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Abstract: Multi-objective geometric programming (MOGP) is a strong tool for solving a type of optimization problem. This paper develops a
solution procedure to solve a multi-objective  non-linear programming problem using MOGP technique based on weighted-sum method,
weighted-product method and weighted min-max method .The equivalent general Multi-objective geometric programming problems are
formulated to find their corresponding value of the objective functions based on duality theorem. As the numerical example Gravel- box design

problem is presented to illustrate the methods.
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INTRODUCTION

Geometric programming (GP) is a technique to solve the
special class of non linear programming problems subject to
linear or non-linear constraints. The original mathematical
development of this method used the arithmetic—geometric
mean inequality relationship between sums and products of
real numbers. In 1967 Duffin, Peterson and Zener put a
foundation stone to solve wide range of engineering
problems by developing basic theories of geometric
programming in the book Geometric Programming [3].
Beightler and Phillips gave a full account of entire modern
theory of geometric programming and numerous examples
of successful applications of geometric programming to
real-world problems in their book Applied Geometric
Programming [1]. GP method has certain advantages.

The advantage is that it is easy to solve the dual problem
than primal. Multi-objective geometric programming
problem is a special class of non-linear programming
problem with multiple objective functions. In many real-life
optimization problems, multi-objectives have to be taken
into account which may be related to the economical,
technical, social and environment aspects of optimization
problems. In multi-objective optimization , the trade —off
information between different objective functions is
probably the most important piece of information in a
solution procedure to reach the most preferred solution .GP
Liu, JB Yang, JF Whidborne gave an account with multi-
objective geometric programming in their book Multi-
objective Optimization and Control [5]. In this field a
paper named Multi-objective  geometric programming
problem being cost coefficient as a continuous function with
mean method by A.K. Ojha, A.K. Das has been published
in the journal of computing 2010 [7].In 1992 M.P.Bishal [9]
and in 1990 R.k.verma [10] has studied fuzzy programming
technique to solve multi-objective geometric programming
problems. In our paper we have discussed the basic concepts
and principles of multi-objective optimization problem and
then developed typical multi-objective methods.
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FORMULATION OF MULTIOBJECTIVE
GEOMETRIC PROGRAMMING PROBLEM

A multi-objective geometric programming problem can be
defined as

Find X=(X1, X2,............ Xn)' S0 as to

Min: fio(x)= 222 Ciot [1]=1 %0t K2 P (1)

such that fi(x) = X1, el T/, %0 <1, i=1 2,........ m
X;> 0, =12, N

Where ¢ >0 for all kand t. aj;,awy are all real ,for all
iktj.

If f10(X) ,Foo(X) Hovevirinininnnnn fho(x) are p objective functions
for any vector

X=(X1, X,
Let w=(w: weR" ,w, >0 .Y 7_,wx=1) be the set of non-
negative weights . Using weighted sum method the above
multi-objective functions in (1) can be written as

; p Tko n Apoti
Min X _ wie 2,29 CkOtHj:lxj kotj

So multi-objective optimization problem reduces to a single
objective geometric programming problem as,

Min T8 wi T05 oo [T0oq %00 2)
Such that fi(x)= X;%, el Ty %8 <1, i=1,2, oo m
X;>0; =1, 2, n

Solution procedure of Multi-Objective ~ Geometric
Programming Problem based on weighted sum method
(MOGPP):

The corresponding dual problem of (2) is Maximize d(w) =

4 Tio (Wi Skot \"* rm Ti (it ) rym A_(W)}Li(w)
k=11lt=1 i=1le=1\y,, =17

Wkt )
Where 2;(w) =Z:;1 Wit =12, m
Subject to X2_, 317wy, =1,
T T; — ;
PP agg W XY liag Wy =0, J
1,2, ,n
Wi>0 , k=12,..ccccc.... P
T Teo
wi=>0 =12, ,m.
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Using weighted product method the multi-objective
functions in (1) can be written as,

