
Volume 5, No. 6, June 2014

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 26

MOTIVATION FOR SECURITY TESTING

Manju Khari
1
, Chetna Bajaj

*2

1
Department of Computer Science & Engineering,

Ambedkar Institute of Advanced Communication Technologies and Research,

Delhi, India

manjukhari@yahoo.co.in
1

*
2
Department of Computer Science & Engineering,

Ambedkar Institute of Advanced Communication Technologies and Research,

Delhi, India

chetnabajaj7@gmail.com
2

Abstract: Security testing is used to build a secure system but it has been ignored for a long time. It is of immaculate importance these days. In

today‟s world, privacy and security have been assigned foremost importance, therefore it is highly recommended to look forward for data and

operations‟ security in software applications, which demands urgent attention but it is rather ignored. Therefore, our objective is to introduce

developers with an esteemed importance of system‟s security, which can be induced by implementing security testing methodology in SDLC

process to produce a secure software system. So, Security Testing has been defined from developer‟s point of view. It resembles methods that

need to be incurred in SDLC process to incorporate security feature in software. Software Security Unified Knowledge Architecture not only

describes Security testing‟s values and objectives but also provides some developer‟s guidelines to produce a secure software system.

Keyword: Security Testing, SDLC, Software Testing, Security Knowledge.

INTRODUCTION

Software Testing is an important process in SDLC. It
provides assurance to both developers and users as well.
Developers get assurance from system‟s extensive testing
and can present it to users for acceptance whereas users
consider a good amount of testing as an important parameter
for accepting any software. But testing is not performed for
this assurance only. It has major significance in day-to-day
operation of software system. Software need to be tested
thoroughly to enhance its capability to handle abnormal
conditions. Software testing is performed by concentrating
on points or situations where software may behave
abnormally and can result in failure later on. System‟s failure
may cause million dollars business loss all over the world
which is not generally acceptable to any organization at any
cost. As a result, testing process has been accrued a lot of
importance and is given almost 40% time of the total time
required in SDLC process. Testing reveals system‟s
shortcomings and failure, which need to be fixed by
developers properly without affecting other system‟s
components. Although efforts involved in process make
testing very costly, it is worth the benefits one gets.

The basic principle of software and security testing is same,
to ensure system‟s security. Security testing is performed to
incorporate security features i.e. authentication,
confidentiality, integrity, availability etc. to the system.
Security testing resembles a system‟s state where it can
secure itself from unwanted actions and does not allow other
entities/intruders to vanish system‟s integrity. The unwanted
action may comprise system‟s unauthorized access to
suspiciously alter file(s). So, Security testing is an act of
making system defendable from attacks.

Software Security

Security testing helps in securing system/application. It is an
advanced version of software testing. Software Testing
mainly focuses on testing of software‟s functionality.
Functions implemented in software are analyzed to ensure
whether software system produces estimated response.
Software testing resembles system‟s functional aspect.
Security testing is more advanced than software testing as it
considers security, a non-functional system‟s property. It
depicts system‟s ability to make it secure. The system is
made secure by implementing functions which prevent an
unauthorized user to access system‟s valuable and
confidential information (Gu Tian-yang et al., 2010) [1]. The
developer needs to code security enforcing functions to
protect system by preventing it from being exploited. System
will be secured if it functions well, even in presence of
vulnerable or malicious code or activity that can exploit
system, and does not have any adverse effect on it.

Security is a vital task or property. Providing security to
system is very complex in comparison to simple software
testing process which involves black box and white box
testing. For securing system, we need to check system‟s two
important things: First, validity of implemented security
measures that provide functionality and security to system.
Security measures also include features like cryptography,
strong authentication, and access control measures. And
second, system‟s behavior when it gets attacked by attackers,
resulting in destruction by accessing secured and confidential
information.

