal and Environmental Sciences Page: 20
Available online at www.ijpaes.com




Amirpour Haredasht et al Copyrights@2016 ISSN 2231-4490

However, the bank vole number is lagged with one year relative to the seed crop, i.e. if seeds of forest trees are
important, there should be two year time lag between summer temperature and bank voles number. In the areas
where bilberry plants are important winter food, there may rather be a negative 1-2 years delay relationship
between summer temperatures and bank vole number [29, 30]. Because our data time series covers a short period,
we could not analyse the mast phenomena and our results showed the direct effect of the temperature on bank
voles. In this regard, we can refer to the paper of Tersago et al. [30] that indicated that higher temperatures mean a
lower use of resources to maintain the high metabolic rate of bank voles. Furthermore, reduced autumn snow cover
and mild winter temperatures benefit vole populations during the summer [31].

The negative value of the parameter in the data-based model derived for average monthly precipitation (b;z) (mm)
(Table 2) indicates a negative correlation between the bank vole density and monthly precipitation. This is in
agreement with the studies of Linard et al. [32] in which it was concluded that the bank voles are negatively
influenced by high winter and spring precipitations. In east central part of Finland (e.g. Konnevesi area), the
increasing autumn temperatures and decreasing snow depth are expected to increase summer and winter population
growth rates as well as cycle amplitude. The increasingly warm and long growing seasons may contribute to
weaker direct and stronger delayed density dependence during summers [31].

The bank vole population time series in Finland covered a period of 14 years, during which bank vole populations
did not fluctuate in a multiannual manner (1995-2001) as well as years when bank vole population fluctuate in full
three-year cycles (2002-2008). The positive gain value (parameters bp) derived for the average monthly
precipitation in the period 2002-2008 could be an indicator of the effect of climate variation in the mechanism
which affects the fluctuations of the bank voles. In order to take into account disturbances, such as climate
fluctuations, time varying parameter models could be suitable tools in future to monitor and predict the bank vole
population [17].

Andreo et al. [33] performed a non-linear logistic population model to model yearly population dynamics of two
rodent species (Calomys. venustus & Akodon azarae) in agro-ecosystems of central Argentina using climate factors
(monthly temperature -minimum, average, and maximum- and precipitation) as well as normalized vegetation
index (NDVI) as inputs. They generated several models to model the population dynamics of the two mentioned
rodents with different combinations of inputs. In their models, they assumed a positive constant representing the
maximum finite reproductive rate, a constant representing competition and resource depletion. They modelled the
yearly population of C. venustus (from 1990-2007) with a R’ of 0.63 using the spring mean temperature as an
input. Their selected model indicated that the dynamics of 4. azarae seems to be mainly affected by the annual
minimum NDVI (R of 0.76). Although Andreo et al. [33] used a dynamic data-based model, called R-function
(Berryman 1999), their analyses were based on some assumptions. In our study we used data-based mathematical
procedures, where the model parameters were directly estimated from experimental data using more objective
statistically based methods.

Although the modelling results look promising compared to the available literature, several limitations can be
identified which are related to the applied modelling methodology. The first limitation we faced when identifying
the data-based model was that the used recent bank voles’ time series in Belgium cover a period of only three years
(from 2009 till 2011) with a caption intervals of four month. In order to be able to use the dataset in our analysis
the bank vole data had to be interpolated. The interpolation smoothed the data and therefore influenced the
estimation of the model parameters.

The second limitation in identifying the data-based model was that the available bank vole series in Belgium
covering a periods of only three years (from 2009 till 2011) and six years (1978-1982) in Belgium. Although the
number of samples was theoretically sufficient in order to estimate the model parameters of the used model
structure, as indicated by the acceptable standard errors on the parameter estimates (Table 2), a dataset covering a
longer period might improve the modelling results.

It is also known that bank voles populations fluctuate regionally, but the frequency and timing of these fluctuations
vary in different regions, due to latitudinal and longitudinal variation in the environment [31]. Because of
nonlinearities and thresholds in ecological responses to climate change [34], the short term, potentially even
transient [35], impacts of climate may be different from those observed in the long term. Therefore, neither
geographic gradients in climate nor local temporal variation in weather are alone directly applicable to predict the
effects of climate change; both sources of variation should be considered. Combining data on a latitudinal, climatic
gradient with long-term local temporal variation will allow a robust analysis of how animal populations respond to
climate change [31].

Another limitation is that in this study we only analysed the effect of climate factors in relation to the dynamics of
the bank voles. However, also other processes such as the availability of food and space have an important role in
regulation of the bank vole population.
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Therefore, determining a dynamic data-based model for bank vole density which includes factors such as
vegetation coverage and abundance of food for bank voles’ may provide us with an expert tool to monitor and
predict the fluctuations in bank voles population by making use of remote sensing tools for measuring broad leaves
forest phenology and monitoring the vegetation dynamics together with climatological data.

We managed to quantify the dynamics of the bank vole density as a function of climate data. Previous studies
(Amirpour Haredasht et al., 2011, 2012) quantified the NE cases based on the climate and vegetation data. In order
to monitor the NE incidence it is necessary to understand the effect of climate and vegetation on the bank vole
population. This approach can be used to predict the dynamics of the bank vole population under different climate
scenarios and hence to predict the NE incidence.

We showed that the dynamic data-based modelling approach is a useful tool for monitoring and predicting the
dynamics of bank vole population in different ecosystems. The results of our study might be used as a tool in
future to predict the temporal dynamics of bank vole population and thus the NE occurrence, and to evaluate
strategies to control the epidemics.

CONCLUSION

Estimating the bank vole population dynamic is a key in predicting the NE outbreaks. However, trapping bank vole
is an expensive and time consuming activity and therefore there is a need for less demanding methods for
estimating the bank vole population.

In this study the bank voles population in the North of Belgium were modelled based on data from 1976 till 1982
with a R} of 0.66 and the bank voles density in Central Finland from 1995-2001 with a B3 of 0.78. In the next step

the MISO model was validated for bank vole density in Belgium from 2009 to 2011 (B3 of 0.68) and bank vole
density in Central Finland from 2002 till 2008 (R% of 0.66).

Despite the difference in bank vole population dynamics and NE cases between the Western European temperate
zone (i.e. Belgium) and boreal zones (i.e. Finland) the MISO model managed to describe temporal characteristic of
the two time series and their different dynamic mechanisms.

Such a modelling approach might be used as a step towards the development of new tools for the prevention of
future NE outbreaks by making use of satellite remote sensing tools for forest phenology and monitoring the
vegetation dynamics together with climatological data.
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