. T .
Min Hiﬂ(th‘i Ckot H;l:l x;Mkot] YWk

So multi-objective optimization problem reduces to a single
objective geometric programming problem as,

Min [T5_, (B9 cior [T, x; @koti) Wi
Such that f;(x) = X5, el [f=y %20 <1, i= 1, 2,

Solution  procedure of  multi-objective  geometric
programming problem based on Weighted product
method :(MOGPT,,;):

The corresponding dual problem of (3) is

Max d (w) =
(o) Ty T (5) ™ I
Wo k=1le=1 5, i=tlle=1
A T
[Th—y Wi LA Where  A(w) =X.L wy
=1, 2, i, ,m
Subjectto  w, =1,
Tk -
WoWi — 258 Wt =0,
k=1,2,..ccccciiin. p
T; -
1 2029 Akoej Wiee * Ly Xl Qi jWie =0,
=12, n
Wit = 0,
Wi > 0,

Using Min-max method the multi-objective optimization
functions in (1) can be written as,

Min-max W
k=1,2,............... ,-p

T .
Let A =maxwg X 5 cior [1724 x; %08

Tko n Akoti
2ie2] Cioe [172q x; ko)

So multi-objective optimization problem reduces to a single
objective geometric programming problem as.

Min A
................. (4)

Such that Wi Ty Gecioe [Ty %00 <1,
k=1,2,ccccciiiiiii. P

And  fi(x)= Zt a7 1xalt1 <1, i=
1,2, i, ,m

Solution  procedure of multi-objective  geometric
programming problem based on Min-max method
(MOGPTm):

The corresponding dual problem of (4) is

- 1\ p Tko (WkCkot )Wkt
Max d (w) B (WO) k=1 t=1( Wit )
T: -\ Wit A A
11'21 tél (\;_l:t) p P Hmlli '
Where A;(w) =Zfi1 Wi, i=
1,2, ,m and A, (w)
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_Zt 1Wkt k=
1,2, ,p
Subjectto  w, =1,
Wo — Z:ﬂ Wit =0,
k=12,............... .p
P Tko m —_
k=1 4&t= 1ak0t] Wkt+ i=1 t 1alt]Wlt _O’
G=L2,.cccceen.. n)
Wit > 0,
k=1,2,.ccciiinns P
(t 1,20 Tko)
Wi > Q

Degrees of Difficulty:

Degrees of difficulty play an important role to solve the
multi-objective geometric programming problems. It is
defined as follows.

DD (degrees of difficulty)=Total number of terms -
(Number of variables+1)

Degrees of difficulty of problem (1.1) based on weighted
sum method

i.e. DDws =Z§’:1 Tio + XiZ1 Ti - (n+1)

Degrees of difficulty of problem (1.1) based on weighted
product method i.e. DDy, =1+X%_, Ty + X%, T; — (n+p+1)
Degrees of difficulty of problem (1.1) based on weighted
min-max method ie. DDmn=1+¥r_ Tjo + X, T
(n+1+1).

Clearly DDy, < DDy < DDrnrn

Example 1: min gg, = + 40x,x5
X1X2X3
. 800
mingo, = ———

Such that x,x, + 2x;x3 < 1,
X1,X2,%3 > 0.

The corresponding primal geometric programming problem
based on weighted-sum method is

. 40 800
= +
Min g Wl(xlxzxg + 40x,x3) WZ(x1x2x3
Such that x;x, + 2x,x3 < 1,
X1, %2,X3 > 0.

)

The corresponding primal geometric programming problem
based on weighted-product method is

. _( 800 \W1
Min g (xl,xz,x3,x4) = X4
X1X2X3

Such that x1x2 +1 5X1X3 < 1,
40 40
20 0ers g
X1X2X3X4 X4
X1, %2,%3 > 0.

The correponding primal geometric programming problem
based on weighted-min-max method is
Min A
Such that
1 ( 40

2"

+ 40x2x3) <1,
X1X2X34
1 800
A x1x2x3

<1,
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ixlx2 +§ xX1x3 <1,
X1, %2,%3 > 0.
Here DD,,=0, DD,s=0, DDpn=1
Example 2:
mMinGo;=x;2x, 71 + x;3x3
mMinGg,=x; 1x, 1x; 7!
such that 2x;x,+x; X3 + x,x5<1
X1, X2,%X3 > 0.