Attackers can attack system with their most powerful and
exotic skill set to create room for himself in it (Hoglund and
McGraw, 2004) [2]. Developer and tester need to understand
attacker‟s mindset so that they can restrict attacker‟s
exploitable activities for hacking system.

mailto:chetnabajaj7@gmail.com

Chetna Bajaj et al, Journal of Global Research in Computer Science, 5 (6), June 2014, 26-32

© JGRCS 2010, All Rights Reserved 27

Software Security Testing

Security testing is very much important for software
application as it takes care of confidential data. It ensures that
confidential data does not get overlooked by unauthorized
entity. It works beyond functional (i.e. black box) and
implementation (i.e. white box) testing. Security tester may
use many techniques to locate system‟s vulnerabilities.
Testing system‟s security checks the loopholes or
vulnerabilities in system which may cause failure of security
functions of system ultimately leading to great losses to
organization. Therefore, security testing is employed to
ensure that developed software is free from flaws and hence,
the system is safe from unauthorized individual, be it an
employee or an outsider. Security testing identifies threats
and measures its impact on system. The impact is analyzed
by developers or testers by playing the role of an attacker.
They put their efforts to break the system or to get into it to
find bugs. So, security testing is very essential in IT sector
for data protection.

Security testing is related to risk based testing approach
which analyze risk in each phase of SDLC. Proper measures
are taken to eliminate risk to make system secure. So, Testers
must incorporate a risk-based testing approach by keeping
system‟s architectural reality and attacker‟s mindset into
consideration for applying software security adequately
(Erdogan and Stolen, 2012) [3]. In this approach, risk
affected areas are identified for testing. Developers/Tester
need to develop test cases to reveal problems if any. The
approach provides high level of software security as
compared to black-box testing.

Security testing deals with system‟s security. It observes
system‟s behavior in presence of malicious attack. It tries to
construct and execute test cases to make software work
properly in attack phase as well.

In Section 2 of paper, various types of common techniques of
testing would be discussed. In Section 3, various developer
facing issues are described along with answer to „who should
do security testing and how‟ etc. would be highlighted.
Software Security Unified Knowledge Architecture is
elaborated in section 4 which focuses on three important
knowledge catalogs. In Section 5, Security knowledge to
secure SDLC is defined which includes various knowledge
catalogues implemented along with SDLC to model it in a
SSDLC. Section 6 discusses about integration of security
process with SDLC phases, benefitted for a secure software
system development. The same is also summarized in table.
At the end, we conclude the paper with its future scope
discussion in continuation of reference list.

RELATED WORK

In Software engineering practices, software systems are
developed by a specific SDLC model among all. Each model
consists of various common phases. Testing is one of them
and is included at end to find software‟s operational
response. Testing describes implemented software
functionalities in practical way. Testing verifies the
developed system with expected and unexpected inputs and
observes its output thoroughly. Observations decide system‟s
correctness. Following approaches are very common to test
software:

1. Black Box Testing approach

2. White Box Testing approach
3. Gray Box Testing approach
4. Risk Based Testing approach

Black box Testing Approach

It is a very simple and efficient technique to test system as it
just observes behavior of system under test (Aggarwal
and Singh, 2005) [4]. It analyzes program‟s behavior with
various input combinations to look for any abnormal
behavior or wrong output. It does not perform code
inspection checking. It executes program with valid and
invalid inputs. The system is looked for its response and in
case, an abnormal behavior is observed, it must be corrected
(Khan and Khan, 2012) [5]. It is also called Functional
testing. To check security, tester injects malicious input,
resultant system behaves abnormally and developers fix it.

White box Testing Approach

White box testing approach is important software testing
which actually looks into code to find system‟s flaws. It is
also known as structural testing (Aggarwal and Singh, 2005)
(Khan and Khan, 2012) [4] [5]. It requires tester to
understand design and implementation knowledge of source
code. It is very efficient in locating programming errors.
Some testers use static analyzers and pattern matching to test
programming errors in code, but it can provide false positive
results (which show there is vulnerability but actually there is
none).

Grey-box testing Approach

Grey-box testing (or gray-box testing) is defined as
combination of black box and white box testing, and
increases testing coverage of software testing (Khan and
Khan, 2012) (Irena, 2008) [5][6]. It allows testers to test
software with basic information about it. The basic
information required for Grey Box testing includes
knowledge of internal data structures and algorithms, used
for designing test cases. The test cases are executed at
exposed interfaces. Grey box testing is best suited for testing
integration of two modules. The interface is checked or
tested for modules‟ connectivity and data flow mechanism
between them. It requires that tester must have knowledge
about application‟s operation and functionality.

