
Volume 4, No. 12, December 2013 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2013, All Rights Reserved   8 

MODIFIED MULTI WAY FEEDBACK ENCRYPTION STANDARD  

VER-2(MWFES-2) 

Saptarshi Chatterjee*1, Debdeep Basu 2, Ankita Bose3, Surajit Bhowmik 4 and Asoke Nath5 

*1Department of Computer Science, St. Xavier‟s College(Autonomous), Kolkata, West Bengal, India 

             sapishere.chatterjee@gmail.com 1 
    2Department of Computer Science, St. Xavier‟s College(Autonomous), Kolkata, West Bengal, India 

                                                                                    debdeepbasucal@hotmail.com2 
    3Department of Computer Science, St. Xavier‟s College(Autonomous), Kolkata, West Bengal, India 

      ankkitabose@hotmail.com 3 
    4Department of Computer Science, St. Xavier‟s College(Autonomous), Kolkata, West Bengal, India 

     bhowmik1994@gmail.com4 

                         5Department of Computer Science, St. Xavier‟s    College(Autonomous),  Kolkata, West Bengal, India 

                                                                                    asokejoy1@gmail.com5   

               

Abstract: Nath et al developed a method Multi Way Feedback Encryption Standard Version-I [18] recently, where the authors used both forward 

and backward feedback from left to right and from right to left on the plain text along with the key. In MWFES-I, the ASCII value of plain text 

is added with key and forward feedback (FF) and backward feedback (BF) to obtain intermediate cipher text. The initial FF and BF are taken to 

be 0. The intermediate cipher text is taken modulo operation with 256 to get cipher text. This cipher text is taken as feedback for the next 

column. In the second round we calculate the cipher text from the RHS. In the MWFES-II, the authors have used a much more general approach. 

The FF and BF have been applied using skip by n-columns; where „n‟ can be 0 to any number less than the length of the plain text. In the present 

method (Modified Multiway Feedback Encryption Standard, Version -2), the authors have introduced two different skips „n1‟ and „n2‟. We 

perform „n1‟ skips for forward feedback (that is, from the left), and „n2‟ skip for backward feedback (that is, from the right). „n1‟ and „n2‟ may 

or may not be equal and is taken as a function of the generated keypad. The authors applied the present method on some standard plain texts 

such as 1024 ASCII „0‟, 1024 ASCII „1‟, 1024 ASCII „2‟ and 1024 ASCII „3‟ and the frequency analysis shows the encrypted texts are totally 

random. Initially, the user has to enter a secret key (seed). The key-expansion algorithm generates an enlarged keypad of the size of the plain-

text from the seed. This keypad is used for further encryption and decryption. The present method is very effective as the encrypted text changes 

drastically on varying the skip „n1‟ and „n2‟. Modified MWFES-2 can be applied to encrypt any short message, password, confidential message 

or any other important document. The results show that the present method is free from standard attacks such as differential attack, known plain 

text attack etc. 

Keywords: MWFES, ASCII, Confidential Message, Encryption 

 

INTRODUCTION  

Data encryption is a very important research area now-a-days. 