The corresponding primal geometric programming problem
based on weighted-sum method is
Min g =W (x, 22,7 + 2,323 ) +wo(o, 71, 7l 7Y
suchthat  2x,x,+x; x5 + x,x5<1 ,
X1,X9,%X3 >0

The corresponding primal geometric programming problem
based on weighted-product method is
ming = (x)"*(x; "'y a7

Such that 2X1 X+ X1X3 + Xx3<1,

1 It 3
x_(x1 X7+ x7x3) <1,
4

X1,X9,%3 > 0.

The corresponding primal geometric programming problem
based on weighted-min-max method is

Min A
%(xlzxz‘1 +x.3x3) <1,

w 1
72(x1 X '3 <1,

Such that

2x1x5+ X1 %3 + x5%3<1,
X1,X2,X3 > 0.
Here DD,,=1, DD,s=2, DDyypi=2
Clearly above examples show DDy, < DDys < DDpyp, -

MULTI-OBJECTIVE
PROBLEM

GRAVEL BOX DESIGN

Here we have taken gravel box design problem with minor
modification from [1]. A total of 800 cubic-meters of gravel
is to be ferried across a river on a barrage. A box (with an
open top) is to be built for this purpose. The transport cost
per round trip of barrage of box is Rs .05; the cost of
materials of the ends of the box are Rs20/m?. and other two
sides and bottom are made from available scrap materials .
Find the dimension of the box that is to be built for this
purpose to minimize the transport cost and material cost.

Let length = x; m, width = x, m , height = x3 m.
The area of the ends of the gravel box = x,x; m? . Area of
the sides = x;xs m® Area of the bottom = x;x, m? .The
volume of the gravel box=x;x,X3 m®. Transport cost: Rs

500 Material cost: 40x,x;. So the multi-objective

X1X2X3

geometric programming is

. 40

min go (X4, X2, X3) = P +40x,X3 e (5)
: 800

min go, (xq, X2, x3) = g

Such that x;x, + 2x,x5 < 4,
X1,%2,%3 > 0.

Solution procedure of the above example by Weighted sum
method:

According to MOGPT

. 40 800

Min g(xq,x5,x3) = Wl(x1x2x3 + 40x2x3) +W, P

............. (6) 2o 4500w,
= e + 40w XpX3
Such that ix1x2+§ X1X3
<1,
X1, %2,%3 > 0.

Here DD =4-(3+1)=0
DGPP (dual geometric programming problem) of (6) is
Max d(w)

:(40w1+800w2)W01 (40w1)W02 ( 1 )Wll ( 1 )le <
Wo1 Wo2 4wq1 AT
(W11 + wyp)Wrrtwi2)
Suchthat  wy+w, =1,
Wort+ Wop =1,
- Wor+wai+wi,=0,
- Wo1 W+ W1 =0,
- Wo1+Woo+W,=0,
Wo1, Woz2, W11, Wiz = 0.

Solving the above normal and orthogonal conditions we get
=2 =1 =1 =1
Wo.1 =3 Woz—3 " Wiy 3 Wi 3
Primal- dual variable relations are:
40w, +800w;, _
T Woy d (W),
40W1X2X3 = Wop2 d (W),
Ixxp = —2AL
4172 Wii+wqs
W12

1
—X1X3 =
2178 Wii+wiz '