Risk based Testing Approach

Risk based testing technique refers risk associated with
software system under test. In (Ould, 1999) [7], author
defines risk as “any threat to the achievement of one or more
of the cardinal aims of the project”. Another definition of risk
state that “A risk is a problem that has yet to occur, and a
problem is a risk that has already materialized.” (DeMarco
and Lister 2003) [8]. The risk associated with software may
cause great loss to organization, that‟s why risk based testing
is considered of great importance. Risk based security testing
also considers attacker‟s intentions and his abilities to
perform attack. Developers identify risk associated with an
attack and try to minimize it (Potter and McGraw, 2004)
(Khan and Khan, 2013) [9] [10]. So, it provides very good
methodology to improve software‟s quality. It also helps
management personnel to make necessary decisions
regarding software release in market.

SOFTWARE SECURITY TESTING ISSUES FOR

DEVELOPERS

Testers need to understand how to provide a good and
qualitative amount of testing time to system. It is required to

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22K.K.+Aggarwal%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Yogesh+Singh%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22K.K.+Aggarwal%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Yogesh+Singh%22

Chetna Bajaj et al, Journal of Global Research in Computer Science, 5 (6), June 2014, 26-32

© JGRCS 2010, All Rights Reserved 28

thoroughly test the system to find out maximum errors.
These errors must be removed to get software accepted by
customer. Testers also need to learn to provide suitable time
and efforts to locate non functionality security risk.

Developers perform exhaustive black box and white box
testing to test software system. They look for maximum
numbers of errors and flaws and upon finding, get them fixed
to make software work well. But the process does not include
security, an important non-functional feature. As a result,
security testing process came into existence. Initially, when
security testing was started as a new technology, people were
uncomfortable with it. It was not easy for them to test
system‟s security completely. Developers face many issues
in security testing process during SDLC of a secure software
system. Some of them are mentioned below:

1. Who should do the Security testing?
2. How Security testing can be done?

Who should do the Security testing?

Security testing is done by removing system‟s vulnerabilities.
Vulnerability may occur from a misunderstood design flaw
or can also occur from a fault in source code during
implementation phase. Vulnerability injected during design
phase become very complex. Hence, it becomes equally
difficult to remove them. It can be removed by the expertise
of an experience person having knowledge on similar kind of
projects. Further, It is assumed that the person should be
accomplished with knowledge or context‟s information, but
there is shortage of good, experienced and knowledgeable
testers (Thompson, 2003) [11].

Software industry requires a person who can use his
expertise in every phase of SDLC to develop secure
software. Now-a-days, organizations require a large number
of security testers, to test application‟s security. Besides, we
also need experts who can share their expertise (of
developing secure applications) with other developers too.

Testers need to develop security test cases which can easily
exploit and expose security related problems in system. They
should observe it very carefully to identify software
problems. But it is very difficult to model or design such test
cases that can expose security related problems. Other
problems constitute the deficiency of test cases. Sometimes,
test cases developed are not sufficient to exploit software to
identify actual problem. It has been said earlier also that it is
very important to have experience for efficient security
testing (Potter and McGraw, 2004) [12].

How Security testing can be done?

Security testing includes Black box, white box, Grey box and
risk based testing approaches. White box testing includes
testing of source code to find programming errors or bugs.
Risk based security testing is implemented in SDLC to make
a secure software product which includes following steps
incorporated at each phase:

1. Creation of security abuse/misuse.
2. Listing of normative security requirements
3. Conducting architectural risk analysis
4. Constructing risk-based security test plans
5. Wielding the required static analysis tools
6. Conducting penetration testing in the final

environment

7. Clearing the system from problems occurred due to
security breaches.

Most important procedure in testing includes system‟s risk
analysis, risk based security test planning and security
testing which can formulate problems to risks faced by
organization (Ould, 1999) [7]. Afterwards, these risks are
ranked and prioritized by business authorities.

Software security can be measured by two important
activities i.e. first, by testing functionality of implemented
security mechanisms and second, by implementing risk
based security testing to understand attack‟s simulation.