Plain text or clear text should not be used for sending 

confidential messages because the security might get 

compromised. In the last two decades, quite a number of 

encryption algorithms have been developed. Some of the 

methods are almost unbreakable and are used widely in 

different sectors like business, academic etc. There is also a 

parallel process going on, that is, to break the encryption 

algorithm using some common attacks such as middle-man 

attack, differential attack, known plain text attack, brute force 

attack etc. Nath et al developed various cryptographic 

algorithms such as MSA, DJSA, DJMNA, TTJSA, MES-

I,II,III, UES-I,II,III,IV, BLES-I,II,III,IV [1-15]. Nath et al for 

the first time introduce feedback in Vernam cipher method to 

develop generalized Vernam Cipher Method. Nath et al 

developed Multi Way Feedback Encryption Standard Ver-

I(MWFES-I)[18] where the authors used plain texts, 

randomized key, forward feedback(FF) and backward 

feedback(BF) simultaneously to encrypt any plain text. The 

authors used FF from LHS and BF from RHS and in this way 

the entire file was encrypted. In the present method, Modified 

MWFES-II [19] e authors have made the system even more 

general. Depending on the key entered by the user, one can 

skip „n1‟ number of characters while performing forward 

feedback and „n2‟ number of characters while performing 

backward feedback. „n1‟ and „n2‟ varies from 0 to any number 

less than the length of the file. The results show that the 

encryption process depends a lot on theses skip factors. This 

method is a novel method because the skip characters can be 

different in different blocks of characters. The present 

encryption method can be applied multiple times to make the 

system fully secured. Thorough tests were conducted on some 

standard plain text files and it was found that it is absolutely 

impossible for any intruder to extract any plain text from 

encrypted text using any brute force method. The results show 

that the present method is also free from any kind of known 

plain text or differential attack. 

ALGORITHMS FOR MODIFIED  MWFES-2 

 

In the present section we will be discussing the encryption 

algorithm, key generation algorithm as well as decryption 

algorithm. 

 



Asoke Nath et al, Journal of Global Research in Computer Science, 4 (12), December 2013, 8-13 
 

© JGRCS 2013, All Rights Reserved   9 

Algorithm for Function Encryption() 

Step 1: Input „pt‟(Plain Text),‟seed‟(secret key) 

Step 2: Calculate integral part of square root of  Plain Text 

length 

Step 3: Call KeyGeneration function to get complete key in 

„key‟ 

Step 4: Get forward_skip, backward _skip from the key. 

Step 5: Call encryption_method(pt,key,forward_skip, 

backward_skip) to get Cipher Text „ct‟ 

Step 6: End 
 

Algorithm For Function Encryption_Method 

(pt,key,forward_skip, backward_skip) 
Step 1: i=1 to length(pt) do 

Step 2: sum[i]=sum of ASCII codes of  pt, key, ff, bf 

Step 3: modulo of (sum[i] ,256) added to ct 

Step 4: If forward skip exceeds length(pt) bring it back to the 

front 

Step 5: Initialize „ind‟ to keep tab of backward feedback 

Step 6: sum[ind]=sum of ASCII codes of  pt, key, ff, bf 

Step 7: modulo of (sum[ind],256) added to ct 

Step 8: If backward skip exceeds length(pt) bring it back to the 

front 

Step 9: If i<length(pt) then i=i+1 and go to Step 2 else return 

ct array to calling function 
 

 Algorithm for Function Key_Generation(seed[],n) 
From the secret_key (seed), the program will generate an 

enlarged keypad. We keep this keypad in a square matrix 

having dimensions equal to the nearest greater perfect square 

of the Plain Text length. The first element of this keypad is 

taken to be the sum of the ASCII codes of the characters in the 

seed. Now the next elements are simply values that are linearly 

multiplied with the sum, i.e k*sum for k=1, 2, 3 etc. If there is 

any repetition of the original sum, then the program will 

modify the initial sum to be sum=sum+1 and k=1 and the 

process will continue. The value of sum and its subsequent 

multiplications are kept within the boundaries of 0-255 by 

applying the modulo operations on the numbers at every 

iteration and only after that, the numbers are added to the 

keypad matrix. The elements of the matrix were reshuffled 

using some simple operations such as upshift(),  leftshift(), 

diagonal1_shift(), downshift(), rightshift(), diagonal2_shift() 

etc. These functions were at first called seed length number of 

times. The order of calling these functions should follow the 

constraint that leftshift() shouldn‟t be preceded or succeeded 

by rightshift(). Similarly upshift() shouldn‟t precede or 

succeed downshift(). Now, another variable called 

Randomization Number was calculated from the generated 

matrix by adding the diagonal values and then bringing it 

down to 0-255 by modular operation. The generated matrix 

was permuted again by calling the various functions 

Randomization Number of times. Security can be further 

enhanced by permuting the order in which the functions are 

called, but maintaining the basic calling constraints. The final 

key was thus developed using various properties of the seed as 

well as intrinsic properties of the keypad which is then used by 

the encryption and decryption methods to find out the different 

required parameters at each stage of the individual processes. 
 

