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Abstract—This paper Proposes the Scaling-free 

Micro-rotation based CORDIC algorithm that 

completely eliminates the scale factormultiplication. 

By employing the Taylor series expansion of sine and 

cosine in circular trajectory, the proposed method 

removes the multiplication of the scale factor. The 

accuracy of the result is based on the selection of the 

order of approximation of Taylor series, proposed 

method takes third order approximation which meets 

the accuracy requirement and attains the desired range 

of convergence. Also we have suggested an algorithm 

that redefine the elementary angles with high speed 

most significant-1 detection for reducing the number of 

CORDIC iterations. Compared to conventional 

CORDIC algorithm the proposed algorithm has less 

time delay and utilizes less number of slices on the 

Xilinx Vertex XC4VFX12 device. 

 

Index Terms—Co-ordinate Rotation Digital 

Computer (CORDIC), Cosine/Sine, Field 

Programmable Gate Array (FPGA), Most Significant-

1, Recursive Architecture. 

 

I. INTRODUCTION 

The Co-ordinate rotation digital computer 

(CORDIC) was introduced by Volder [1] in 1959 that 

performs rotations (to compute sine, cosine, and 

arctangent functions), multiply or division of numbers 

by using only shift and add elementary steps. Walther 

[2] generalized CORDIC algorithm in 1971 to compute 

logarithms, exponential, and square roots. After that 

CORDIC has been applied in several important 

domains of application like generation of sine 

andcosine functions, calculation of fast Fourier 

transform (FFT), discrete sine/cosine transforms 

(DST/DCT), householder transform (HT), etc.. [3], [4]. 

Many modifications have been done for efficient 

implementation of CORDIC with less number of 

iterations over the conventional CORDIC algorithm 

[5]-[13]. In [5] and [6] efficient scale-factor 

compensation techniques areproposed which affects 

the latency/throughput of computation. Greedy search 

is used in [7]-[9] to optimize the number of iterations 

at the price of additional area, andtime for the 

implementation of variable scale-factor. 

In [10] area and time efficient CORDIC 

architectures have been proposed which involve 

constant scale-factor multiplication for adequate range 

of convergence (RoC). The virtually scaling-free 

CORDIC in [11] also requires multiplication by 

constant scale-factor and relatively more area to 

achieve respectable RoC. The enhanced scaling-free 

CORDIC in [12] combines few different types of 

CORDIC iterations, so it degrades performance. The 

parallel scaling free approach is proposed in [13] at the 

expense of loss in accuracy.The proposed recursive 

architecture has less area complexity with other 

existing scaling-free CORDIC algorithms, and no 

scale-factor multiplications needed for extending the 

RoC to entire coordinate space, as required in [10]-

[12]. 

The rest of this paper is organized as follows. In 

Section II, a brief recap of the rotation mode of the 

conventional CORDIC algorithm in a circular 

coordinate system and existing scaling-free CORDIC 

algorithm is reviewed. Section III presents the 

proposed modified scaling-free CORDIC algorithm. 

Section IV discusses the proposed CORDIC 

architecture. Section V gives the detailof the FPGA 

implementation and comparison with conventional 

method. Section VI concludes this paper.  

II. BRIEF REVIEW OF THE CONVENTIONAL AND THE EXISTING 

SCALING- FREE CORDIC 

The CORDIC algorithm operates in two computing 

modes, either in VECTORING mode or ROTATION 

mode. These two modes follows linear, circular or 
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hyperbolic coordinate trajectory. In the ROTATION 

mode, the co-ordinate components of a vector and an 

angle of rotation are given and the co-ordinate 

components of the original vector, after rotation 

through the given angle, are computed. In vectoring 

mode, co-ordinate components of a vector are given 

and the magnitude and angular argument of the 

original vector are computed. In this paper, we focus 

on rotation mode CORDIC using circular trajectory. 

 

 

A. Conventional CORDIC Algorithm 

The CORDIC algorithm is able to rotate a given 

vector by an angle “𝜃”. In conventional rotation mode 

CORDIC, the (i+1)th intermediate rotated vector 

estimated from the ith vector using circular trajectory 

as follows,  

 

 
𝑥𝑖+1

𝑦𝑖+1
 = 

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 .  
𝑥𝑖

𝑦𝑖
 (1) 

 

 
𝑥𝑖+1

𝑦𝑖+1
  = cos 𝜃  

1 − tan 𝜃
tan 𝜃 1

 .  
𝑥𝑖

𝑦𝑖
     (2) 

 

The angle of rotation “𝜃” is decomposed into a 

sequence of fixed predefined elementary rotations with 

variable direction instead of single rotation. 