SOFTWARE SECURITY UNIFIED KNOWLEDGE

ARCHITECTURE

Knowledge is defined as “information in context” i.e. the
information can be used to perform some task. Security
testing is not only adopting and implementing security
features, it also assures about development of secure
software by implementing various processes. So, Knowledge
in context of security includes various processes and
procedures used to develop secure software system. Hence, it
is required to organize software security knowledge. Here,
Software Security Unified Knowledge Architecture comes
into picture with great importance given to security
knowledge. It can provide best software security practices for
developing secure software system. Software security
knowledge can be applied in various phases of SDLC by
using knowledge intensive practices. It also guides
developers during designing and coding of software.

Software Security Unified Knowledge Architecture
(Barnum, and McGraw, 2005) [13] is shown in figure 1. The
architecture defines a structure which provides relation
between different knowledge catalogues. These important
seven knowledge catalogues are grouped in following three
knowledge categories (Viega and McGraw, 2001) [14]:

1. Prescriptive Knowledge
2. Diagnostic Knowledge
3. Historical Knowledge

Figure 1. Knowledge objects of Software Security and their basic inter-

relating architecture.

Prescriptive Knowledge

Prescriptive knowledge consist three knowledge catalogs:

Principles, Guidelines, and Rules. It depicts the abstraction

of high-level architectural principles at philosophical level

to very specific and tactical code-level rules. The category

suggests “what to do and what to avoid” during

development of a secure software system.

http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bThompson%2C+H.H.%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr

Chetna Bajaj et al, Journal of Global Research in Computer Science, 5 (6), June 2014, 26-32

© JGRCS 2010, All Rights Reserved 29

Diagnostic Knowledge

Diagnostic knowledge consist three knowledge catalogs:

vulnerabilities, exploits and Attack patterns. It helps

developers to identify and tackle issues occurred from

security attacks. Security analysts use it as a resource or

component to be implemented in software development.

Table 1 describes knowledge catalogs of diagnostic

knowledge.

Historical Knowledge

Historical knowledge consist a knowledge catalogs called
Historical Risks. It highlights system‟s issue and tries to

Table I. Knowledge Catalogs of Diagnostic Knowledge

Knowledge Catalogs Description

Vulnerabilities

Knowledge

It provides vulnerabilities experienced in

systems.

Exploit It depicts a scenario which tells sequence of

operations carried out to compromise the
system.

Attack Pattern It includes a sequence of exploits which can

attack a whole computer network.

analyze its impact on system from business perspective. The

knowledge also provides lessons to minimize similar

mistakes in future.

SECURITY KNOWLEDGE FOR SECURE SDLC

Software Security requires expertise and experience of
application programmer to maintain application‟s strength by
code or control measures. Be it a security issue, requirement
related constraints or any database constraints, Industry
requires skilled practitioner who can input their exclusive
skills to provide extensive facilities (i.e. not easy to
implement) to applications. But due to lack of required
knowledge, industry has very few skilled security
practitioners. Moreover, Industry requires those skilled
practitioners who can also share their expertise with others
for better development of software (McGraw, 2006) [15].
Developers need to incorporate their software knowledge to
provide excellent product. We can also use expertise of
different software security practitioners to make use of it
throughout the process. It can be named as security catalogs
which define security constructs. Moreover, it can also be
implemented in SDLC phases to define security perspective.
Each knowledge catalog has its own phase, activities and
outputs which are used successively in SDLC process and
provide excellent results. Figure 2 shows SDLC phases with
inclusion of knowledge catalogs. Table 2 describes different
knowledge catalogs which are mentioned below:

1. Principles
2. Guidelines
3. Rules
4. Attack Patterns
5. Historical Risks
6. Vulnerability
7. Exploits

INTEGRATION OF SECURITY PROCESS WITH SDLC

We are well known with SDLC process used to develop
software. Figure 3 shows implementation of security
constructs in SDLC to develop secure software (Online
Documentation, 2013) [16]. It shows how developers can

develop a secure software product by SDLC process. Each
phase has its own significance with some extra duties and
responsibilities to be carried out to make a system secure. It
is always agreed that if we detect an error or discrepancy in
requirement phase then the cost involved to rectify it and to
implement any change will be high during later stages of
SDLC. That is, if we detect error in requirement phase and
do not give adequate attention and postpone security testing
after implementation or deployment, then that small error
will become a security bug during later stages of SDLC.
Consequently, the cost to solve problem i.e. corrective cost
will get increased. So, it is equally necessary to involve
security testing process in earlier phases of SDLC as well

Figure 2. SDLC including various security testing practices to make a

system secure

(McGraw, 1998) [17]. Figure 3 represents SDLC process
incorporating implementation of security processes
corresponding to each SDLC phase to produce a secure
software system.