Key generation method: 
Step 1: Initialise seed_len with value of the length of seed 
Step 2: Add ASCII codes of the seed characters and store it in 
sum 

Step 3: Initialise a 2 dimensional „key‟ array with nxn elements 
and initialize „sum1‟ with the value of sum 
Step 4: for i=1 to n do 
Step 5: for j=1 to n do 
Step 6: key[i,j]= modulo of(sum1,256) 
Step 7: If  modulo of(sum1,256)==modulo of(sum,256),then go 
to Step 8 else j=j+1 and go to Step 6 
Step 8: sum =modulo of(sum+1,256) 
Step 9: sum1=mod(sum,256); 
Step 10: If  j<n then j=j+1 and go to Step 6 else go to Step 11 
Step 11: If  i<n then i=i+1 and go to Step 5 else go to Step 12 
Step 12: for i=1 to seed_len  do 
Step 13: Call all Shifting and shuffling operations one by one. 
Step 14: If i<seed_len then i=i+1 and go to Step 13 else go to 
Step 15:Add all the diagonal terms and store the sum in 
„randomization_number‟ 
Step 16: Call all Shifting and shuffling operations one by one  
„randomization_number‟ number of times 
Step 17: Return „key‟ array to calling function 

 

Algorithm for Function Clockwise(a[],n,i) 
Step 1: Start from the top left corner of  „i‟th row of matrix a[][] 
Step 2: Keeping that row and column as the circular boundary 
of the matrix and neglecting all elements that do not fall in this 
circle,we shift each element to the right 
Step 3: Return array a[][] to the calling function 

 

 Algorithm for Function Anti_Clockwise (a[],n,i) 
Step 1: Start from the top left corner of  „i‟th row of matrix a[][] 
Step 2: Keeping that row and column as the circular boundary 

of the matrix and neglecting all elements that do not fall in this 

circle,we shift each element to the left 

Step 3: Return array a[][] to the calling function 

 

 Algorithm for Function Left_Shift(a[],n) 

Step 1: for row =1 to n do 

Step 2: Copy all elements of the row to the right of this row  to 

this  row of array a[][] 

Step 3: If row<=n then row =row-1 and go to Step 2 else go to 

Step 4 

Step 5: Return array a[][] to the calling function 

 

Algorithm for Function Right_Shift(a[],n) 

Step 1: for row =1 to n do 

Step 2: Copy all elements of the row to the left of this row  to 

this  row of array a[][] 

Step 3: If row<=n then row =row-1 and go to Step 2 else go to 

Step 4 

Step 5: Return array a[][] to the calling function 

 

 Algorithm for Function Up_Shift(a[],n) 
Step 1: for column =1 to n do 

Step 2: Copy all elements of the column below this column  to 

this  column of array a[][] 

Step 3: If column<=n then column =column-1 and go to Step 2 

else go to Step 4 

Step 5: Return array a[][] to the calling function 

 

 

 Algorithm for Function Down_Shift(a[],n) 

Step 1: for column =1 to n do 

Step 2: Copy all elements of the column above this column  to 

this  column of array a[][] 

Step 3: If column<=n then column =column-1 and go to Step 2 

else go to Step 4 



Asoke Nath et al, Journal of Global Research in Computer Science, 4 (12), December 2013, 8-13 
 

© JGRCS 2013, All Rights Reserved   10 

Step 4: Return array a[][] to the calling function 

 

Algorithm for Function Diagonal1_Shift(a[],n) 

Step 1: Beginning from top left corner of array a[][] copy all 

diagonal elements onto their adjacent elements  
Step 2: Return array a[][] to Calling function 

 

Algorithm for Function Diagonal2_Shift(a[],n) 

Step 1: Beginning from top left corner of array a[][] copy all 

diagonal elements onto their adjacent elements  
Step 2: Return array a[][] to Calling function 
 

Algorithm For Function Decryption() 

Step 1: Input encrypted „ct‟(Cipher Text) and „seed‟(secret 

key). 