 

 
𝑥𝑖+1

𝑦𝑖+1
 =𝐾𝑖  

1 − tan 𝛼𝑖

tan 𝛼𝑖 1
 .  

𝑥𝑖

𝑦𝑖
                              

(3) 

 

Where 𝐾𝑖= cos 𝛼𝑖  

 

𝛼𝑖= tan−1 2−𝑖          (4) 

 

 
𝑥𝑖+1

𝑦𝑖+1
 =𝐾𝑖  

1 −𝑑𝑖2
−𝑖

𝑑𝑖2
−𝑖 1

 .  
𝑥𝑖

𝑦𝑖
  (5) 

 

The sign sequence 𝑑𝑖=1 for anticlockwise rotations 

and   𝑑𝑖= -1 for clockwise rotations.so, 

 

𝜃 =  𝑑𝑖
𝑏
𝑖=1  .  𝛼𝑖                                                         (6) 

 

Where b is the word-length of the machine in bits. 

 

 

The overall scaling-factor of “b” CORDIC iterations 

is given by (7). After sufficiently large number of 

iterations, the scale factor K converges to a constant 

value K=0.60725. 

 

K =  𝐾𝑖
𝑏
𝑖=1  =  1  1 + 2−2𝑖 𝑏

𝑖=1            (7) 

 

In this conventional CORDIC the range of 

convergence (RoC) is limited to [−99.99° , 99.99°]. 

RoC can be extended to entire co-ordinate space using 

the properties of sine and cosine functions, using an 

extra iteration for full range rotation. 

 

B. Existing Scaling-Free CORDIC algorithm 

Conventional CORDIC algorithm suffers from 

major disadvantages like scale-factor compensation, 

latency, and optimal identification of micro-rotations. 

Various scaling free techniques are reviewed in [10]-

[13]. 

The existing techniques of scaling free CORDIC are 

attempting to completely dispose of the scale-factor, so 

the final target angle is achieved by rotating the vector 

in one direction only means that the final target angle 

is approximated as a pure summation of the elementary 

angles. Here, the sine and cosine functions   

 

sin 𝛼𝑖  = 2−𝑖(8) 

cos 𝛼𝑖  = 1 - 2−(2𝑖+1)(9) 

 

This approximation imposes a following restriction 

on basic shift (minimum possible permissible shifts in 

the CORDIC iteration is called as basic shift, which is 

equal to the number of right shifts in the first CORDIC 

iteration)   in the allowed values of iteration index i: 

 

       (b –  2.585 ) 3 ≤i≤ b-1          (10) 

 

Using (8) and (9) in the functional equation of 

CORDIC, 

 

 
𝑥𝑖+1

𝑦𝑖+1
  =  1 −  2−(2𝑖+1) −2−𝑖

2−𝑖 1 −  2−(2𝑖+1)
 .  

𝑥𝑖

𝑦𝑖
    (11) 

 

Compare to the conventional CORDIC working 

equation, this scaling-free CORDIC working equation 

(11) does not require a scaling operation. The datapath 

component required for implementing the operation 

stated in the equation (11) is shown in Fig.1.  

Even though the scaling- free CORDIC algorithm 

provides a better means to get rid of the final scale 

factor multiplication, its biggest drawback is its 

extremely low range of convergence.Modified 

virtually adaptive scaling-free algorithm [11], extends 

the convergence range to entire co-ordinate space, but 

it utilizes an adaptive scale-factor. 

 

III. PROPOSED MODIFIED SCALING-FREE CORDIC 

ALGORITHM 

The principal idea behind the development of 

modified scaling-free CORDIC rotator is to develop a 

CORDIC rotator algorithm that stretches out the 

convergence range to entire co-ordinate space. So the 

proposed design is based on the following two ideas, 

1) we used Taylor series expansion of sine and cosine 

functions to eliminate scaling operation and  2) we 

proposed a generalized micro-rotation selection 

technique to extend the adequate range of convergence 

(RoC) based on the chosen order of approximation of 
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the Taylor series. 

The Taylor expansions of sine and cosine of an 

angle “𝛼” are given by 

sin𝛼 = 𝛼 – (𝛼3 3! ) + (𝛼5 5! )  -…….        

(12) 

cos𝛼 = 1 –(𝛼2 2! ) + (𝛼4 4! ) -…….          