1

w1 +20w3\3 1
X3 :(2)3 , Xo = 2% y X1 = —

8wy

Table -1:Optimal solution of problem (5) by weighted sum method

Weights Optimal dual | Optimal primal variables Optimal objective functions
W1,w, variables
Xy X, X3* 901* goz*
W;=.1 .3535 5.6566 2.8283 647.01 141.45
sz.g
W,;=.2 4622 4.3267 2.1633 383.64 184.92
WQ:.S
W,;=.3 Wo=2 5516 3.6258 1.8129 273.96 220.64
W,p=.7 }
W,;=.4 * _1 .6366 3.1413 1.5706 210.08 254,71
W,=.6 We=3
2
W,=.5 7249 2.7589 1.3794 166.72 289.99
W2=.5
© JGRCS 2010, All Rights Reserved 8
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W;=.6 V\/*n:l .8233 24291 1.2145 134.47 329.37
W2=.4 3

W=7 1 9419 2.1232 1.0616 109.00 376.81
W,=.3 w 12=§

W;=.8 1.1006 1.8171 0.9085 88.04 440.30
W2=.2

W;=.9 1.3540 1.4770 0.7385 70.71 541.67
W2=.1

The table-1 shows different optimal solutions for different
weights of the problem (5) by weighted-sum method. First
objective gives better optimal result when w; increases.
Similarly second objective gives better optimal result when
W, increases.

Solution procedure of the problem (5) by weighted product
method:

According to MOGPT,,,

. _( 800 W1 4 w2
Min g (xq, X2, x3) —(x1x2x3) (x1x2x3 + 40x2x3)

Such that X1%Xy + 2Xx1%5 < 4.

w: w:
(W1g + wyp) W2tz (i) ? (i) “ 4 (wyy +

Wa1 W22
WZZ)W21+W22 .......... O]
Such that  wi+w, =1,

Wo1 =1,

-W1 Wo1+W11+Wio-W, =0,
Wy Wop+W11-Wo1+Wpp=0,
Wy Wy +W1p-Wo1+Wp,=0,
W) Wo1-Wa1-Wop = 0,
Wo, Wig, Wip, Woy, Wopp = 0.
Primal dual variable relations are:

( 800 )Wl
X1X2X3

x"% = wo d(w),

Let

X1X2X3

+40x,x3 < x4

X1X2 __

4

X1X3 __

2

W11
wi1tWwiz
Wiz

1
W11tWix2

Then the above geometric programming problem becomes

. 800 W1
Min g (x,%2,X3,%4) :(m) x4"2
..................... (8)
Such that x1x2 +1 SX1X3 < <1,
40 40x2x3 < 1
X1X2X3X4 X4
X1, Xa X3 Xq >0.
Here DD = 5-(4+1) =0
w w,
DGPP of (8) Max  d(w) (== o
01

( 1 )Wu( 1 )W12
4wWqq 2wq2

40

W21

- L]
X1X2X3X4 W21+Wz2
40x2X3 _  Wgz

X4 W211tWzz

Solving the above DGPP (9) subject to the normal and
orthogonal conditions We get

_ _ 1 2Wo—wq _1
Wo1=1, wy = 3 W12— W21— 3 ) sz—g
2 Xy
So x; =[4(2 — 3W1)]3 » Xo= o Xe=
1
2
W, < =, ie. wy < 06
3

Table-2: Optimal solution of problem (5) by weighted product method

Weights Optimal dual variables Optimal primal variables Optimal objective functions
Wi W2 X1 X, Xsg* Jor’ Joz
W;=0.1 Wo=1, wﬂ— W= W21 sz 1 1.89 1.05 0.52 60.60 775.23
W2:0.9
W;=0.2 Wo=1, wﬂ— W= W21 T W= 1 177 112 0.56 61.11 720.62
W2=O.8 15’
W;=0.3 e Wu_ le_ W=l 1 sz_l 1.63 1.22 0.61 62.74 659.49
W,=0.7
W,=0.4 Wo=1, WM_ le_ W= sz_l 1.47 1.35 0.67 66.26 601.67
W2:0.6
W;=0.5 W=, W11— W= W21 sz_ 1.25 1.60 0.8 76.20 500.00
W2:0.5
- i i i . 800
The table _2 shows different optimal so_lutlons of t_he problem min max (w, ( + 40x2x3) W, )
(5) by weighted-product method for different weights. If we X1X2X3 X1X2%3
increase the weights w, and w, both the optimal objective ?L‘Ch thatl
functions will increase. Here objective functions are JXixy 54X = 1,
inversely related to the weights. X1, Xo X3 > 0.
800
Let max (wl( +40x2x3) Wy —— ) =\
Solution procedure of the problem (5) by weighted min- Then the above problem becomes e
max method: Min A
According to MOGPT Such that W1( +40x2x3) < A
X1X2X34
© JGRCS 2010, All Rights Reserved 9
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800
z X1XzX3
1 1
lexz + E x1x3 S 1,
X1, X2, X3 > 0.