Step 2: Calculate integral part of square root of  Cipher Text 

length 

Step 3: Call Key Generation function to get complete key in 

„key‟ that was obtained  during encryption process 

Step 4: Get forward_skip and backward_skip from the 

generated key. 

Step 5: Call decryption_method 

(ct,key,forward_skip,backward_skip) to get retrieved plaintext. 

Step 6: End 
 

 Algorithm for Function Decryption_Method (ct[],key[], 

forward_skip,backward_skip) 
Step 1: We generate the list of feedback transfers for the block 

using function Generate List. 

Step 2: for k=2*length(ct):-1:length(ct)+1 do 

Step 3: We call the various functions like whatIsIn and  

whatIsInBetween in order to figure out the contents of each 

elements and what they may contain. 

Step 4: Since each element can have at most 2 contents at the 

time we store the final contents of each in sub1 and sub2 

Step 5: The final subtracted value is stored in check. 

Step 6: If k>=length(ct)+1then k=k-1 and go to Step 3 else go 

to step 7 

Step 7: Return decrypted PlainText to calling function 

 

Algorithm for Function ConditionCheck (number,i,j,size,v[]) 
Step 1: if i*j!=0, go to step 2,else go to step 3 

Step 2: flag=0 

Step 3: if i!=0 go to Step 4,else go to step 8  

Step 4: if v[Call oldPosition(i,size)]==number, go to step 5, 

else go to step 6 

Step 5: pos=Call oldPosition(i,size) 

Step 6: pos=Call lastPosition(i,size) 

Step 8:  if v[Call oldPosition(j,size)]==number, go to step 

9,else go to step 10 

Step 9: pos=Call oldPosition(j,size) 

Step 10: pos=Call lastPosition(j,length) 

Step 11: flag1=mod(pos,2) 

Step 12: if flag1=0, go to step 13,else go to step 14 

Step 13: flag=2 

Step 14: flag=flag1 

Step 15: Return flag to the calling function 

 

Algorithm for Function Is_Changed 

(number,position,forward_skip,backward_skip,size,u[],v[], 

ct[],ff[],bf[]) 
Step 1: Now we begin by identifying the last change that has 

occurred in number. 

Step 2: We store the actual value to be subtracted in „sub‟ 

Step 3: [i,j]=Call function whatIsInBetween to determine the 

intermediate values 

Step 4: We also determine the immediate values by calling the 

function whatIsIn 

Step 5: Depending on the value of the immediate values we 

either add the initial forward or backward feedback or we 

proceed to add all the previously added values into sub. 

Step 6: After all the values that have been added in the 

encryption process are determined and their values added to 

sub we return sub to the Calling function. 

 Algorithm for Function What_Is_In 

(number,size,forward_skip,backward_skip,v[]) 

Step 1: Call function last position of in order to determine the  

start from the last occurrence of the character „number 

„destination array list v[]. 
Step 2: From that point we try to work out whether that is the 
changed value of that element or not out the beginning of the 
tree of values that have been inserted into 
Step 3: If it is a changed occurrence we try to figure this 
element thus resulting in the final value of the element 
Step 4: Return the values in the element to the calling function 

 

Algorithm for Function What_Is_In_Between 

(number,size,forward_skip,backward_skip,v[]) 
Step 1: Begin by calling the function whatIsIn and figuring out 

what the immediate content of „number‟ is 

Step 2: Next we try to determine what are intermediate values 

that have crept into this „number‟ during the encryption 

process 

Step 3: We need these  intermediate contents in order to 

subtract these contents and decrypt the result 

Step 4: Return the intermediate values to the calling function. 