(13) 

 

A. Expressions for Micro-Rotations Using Taylor 

Series Approximation and Factorial Approximation 

The third order approximation of the Taylor series 

expansion of sine and cosine functions is used in the 

CORDIC co-ordinate calculation. 

 
Fig. 1. Elementary rotational section for i> b/2 

 

 
𝑥𝑖+1

𝑦𝑖+1
  =  

1 – (𝛼2 2! ) −(𝛼 – (𝛼3 3! ))

𝛼 – (𝛼3 3! ) 1 – (𝛼2 2! ) 
 .  

𝑥𝑖

𝑦𝑖
  (14) 

 

The equation (14) cannot be applied in the CORDIC 

shift-add iterations. To implement the (14) by shift-add 

operations, we have to approximate the factorial terms 

by the power of 2 values, so that replacing 3! by 2
3
, 

and the equation (14) becomes, 

 

 
𝑥𝑖+1

𝑦𝑖+1
 = 

 
1 −  (2−1). 𝛼𝑖

2 −(𝛼𝑖  −  (2−3). 𝛼𝑖
3)

(𝛼𝑖  −  (2−3). 𝛼𝑖
3) 1 −  (2−1). 𝛼𝑖

2  .  
𝑥𝑖

𝑦𝑖
  

                                  (15) 

B. Generalized Micro-Rotation Sequence Selection 

The expressions for the basic-shift (s), region of 

convergence(RoC), first elementary angle of rotation 

(𝛼1) for different world-length of different orders of 

approximations is as follows, 

 

Basic-shift, s = (𝑏 − log2 𝑛 + 1 !)  𝑛 + 1      (16) 

Where b is the word length of machine in bits 

 

RoC = n1× 𝛼1 (17) 

 

Where 𝛼1 = 2
-s
 and n1 is the number of micro-

rotations 

Table I values are computed based on above 

expressions (16) and (17), and from Table I we know 

that to increase in the approximation order, the basic-

shift decreases, 𝛼1 increases and RoC is extended. For 

smaller word-lengths the higher order terms of Taylor 

series do not give any impact on the accuracy. 

In the proposed generalized micro-rotation sequence 

selection, we have done multiple iterations of basic-

shift, accompanied by non-repetitive unidirectional 

iterations corresponding to another shift indices to 

minimize the number of iterations and achieve an 

adequate scope of convergence. 

In the proposed method the rotation angle is 

represented as 

“𝜃”. 

 𝜃 = I1.𝛼𝑠+ 𝛼𝑠𝑖

𝐼2
𝑖=1 ,   n = I1 + I2(18) 

Where  

𝛼𝑠 = 2−𝑠 is the elementary angle corresponding to 

the basic-shift,  

𝛼𝑠𝑖
 = 2−𝑠𝑖  are elementary angles for other shifts, 

𝑠𝑖 is the shift for ith iterations and 𝑠𝑖> s, 

I1 and I2 are non-negative integers and 

n represents the total number of iterations.  

 

If we do not use any micro-rotation of angle 𝛼𝑠   

then I1 is zero, and I2 = n. On the other hand, if the 

desired angle of rotation “𝜃” is a multiple of 𝛼𝑠then I2 

is zero and   I1 = n. In Table II, we list the decimal and 

hexadecimal representation of the elementary angles 

corresponding to different shifts. 

 
TABLE I 

RoCFOR DIFFERENT ORDER OF APPROXIMATION OF 

TAYLOR SERIES BASED ON (16) AND (17) 

 

Appro

x. 

order 

Basic-shift 

First Elementary 

Angle 

             (Radians) 

RoC for n1 

(Radians) 

16-

bit 

32-

bit 
16-bit 32-bit 

16-

bit 
32-bit 

3 2 6 0.25 0.01562 1 0.0625 

4 1 5 0.5 0.03125 2 0.125 

5 1 3 0.5 0.125 2 0.5 
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TABLE II 

SHIFTS AND CORRESPONDING ELEMENTARY ANGLES IN  

DECIMAL AND HEXADECIMAL REPRESENTATION 

 

Shifts 

(𝐬𝐢) 

Elementary angle (𝛂𝐢) 

 

Decimal 
16-bit 

Hexadecimal 

2 0.25 4000 H 

3 0.125 2000 H 

4 0.0625 1000 H 

5 0.03125 0800 H 
 

 