In Secured Software development process, security
incorporating activities are included in each phase of SDLC
process. Various phases are listed below and further
explained in detail:

1. Requirement Phase
2. Design
3. Coding and Unit Testing
4. Integration and System Testing
5. Implementation
6. Support

Requirement Phase

In requirement phase of SDLC, developer gathers functional

requirements required to develop software but forgets to

collect security requirements. It‟s a developer mistake of not

considering security requirements. However, it is important

to collect security requirements along with function

requirements. Developer can gather security requirements

from users or from security guides. Security requirements

must be documented and analyzed along with functional

requirements. To understand the importance of security

Chetna Bajaj et al, Journal of Global Research in Computer Science, 5 (6), June 2014, 26-32

© JGRCS 2010, All Rights Reserved 30

features, system‟s state must also be analyzed with or

without security implementation. Feasibility study for the

same must be performed before its implementation.

Design Phase

Developers must analyze each security requirement with
respect to its design and implementation. They must

understand system‟s design to propose efficient and effective
security strategies, plans, designs and procedures. Special
security practitioners can be hired who can focus on system‟s
risk assessment. Design phase include creation of test plans
that depicts how and when security testing will be performed
to test system‟s security.

Table II. Knowledge Catalogs of Diagnostic Knowledge

Knowledge

Catalogs

Description Sample High Level Schema Artifact

Principles

Developer involved in secure system development has learned many crucial points from

their past experienced assignments and they do not want themselves to be in problem. So,
they make best practices as principle to avoid hassles for smooth development of secure

system. Principles play an important role in development and also find its place at

philosophical level. It is used to find problem in architectural flaws or software. Principles
are also used for practicing good security engineering.

1. Title

2. Related guidelines
3. Definition

a. Description

b. Examples
c. References

4. Related rules

1. Security

Requirements
2. Software

System

Architecture
3. Software

Design

Guidelines

Guidelines refer to suggestions provided for secure system development. It includes

directions to follow during development process. It specifies what needs to be done and
what should not be included in process, along with its meaning to define semantic level of

development process. Guidelines are specific and related to technical context i.e. it might

be related to language like J2EE, .Net; or related to operating system like Linux Kernel
modules. Guidelines help in finding architectural flaws and bugs during implementation

phase.

1. Context Description

a. Platform
b. Operating system

c. Language

2. Type
3. Title

4. Objective

5. Description
6. Development scenario

7. Related API

8. Related principles
9. Reference

10. Related rules

11. Security requirements
12. Software design

1. Security

Requirements
2. Software

Design

3. Code

Rules Rules act as recommendations and guidance during SDLC process. It defines things to be
followed or avoided at syntactical level of development process. These rules must be

verified with development process by lexical scanner or by constructive software parsing

tools used for source code and binary format. Rules are programming language specific.
They are used to detect programming errors during implementation.

1. Context Description
a. Platform

b. Operating system

c. Language
2. ID

3. Title
4. Attack category

5. Location

6. Description
7. Method of attack

8. Signature

9. Solution
10. Example

11. Reference

12. Related principles
13. Related guidelines

1. Code

Attack
Patterns

Software gets exploited often. Keeping software exploit techniques in mind, attack
patterns are designed. Attack patterns analyze the method that has challenged system‟s

security by attacking and exploiting software system. Attack patterns help to indentify risk

associated with each system‟s exploit. It plays an important role in designing misuse and
abuse cases. It also facilitates in constructing test cases for specific security problem.

1. Context Description
a. Platform

b. Operating system

c. Language
2. Title

3. Attack category

4. Description
5. Example

6. Reference

7. Related rules
8. Related guidelines

1. Abuse cases
creation

2. Software

design
documents

3. Test plans for

security
4. Tests Cases

5. Penetration

tests

Historical

Risks

Historical risk is identified during secure system development. Actually, it is a pair of

condition and event, with its likelihood of occurrence and impact. Historical risks are very

useful for early identification of potential issues in development process. It can also
provide effective mitigation techniques and ideas for making risk management up to the

mark to provide better security characteristics.