 

Algorithm for Function GenerateList 

(size,forward_skip,backward_skip) 

Step 1: Initialise source with 1 
SteP 2: Input source serially into the u[] array 
Step 3: Calculate destination for particular source depending on 
forward_skip and store destination in v[] array 
Step 4: Now initialize source to size 
Step 5: Repeat Steps 2,3,4 for backward_skip 
Step 6: Return u[] and v[] to the calling function 

 
Algorithm For Function OldPosition (number,size) 

Step 1:currrent_pos = Call function  last_Position_of (number, 

size) 

Step 2: first_pos = 2*size - current_pos+1 
Step 3:-Return first_pos to the calling function. 

 

Algorithm for Function LastPosition (number,size) 
Step 1:  if number <= ceiling of (size/2); go to Step 3 

Step 2:  if number >ceiling (size/2); go to Step 4 

Step 3: last_ pos = 2*size - 2*(number-1);‟ 

Step 4:  last_pos = 2*(number-1); 

Step 5:  Return last_pos to the calling function. 
 

RESULTS AND DISCUSSIONS 

 

The following list contains the result of some test cases using 

our encryption method. For each case, we have the plain text, 

the key, the number of shifts and their corresponding cipher 

text. The test cases we have shown here are mostly assorted 



Asoke Nath et al, Journal of Global Research in Computer Science, 4 (12), December 2013, 8-13 
 

© JGRCS 2013, All Rights Reserved   11 

and random phrases or texts. The spectral analysis of standard 

ASCII „0‟, ASCII „1‟, ASCII „2‟ , ASCII „3‟ are also given. 
 

 

 

 

Table 1. Encryption of some Plain Texts using some key and 

skip  
Sl. No. Plain        Seed       Forward  Backward   Cipher 

Text                        Feedback Feedback        Text 

1 AAAAB   SXC              1             1            a'ª*ßFåÑ 

AAAA 

2 AAAAB   SXC               1            2          ë=°•@åñ„.     

AAAA 

 

3 AAAAC   SXC               1            2         ë>°•Aåò„/ 

AAAA 

 

4 ABABA   SXC               2           5     bH†6ÓJç©ª­   

BABAB 

 

5 ACACA   SXC               2           5      hL†8ÔKé­¬± 

CACAC 

 

6 ACACA   SXC               3            8     ½3ùé§Än4ÕÎ 

CACAC 

 

 

Inference 

From the observations made in the table above we see that 

even for two similar Plain Texts (as shown in SL. NO. 1. And 

2.), the Cipher Texts are drastically different owing to the fact 

that there is just a slight change in the backward skip making 

the result completely haphazard. We repeat the experiment for 

different Plain Texts keeping a few constraints in mind, such 

as the skip and key and even then we do not see any seemingly 

visible pattern for deciphering the Plain Text. Even if one 

character does turn out to be similar in a rare case that would 

be due to the key being same for both the test cases. 
 

 

 
Figure 1. Frequency Spectral Analysis of ASCII „0‟ 

Encryption with Seed= „SXC‟, Forward Skip=12 and 

Backward Skip=7 
 

 

 
Figure 2. Frequency Spectral Analysis of ASCII „1‟ Encryption with 

Seed= „SXC‟, Forward Skip=12 and Backward Skip=7 

 

 
Figure 3. Frequency Spectral Analysis of ASCII „2‟ 

Encryption with Seed= „SXC‟, Forward Skip=12 and 

Backward Skip=7 
 

 
Figure 4. Frequency Spectral Analysis of ASCII „3‟ 

Encryption with Seed= „SXC‟, Forward Skip=12 and 

Backward Skip=7 
 

         