/11

The corresponding primal geometric programming problem

Suchthat wy +w, =1,
Woq1 =1,
Wo1 — Wyqg — Wy — W, =0,
-Wip — Wy + W3 w3 =0,
“Wiq + Wiz — Wy + w3 =0,
“Wyp + Wiy —Wop Wi, =0,
Wo1, W12, W31, Waz, Wiz, Wp1 > 0

Min A Primal dual variable relations are:
.................. (10) A =wy, d(w)
Such that 40w, — Wi
1 Ax1xzx3  Wiitwiz '
—Wwy (7 + 40x2x3) <1, 40wixpxs _ Wiz
A X1X2X34 A Wigtwip '
1 800 1 800w, wa1 g
272 xyxoxs T AX1xxs  Wap
2%+ x5 <1, Lox, = W
4 2 4 w31tWsz
Xl, Xo, X3’7\.>0. 1 _ W3z
Here DD =6 — (4+1) =1 2% T ey
DGPP of (10) is Solving the above normal and orthogonal conditions
Max d(w) = Wo1=1, W12:W31:W32:1, Wy = 1 » Wo1= Sl Ly
(40W1)W11 (40W1)W12 (BOOWZ)W21 War ( 1 )W31 B 3 3(20W2_W1) 3(20W2_W1)
Awqq Awq Awaq Wa1 4wsq X, = [2(20w2—w1)]§ X3 = Xz X, = X
W3Z 1 )
(WL) (W1 + wyp)W1rtWiz (W + wy,)WertWaz " 2 e
32
............ (1D
Table-3:Optimal solution of problem(5)by weighted min-max method
Weights Optimal dual variables Optimal primal variables Optimal objective functions
Wi, W, Xy Xz Xs I 01 9"z
Wi=.1 W o=1,w1;=0.0018, w1,=0.33, | 0.2816 7.1005 3.5502 1013.96 112.69
W2=.9 W*21:0.664, W*31:0.33
W*32=0.33
W;=.2 W o=1,w 1;=0.0042, w'1,=0.33, | 0.3699 5.4061 2.7030 591.90 148.00
Wz=.8 W*21=0.662, W*31=0.33
W*32=0.33
W;=.3 W =1,w 1;=0.0072, w1,=0.33, | 0.4441 45034 2.2517 414.49 177.64
W,=.7 W*21=0.659, W*31=0.33
W*32=0.33
W,=.4 W =1,w1;=0.0114, w'1,=0.33, | 0.5166 3.8708 1.9354 309.99 206.71
Wz=.6 W*21=0.655, W*31=0.33
W*32:0.33
W;=.5 W =1,w 1;=0.0175, w'1,=0.33, | 0.5949 3.3619 1.6809 237.93 237.96
W,=.5 W*21=0.649, W*31=0.33
W*32:0.33
W;=.6 W 0:=1,w"1;=0.0270, w'1,=0.33, | 0.6870 2.9109 1.4554 183.20 274.86
W,=.4 W*21=0.639, W*31=0.33
W*32:0.33
Wy=7 W 0:=1,w 1,=0.0440, w'1,=0.33, 0.8084 2.4740 1.2370 138.58 323.36
Wz=.3 W*21=0.622,
W*31:0.33,
W*32=0.33
W,;=.8 W ;=1,w'1;=0.0833, w'1,=0.33, 1.0000 2.0000 1.0000 100.00 400.00
W,=.2 W*21=0.583,
W*31=0.33,
W*32:0.33
W,=.9 W =1,w11=0.2727, W 1,=0.33, 1.4847 1.3470 0.6735 65.980 593.94
W,=.1 W*21=0.393,
W*31:0.33,
W*32:0.33

The table-3 shows different optimal solutions of the problem
(5) by weighted min-max method for different weights. First
objective gives better optimal result when w; increases.