1. Type (business or

technical)

2. Title
3. Subcategories(via

taxonometric sorting)

4. Author
5. Owner

6. Project

7. Risk status
8. Likelihood

9. Impact

10. Severity
11. Risk context

12. Risk description

13. Estimated impact date
14. Potential cost

1. Architecture

of Software

2. Software
Design

3. Test plans

4. Fielded
software

Chetna Bajaj et al, Journal of Global Research in Computer Science, 5 (6), June 2014, 26-32

© JGRCS 2010, All Rights Reserved 31

15. Contingency plans and
work around

16. Related risks

17. Related business goals
18. Related mitigation

19. Diagnostic methods

Vulnerability Vulnerability can be used to attack system. It may be due to programming error or

software‟s defect which allows attacker to gain system‟s access.

1. Context Description

a. Platform

b. Operating system
c. Language

d. Application

e. Version, and so on
2. Description

3. Title

4. Severity
5. Vulnerability type

6. Loss type

7. Reference

1. Code

2. Architecture

of Software
3. Software

design

4. Penetration
tests

5. Fielded

software

Exploits Exploits is a particular act performed by the attacker. 1. Context Description
a. Platform

b. Operating system

c. Language

2. Description

3. Title

4. Preconditions
5. Motivation

6. Exploit code

7. Exposure type
8. Related vulnerability

9. Blocking solution

1. Penetration
tests

2. Fielded

system.

Test Plan: Test plan must be developed with utmost care and

should include:
1. Security related scenarios or test cases
2. Security testing related test data
3. Security testing test tools
4. Usage of different security tools to analyze various

test outputs

Coding and Unit Testing

Developer must incorporate secure coding guidelines for
implementing secure software. Developers must build in-depth
knowledge of how vulnerability gets into software. They must
also keep pace with learning to prevent system from sneaking
into code programs and become able to differentiate design
versus implementation vulnerabilities. Secure software
developers and testers should attend and acquire proper and
managed training sessions to be able to develop secure code by
adhering secure coding standards. The development must be
lined up with secure design, coding guidelines and standards.
Testers should use secure coding standards and must develop
test cases to verify with respect to the standard being followed
to ensure system‟s security.

Security Test cases: Some sample test cases which can be used
in security testing are:

1. Password used for verification should be kept in
encrypted format in database.

2. Application or System should not allow access to
invalid users.

3. Application‟s cookies and session time must be
checked regularly.

4. Browser back button should be disabled while doing
transactions on commercial websites.

Integration and System Testing

Black/white/gray box testing is performed in this phase. A
virtual test environment is setup for performing extensive
security testing. Testers must plan, track, and manage test
environment setup activities and need to observe their
performance. Tester is also responsible for installing hardware,

software, and network resources on test environment.
Afterwards, tester must integrate resources to obtain/refine test
databases. At the end, tester develops environment setup scripts
and test bed scripts.

Implementation

Functional requirements with security constructs are
implemented in this phase. Along with implementation of
functional requirements, uttermost care is given for
implementing software‟s security. Security Testers develop
security test scripts, and execute them to their refinement. They
want to avoid false positives and/or false negatives by
conducting evaluation activities. They document security
problems by system reports, and support developers‟
understanding about software problems. They replicate issues
to perform regression tests and to tackle problems closely.

Support

After developing a secure software using SSDLC, it is very
important to put or execute a patch management process in
place for managing vulnerabilities. In this phase, different
internal and external vulnerabilities are identified, tracked and
prioritized. Source code auditing and penetration testing is also
accomplished in this phase so that a secure application
environment can be maintained. The secure software
development life cycle (SSDLC) and tasks associated with each
phase are summarized in table 3.

CONCLUSION:

In this paper, software security is explained through various
perspectives: how a user wants his system to work and how
developers should use their creative minds towards creating a
secured software system. The security is incorporated from the
very first step of SDLC process to develop a secure system at
end by incorporating necessary security features and measures.
This analysis is performed to facilitate developers for
developing secured software.

Chetna Bajaj et al, Journal of Global Research in Computer Science, 5 (6), June 2014, 26-32

© JGRCS 2010, All Rights Reserved 32

The developers, who are new to security world, will find it very
beneficial. The study would help them to understand important
security concepts for designing secure software system. If
developers put their programming capabilities along with the
above mentioned process, they would surely land up to a secure
software system. It is also believed that it would be useful for
general readers of security and for security enforcing team.