 

 

 

 

 

 

 

 

 

 

 

 

    Table 2. Encryption of a Small Paragraph 



Asoke Nath et al, Journal of Global Research in Computer Science, 4 (12), December 2013, 8-13 
 

© JGRCS 2013, All Rights Reserved   12 

Paragraph Cipher 

St. Francis Xavier is the 

Patron of St. Xavier's 

College. There is not an 

educated Indian who has 

not heard the name of 

Francis Xavier. It is to 

India that Ignatius of 

Loyola, the Founder of the 

Society of Jesus, sent his 

greatest son, Francis 

Xavier in 1542. Xavier 

was a zealous "missionary 

on the move". 

èÖ²)M�#L¾Ê]À?¹Ÿný

_°x__ç-òû�”<Ŕ

€¨£™äC_})j[Ë,DßÀÓ

 �‡ëä®Št_,CÊûÕr¤Ţ

é2X+Ó%Â_9wú_ñ\Ý=_

}¤AXQO_Mû‘û!Ý�t&Ŕ

u>í­š_?k�b¼_ìèÙ_ 
ţŕ  

_ê?__¥\¥°EÈ_/é‡°_

‚y?x©Y?? 

  
T³wwÔ¤ôÎIhÜû«CSx<

Ú5ö�5÷õ”?Þ¿•Yþ_ê_

è°†­Ã4e"`öÏ\_£õå?

Yœæ«ŕ

8ªõ_N�¨d1RTŒ\4ôSî

_šÁ®®_'ñý~�óñ_Š_*

ó×}_­÷¥^×___�ŠÞ_‰

_ö2­ýˆ™l(_�”�ß__E

¹¥_£�L{ç€K%ä�»º¢?

�½_R__cé¼]‘�À¡p_B

_o_ 
 

 

 Inference 

Comparing the result of this paragraph with the table that we 

had obtained before we see that there is no way of  linking the 

Plain Text with the Cipher Text. If we scrutinize the result in 

the table above for similar Plain Text characters too we find 

that in no two places are the Cipher Text characters same. 

Using a randomized key generated by the key generation 

algorithm we have managed to remove any discrepancies that 

may have occurred while using the same key for two Plain 

Texts. 

 

CONCLUSION AND FUTURE SCOPE 

 

The present method is tested on various types of files such as 

.doc, .jpg, .bmp, .exe, .com, .dbf, .xls, .wav, .avi and the 

results were quite satisfactory. The encryption and decryption 

methods work smoothly. In the present method the encrypted 

text cannot be decrypted without knowing the exact initial 

random matrix. The size of random matrix taken is at least 

16x16. The numbers in 16x16 may be arranged in 256! Ways. 

The present method is free from any kind of brute force attack 

or known plain text attack. The present Modified MWFES 

Ver-2 method may be applied to encrypt any short message, 

password, confidential key. One can also apply this method to 

encrypt data in sensor networks.  
 

ACKNOWLEDGMENT 

The authors are very much grateful to the Department of 

Computer Science for giving the opportunity to work on 

symmetric key Cryptography. A.N sincerely expresses his 

gratitude to Fr. Dr. Felix Raj, Principal of St. Xavier‟s College 

(Autonomous) for giving constant encouragement in doing 

research in the field of cryptography. 

REFERENCES 

[1] Symmetric Key Cryptography using Random Key 

generator: AsokeNath, Saima Ghosh, 

MeheboobAlamMallik:“Proceedings of International 

conference on security and management(SAM ‟10)” held at 

Las Vegas, USA July 12-15, 2010), Vol-2, Page: 239-

244(2010). 

[2] Advanced Symmetric key Cryptography using extended 

MSA method: DJSSA symmetric key algorithm: 

DriptoChatterjee, JoyshreeNath, SoumitraMondal, 

SuvadeepDasgupta and AsokeNath,Journal of Computing, Vol 

3, Issue-2, Page 66-71,Feb(2011). 