© JGRCS 2010, All Rights Reserved

Similarly second objective gives better optimal result when
W, increases. . Here the objective functions are directly
related to the weights.

10
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Table-4: Optimal solutions of problem (5) for equal weights

Methods Degrees of | Optimal Optimal primal 3 Optimal objective
difficulty Dual Variables variables z x Functions
i=1
Yo1” Yoz’
Weighted sum 0 W;=0.66 X;=0.7249
method W,=0.33 X,=2.7589 4.8632 166.72 289.99
W;=0.33 X3=1.3794
W',=0.33
Weighted  product 0 W= X;=1.25
method W'1;=0.33 X,=1.60 3.65 76.20 500.00
W1,=0.33 X3=0.8
W*21=O.5
W5,=0.33
Weighted min-max 1 W =1 X;=0.5949
method W'1;=0.0175 X,=3.3619 5.6377 237.93 237.96
W*1,=0.33 X3=1.6809
W1=0.6491
W*31=0.33
W32:0.33
We see that DD is Minimum for weighted product method. [2].  C.S. Beightler and D.T.Phillips, D.J.Wilde:foundation of
Among three methods (weighted sum method, Weighted optimization , Prentice-hall, New Jersy ,1979
pr?dUthrrf]_EthOdb?nd_We'fghted_ mln- max methOd_)’ opglmal [3]. R.J.Duffin , E.L.Peterson and C.M.Zener : geometric
value of first objective functionily,( X1,XzXs) gives better programming theory and application , Wiely , New
result by weighted product method and optimal value of York 1967
second objective function(,,(X1,X»,X3) gives better result by N ) )
weighted min-max method. For minimum total optimal [4].  AKOjha and AK.Das : geometric programming problem
variables weighted product method gives better result and with coefficients and exponents associated with binary
for maximum total optimal variables weighted min-max numbers , international journal of computer science, volm.7,
method gives better result. issue1,2010
[5]. G.P.Liu ,J.B.Yang, J.F.whidborne , Uk: Multiobjective
CONCLUSION optimization and control.
Here we have discussed multi-objective geometric [6]. Claude Mc-Millan ,Jr John wiley and sons: Mathematical
programming based on the weighted sum method, weighted programming,An introduction to the design and application
product method, weighted min-max method, We have also of optimal design machines ,1970.
formulated the_multi—objective optimization_ model of the [7l. AKOjha and AK. Das Multi-objective geometric
gravel-box design problem and solved this problem by programming problem being cost coefficients as continuous
multi-objective geometric programming technique based on function with mean method, Journal of computing 2010.
said three methods. The different objective functions are g S.B.Sinh ABi d  MPBishal - i
combined into a single objective function by the above three (8] -Solna -, ABISwas - .and - MLE.BIshal - -geometric
methods. The GP technique is used to derive the optimal programming problem  with negative degrees of difficulty
solutions for different preferences on objective functions. In [Europian journal of operation research .28,pp.101-103 ,
tables 1-4 we have shown the optimal solution of our 1987.
problem for different preference values of the objective [9]. M.P.Bishal, fuzzy programming technique to solve multi-
functions. This multi-objective optimization model may also objective geometric programming problems, fuzzy sets and
be s_olved by multi—obje(_:tiv_e geometric programming systems, 51: 67-71,1992.
technique based on global criterion method. [10]. R.k.Verma, fuzzy geometric programming with several

REFERENCES

[1]. C.S. Beightler and D.T.Phillips applied geometric
programming , John Wiley and sons, New York 1976

© JGRCS 2010, All Rights Reserved

objective functions, 35:115-

120,1990.

fuzzy sets and systems,

11