REFERENCES

[1] Gu Tian-yang, Shi Yin-sheng, and Fang You-yuan,
“Research on Software Security Testing”, World
Academy of Science, Engineering and Technology, Vol.
70, p 647-651, September 2010.

[2] G. Hoglund and G. McGraw, Exploring Software: How to
Break Code, Addison-Wesley, 2004.

[3] Gencer Erdogan, Ketil Stolen, "Risk-driven Security
Testing versus Test-driven Security Risk Analysis", First
Doctoral Symposium on Engineering Secure Software and
Systems.

[4] K.K. Aggarwal, Yogesh Singh, “Software Engineering”,
(3rd ed.), Copyright © New Age International Publishers,
01-Jan-2005.

[5] Mohd. Ehmer Khan & Farmeena Khan, “A Comparative
Study of White Box, Black Box and Grey Box Testing
Techniques”, International Journal of Advanced
Computer Science and Applications, (IJACSA) Vol. 3,
No.6, 2012.

[6] Jovanovic, Irena, “Software Testing Methods and
Techniques”.

[7] Ould, M. A. (1999). Managing software quality and
business risk. Chichester: John Wiley & Sons.

[8] DeMarco, T. and T. Lister (2003). Waltzing with Bears:
Managing Risk on Software Projects. New York: Dorset.

[9] Bruce Potter & Gary McGraw, “Software Security
Testing”, IEEE Security & Privacy, 2004, pp. 32-36.

[10] Suhel Ahmad Khan, Raees Ahmad Khan “Software
Security Testing Process”, Proc. of the Intl. Conf. on
Recent Trends In Computing and Communication
Engineering-- RTCCE 2013, p39-42.

[11] Thompson, H.H., “Why security testing is hard”, IEEE
Security & Privacy, v 1, n 4, 83-6, July-Aug. 2003.

[12] B. Potter, G. Mcgraw, “Software Security Testing,”
IEEE Security & Privacy, v2, n5, 81-85, Sept.-Oct. 2004.

[13] S. Barnum, G. Mcgraw, “Knowledge for Software
Security”, IEEE Security & Privacy, v3, n2, 74-
78, March-April 2005.

[14] J. Viega and G. McGraw, Building Secure Software: How
to Avoid Security Problems the Right Way, Addison-
Wesley, 2001.

[15] Gary McGraw, “Software Security: Building Security in”,
Addison-Wesley Professional, 2006.

[16] Online Documentation, August 2013. URL:
http://www.guru99.com/what-is-security-testing.html.

[17] G. McGraw, “Testing for Security During Development:
: Why We Should Scrap Penetratre-and-Patch,” IEEE
Aerospace and Electronic Systems, Vol. 13, no. 4, 1998,
pp 13-15.

SHORT BIODATA OF ALL THE AUTHOR

Manju Khari (manjukhari@yahoo.co.in) is a research scholar with Delhi Technological University
(formerly Delhi College of Engineering), Delhi, India. She is an Assistant Professor in Ambedkar
Institute of Advanced Communication Technology and Research, Guru Gobind Singh Indraprastha
University, Delhi, India. She received her Masters degree in Information Security from Ambedkar
Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi, India. Her research
interests are software testing, software quality, software metrics and artificial intelligence. She has
published several papers in international journals and conferences.

Chetna Bajaj (chetnabajaj7@gmail.com) is a research scholar, pursuing Masters of Technology in
Information Security from Ambedkar Institute of Advanced Communication Technologies and
Research, Guru Gobind Singh Indraprastha University, Delhi, India. She has completed her B.Tech
in Computer Science & Engineering from Guru Premsukh Memorial college of Engineering, Guru
Gobind Singh Indraprastha University, Delhi, India. Her research interests are Near Field
Communcation, software security testing and their tools, Mobile Ad-hoc Network, and Virus
Detection.

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22K.K.+Aggarwal%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Yogesh+Singh%22
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bThompson%2C+H.H.%7d§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.guru99.com/what-is-security-testing.html
mailto:manjukhari@yahoo.co.in
mailto:chetnabajaj7@gmail.com