[3] A new Symmetric key Cryptography Algorithm using 

extended MSA method: DJSA symmetric key algorithm, 

DriptoChatterjee, JoyshreeNath, SuvadeepDasgupta and 

AsokeNath : Proceedings of IEEE International Conference on 

Communication Systems and Network Technologies, held at 

SMVDU(Jammu) 03-06 June,2011, Page-89-94(2011). 

[4] New Symmetric key Cryptographic algorithm using 

combined bit manipulation and MSA encryption algorithm: 

NJJSAA symmetric key algorithm: NeerajKhanna, 

JoelJames,JoyshreeNath, Sayantan Chakraborty, Amlan 

Chakrabarti and Asoke Nath : Proceedings of IEEE CSNT 

2011 held at SMVDU(Jammu) 03-06 June 2011, Page 125-

130(2011). 

[5] Symmetric key Cryptography using modified DJSSA 

symmetric key algorithm, DriptoChatterjee, JoyshreeNath, 

Sankar Das, ShalabhAgarwal and AsokeNath, Proceedings of 

International conference Worldcomp 2011 held at Las Vegas 

18-21 July 2011, Page-306-311, Vol-1(2011). 

[6] An Integrated symmetric key cryptography algorithm using 

generalized vernam cipher method and DJSA method: 

DJMNA symmetric key algorithm: Debanjan Das, 

JoyshreeNath, Megholova Mukherjee, NehaChaudhury and 

AsokeNath: Proceedings of IEEE International conference: 

World Congress WICT-2011 held at Mumbai University 11-

14 Dec, 2011, Page No.1203-1208(2011). 

[7] Symmetric key cryptosystem using combined 

cryptographic algorithms- generalized modified vernam cipher 

method, MSA method and NJJSAA method: TTJSA algorithm 

– Trisha Chatterjee, Tamodeep Das, JoyshreeNath, ShayanDey 

and AsokeNath, Proceedings of IEEE International 

conference: World Congress WICT-2011 t held at Mumbai 

University 11-14 Dec, 2011, Page No. 1179-1184(2011). 

[8] Symmetric key Cryptography using two-way updated 

Generalized Vernam Cipher method: TTSJA algorithm, 

International Journal of Computer Applications (IJCA, USA), 

Vol 42, No.1, March, Pg: 34 -39( 2012). 

[9] Ultra Encryption Standard(UES) Version-I: Symmetric 

Key Cryptosystem using generalized modified Vernam Cipher 

method, Permutation method and Columnar Transposition 

method, Satyaki Roy, NavajitMaitra, 

JoyshreeNath,ShalabhAgarwal and AsokeNath, Proceedings 

of IEEE sponsored National Conference on Recent Advances 

in Communication, Control and Computing Technology -

RACCCT 2012, 29-30 March held at Surat, Page 81-88(2012). 



Asoke Nath et al, Journal of Global Research in Computer Science, 4 (12), December 2013, 8-13 
 

© JGRCS 2013, All Rights Reserved   13 

[10] An Integrated Symmetric Key Cryptographic Method – 

Amalgamation of TTJSA Algorithm, Advanced Caeser Cipher 

Algorithm, Bit Rotation and reversal Method: SJA Algorithm., 

International Journal of Modern Education and Computer 

Science, SomdipDey, JoyshreeNath, AsokeNath,(IJMECS), 

ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online), Vol-4, 

No-5, Page 1-9,2012. 

[11] An Advanced Combined Symmetric Key Cryptographic 

Method using Bit manipulation, Bit Reversal, Modified Caeser 

Cipher(SD-REE), DJSA method, TTJSA method: SJA-I 

Algorithm, Somdip Dey, Joyshree Nath, Asoke Nath, 

International Journal of Computer Applications(IJCA 0975-

8887, USA), Vol. 46, No.20, Page- 46-53,May, 2012. 