 
Fig.2. Proposed CORDIC architecture  
 

IV. ARCHITECTURE OF THE PROPOSED CORDIC   

The recursive architecture of the proposed CORDIC 

processor is shown in Fig.2. The proposed CORDIC 

architecture uses the same stage block for all the 

iterations of the coordinate calculations, as well as for 

the generation of shift values.The rollover count of the 

counter decides the number of iterations required in a 

CORDIC processor. The rollover count is seven for 

basic-shift=3 and ten for basic-shift=4. The completion 

or expiry of the counter signals indicates the 

completion of a CORDIC operation, depending on this 

counter signal, the 2:1 multiplexer either loads a new 

dataset (rotation angle, the initial value of “x” and “y”) 

to start a new CORDIC operation, or recycles the 

output of the stage to begin a new iteration for the 

current CORDIC operation. The input and output 

register files act as latches for synchronization 

purpose. 

The structure of stage block is shown in Fig.3. It 

consists of three computing blocks, 

 1. Co-ordinate calculation, 

 2. Shift-value estimation and  

 3. Micro-rotation sequence generator  

 

Equation (15) is used for calculating the new 

coordinate values in each iteration. Recognition of the 

micro-rotations depending on the bit representation of 

the rotation angle in radix-2 system using most-

significant-1 detection.For this we limit the maximum 

rotation angle to 45°as the entire coordinate space 

(0°,360°) can be mapped to the (0°,45°) using octant 

symmetry of sine and cosine functions. If the most-

significant-1 location (M) of the input rotation angle is 

smaller than the basic-shift “s”, the elementary angle 

of the basic-shift would be applied for the CORDIC 

iteration. For a fixed word-length of N -bit, the shift 

(si) for the elementary angle is given by 

 

si=N - M                  (19) 

 

Based on the above discussion, the pseudo code for 

micro-rotation sequence generation of 16-bit word-

length with basic-shift = 2 is written below. 

 

 

 
Fig.3. Block diagram of the stage 

 

INPUT: angle to be rotated (𝜃𝑖) 

Begin 

INITIALIZE:i=0 

STEP1: Find the most-significant 1 position in the 

input angle (𝜃𝑖) 

INITIALIZE: M=most-significant-1 location of (𝜃𝑖) 

STEP2:If (M==15) then 

             𝛼=0.25 radians; 

                      Shift, 𝑠𝑖 = 2 and 𝜃𝑖+1= 𝜃𝑖- 𝛼; 

                      Increment i; 

                      Go to step 1; 

             Else 

                     Shift, 𝑠𝑖=16-M 

         𝜃𝑖+1= 𝜃𝑖  with  𝜃𝑖[M]=0 

                     Increment i; 

                     Go to step 1; 

End 

V. FPGA IMPLEMENTATION AND COMPARISION 

The proposed modified CORDIC algorithm have 

been coded in Verilog and simulated and synthesized 

using Xilinx ISE 13.4i and to be implemented in 

Xilinx Vertex4 (XC4VFX12-SF363-12) 

device.TheIsim simulation results of proposed 

CORDIC are shown in fig. 4. The comparison of 

synthesis results in Table III shows that Scaling free 

Micro-Rotation based CORDIC takes less area and 
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time compare to Conventional Micro-Rotation based 

CORDIC. 
 

TABLE III 

COMPARISON OF SYNTHESIS RESULTS 

 

 
CONVENTIONAL  

CORDIC 

PROPOSED 

SCALING FREE 

CORDIC  

No. of  Slices 26%             17%     

No. of Slice 

Flip flop 
5%   8%   

No. of 4 input 

LUTs 
24%   8% 

No. of IOs 52 99 

Minimum input 

arrival time 

before clock    

4.557ns 3.135ns 

Maximum 

output required 

time after clock 

6.280ns 3.793ns 

Total Path 

Delay 

7.547ns(49.1% logic, 

50.9% route) 

3.793ns                                       

(93.0% logic, 7.0% 

route) 

Maximum 

Frequency 
233.56MHz 334.353MHz 

 

 
 

Fig.4. simulation result of proposed CORDIC 

VI. CONCLUSION 

The proposed algorithm makes a complete scale-

free solution for realizing rotation mode circular 

CORDIC algorithm. The third order approximation of 

Taylor series is taken by the proposed algorithm and it 

not only meet the accuracy requirement but also attain 

an adequate range of convergence. The generalized 

micro-rotation sequence selection technique is 

suggested to reduce the number of iterations for low 

latency implementation. Comparison of synthesis 

results shows that the proposed modified scaling-free 

CORDIC algorithm has low time delay and utilized a 

less number of slices and flip flop on the Xilinx 

vertex4 device. 
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