[12] Ultra Encryption Standard(UES) Version-IV: New 

Symmetric Key Cryptosystem with bit-level columnar 

Transposition and Reshuffling of Bits, Satyaki Roy, 

NavajitMaitra, JoyshreeNath, ShalabhAgarwal and 

AsokeNath, International Journal of Computer 

Applications(IJCA)(0975-8887) USA Volume 51-No.1.,Aug, 

Page. 28-35(2012) 

[13] Bit Level Encryption Standard(BLES) : Version-I, 

NeerajKhanna, DriptoChatterjee, JoyshreeNath and 

AsokeNath, International Journal of Computer 

Applications(IJCA)(0975-8887) USA Volume 52-No.2.,Aug, 

Page.41-46(2012). 

[14] Bit LevelGeneralized Modified Vernam Cipher Method 

with Feedback : Prabal Banerjee, AsokeNath, Proceedings of 

International Conference on Emerging Trends and 

Technologies held at Indore, Dec 15-16,2012. 

[15] Advanced Symmetric Key cryptosystem using Bit and 

Byte Level encryption methods with Feedback : Prabal 

Banerjee, Asoke Nath, Proceedings of International conference 

Worldcomp 2013 held at Las Vegas, July 2013. 

[16] Modern Encryption Standard Ver-IV(MES-IV), Asoke 

Nath, Payel Pal, International Journal of Advanced Computer 

Research, Volume-3, Number-II, Page-216-223(2013). 

[17] Modern Encryption Standard Ver-IV(MES-V), Asoke 

Nath, Bidhusunder Samanta, International Journal of 

Advanced Computer Research, Volume-3, Number-II, Page-

257-264(2013). 

[18] Multi Way Feedback Encryption Standard Ver-
I(MWFES-I) , Purnendu Mukherjee, Prabal Banerjee, Asoke 
Nath, International Journal of Advanced Computer Research, 
Volume-3, Number-II, Page-176-182(2013). 

 

[19] Multi Way Feedbach Encryption Standard Ver-
2(MWFES ver-2) , Asoke Nath, Debadeep Basu, Ankita Bose, 
Saptarshi Chatterjee, Surojit Bhowmik, published in IEEE 
conference  proceedings WICT-2013 held at Hanoi, Viertnam, 
Dec 15-18, Page 318-325(2013).

SHORT BIODATA OF ALL THE AUTHOR 

 

Saptarshi Chatterjee is pursuing his Bachelor 

Of Science (Computer Science Honors) at 

St.Xavier‟s,College is involved 

(Autonomous),Kolkata, India. He was born 

in Kolkata on 17.04.1993. He is presently 

involved in research work in Cryptography. 
 

 

 

Debdeep Basu is pursuing his Bachelor Of 

Science (Computer Science Honors) at 

St.Xavier‟s,College 

(Autonomous),Kolkata, India. He was born 

in Kolkata on 03.08.1993. He is presently 

involved in research work in 

Cryptography.  
 

 

Ankita Bose is pursuing her Bachelor Of 

Science (Computer Science Honors) at St.Xavier‟s,College 

(Autonomous),Kolkata, India. She was 

born in Kolkata on 15.02.1993. She is 

presently involved in research work in 

Cryptography. 
 

 

 

Surajit Bhowmik is pursuing his Bachelor 

Of Science (Computer Science Honors) at 

St.Xavier‟s,College (Autonomous),Kolkata, India. He was 

born in Kolkata on 24.05.1994. He is presently involved in 

research work in Cryptography.  

 

 

Asoke Nath is the Associate Professor in 

Department of Computer Science. Apart 

from his teaching assignment he is 

involved with various research work in 

Cryptography, Steganography, Green 

Computing, E-learning. He has presented papers and invited 

tutorials in different International and National conferences 

in India and in abroad. 

 

 

 


