

Volume 5, No. 7, July 2014

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

MULTI - OBJECTIVE GEOMETRIC PROGRAMMING AND ITS APPLICATION IN GRAVEL BOX PROBLEM

^{1*}Pintu Das and ²Tapan Kumar Roy

^{1,2}Department of applied mathematics, Indian institute of engineering science and technology,

Shibpur, Howrah, West Bangal, India, 711103.

mepintudas@yahoo.com

Abstract: Multi-objective geometric programming (MOGP) is a strong tool for solving a type of optimization problem. This paper develops a solution procedure to solve a multi-objective non-linear programming problem using MOGP technique based on weighted-sum method, weighted-product method and weighted min-max method .The equivalent general Multi-objective geometric programming problems are formulated to find their corresponding value of the objective functions based on duality theorem. As the numerical example Gravel- box design problem is presented to illustrate the methods.

Key Words: Multi-objective Geometric programming, Weighted-sum method, Weighted-product method, weighted min-max method, Gravel box.

INTRODUCTION

Geometric programming (GP) is a technique to solve the special class of non linear programming problems subject to linear or non-linear constraints. The original mathematical development of this method used the arithmetic–geometric mean inequality relationship between sums and products of real numbers. In 1967 Duffin, Peterson and Zener put a foundation stone to solve wide range of engineering problems by developing basic theories of geometric programming in the book **Geometric Programming [3]**. Beightler and Phillips gave a full account of entire modern theory of geometric programming and numerous examples of successful applications of geometric programming to real-world problems in their book **Applied Geometric Programming [1]**. GP method has certain advantages.

The advantage is that it is easy to solve the dual problem than primal. Multi-objective geometric programming problem is a special class of non-linear programming problem with multiple objective functions. In many real-life optimization problems, multi-objectives have to be taken into account which may be related to the economical, technical, social and environment aspects of optimization problems. In multi-objective optimization, the trade -off information between different objective functions is probably the most important piece of information in a solution procedure to reach the most preferred solution .GP Liu, JB Yang, JF Whidborne gave an account with multiobjective geometric programming in their book Multiobjective Optimization and Control [5]. In this field a paper named Multi-objective geometric programming problem being cost coefficient as a continuous function with mean method by A.K. Ojha, A.K. Das has been published in the journal of computing 2010 [7].In 1992 M.P.Bishal [9] and in 1990 R.k.verma [10] has studied fuzzy programming technique to solve multi-objective geometric programming problems. In our paper we have discussed the basic concepts and principles of multi-objective optimization problem and then developed typical multi-objective methods.

FORMULATION OF MULTIOBJECTIVE GEOMETRIC PROGRAMMING PROBLEM

A multi-objective geometric programming problem can be defined as Find x=(x₁, x2,.....x_n)^T, so as to Min: $f_{k0}(x) = \sum_{t=1}^{T_{k0}} c_{k0t} \prod_{j=1}^{n} x_j^{a_{k0tj}} \overset{k=1,2,...,p}{\dots}$(1) such that $f_i(x) = \sum_{t=1}^{T_i} c_{it} \prod_{j=1}^{n} x_j^{a_{itj}} \le 1$, i=1,2,...,m $x_j > 0$, j=1,2,...,nWhere $c_{k0t} > 0$ for all k and t. a_{itj} , a_{k0tj} are all real, for all i,k,t,j. If $f_{10}(x)$, $f_{20}(x)$,.... $f_{p0}(x)$ are p objective functions for any vector $X=(x_1, x_2, ..., x_n)^T$.

Let w=(w: w \in \mathbb{R}^n, w_k > 0, \sum_{k=1}^n w_k = 1) be the set of nonnegative weights. Using weighted sum method the above multi-objective functions in (1) can be written as Min $\sum_{k=1}^p w_k \sum_{t=1}^{T_{k0}} c_{k0t} \prod_{j=1}^n x_j^{a_{k0tj}}$.

So multi-objective optimization problem reduces to a single objective geometric programming problem as,

Min $\sum_{k=1}^{p} w_k \sum_{t=1}^{T_{k0}} c_{k0t} \prod_{j=1}^{n} x_j^{a}$	^{kotj} (2)
Such that $f_i(x) = \sum_{t=1}^{T_i} c_{it} \prod_{j=1}^n x_j^{a_{itj}}$	$\leq 1, i=1, 2, \dots, m$
$X_j > 0;$	j= 1, 2,,n

Solution procedure of Multi-Objective Geometric Programming Problem based on weighted sum method (MOGPP_{ws}):

The corresponding dual	problem of (2) is	Maximize d(w) =
$\prod_{k=1}^{p} \prod_{t=1}^{T_{k0}} \left(\frac{w_k c_{k0t}}{w_{kt}} \right)^{w_{kt}}$	$\prod_{i=1}^{m} \prod_{t=1}^{T_i} \left(\frac{c_{it}}{w_{it}}\right)^{\nu}$	$\prod_{i=1}^{m} \lambda_i(w)^{\lambda_i(w)}$
Where $\lambda_i(\mathbf{w}) = \sum_{t=1}^{T_i} w_{it,t}$	i=	= 1,2,m
Subject to $\sum_{k=1}^{p} \sum_{t=1}^{T_{k0}} w$	$k_{kt} = 1,$	
$\sum_{k=1}^{p} \sum_{t=1}^{T_{k0}} a_{k0tj} w_{kt}$	$+\sum_{i=1}^{m}\sum_{t=1}^{T_i}a_{itj}$	$w_{it} = 0 , \qquad j$
=1,2,,n		
$W_{kt} \ge 0$,	k= 1,2,	,p
$t=1,2,\ldots,T_{k0}$		
$w_{it} \ge 0$,	i= 1,2,	,m.

Using weighted product method the multi-objective functions in (1) can be written as, Min $\prod_{k=1}^{p} (\sum_{t=1}^{T_{k0}} c_{k0t} \prod_{j=1}^{n} x_j^{a_{k0tj}})^{w_k}$

So multi-objective optimization problem reduces to a single objective geometric programming problem as,

Solution procedure of multi-objective geometric programming problem based on Weighted product method : $(MOGPT_{wp})$:

The corresponding dual problem of (3) is Max d (w) = $(x + 1)^{-1}$

$\left(\frac{1}{w_0}\right)^{w_0} \prod_{k=1}^p \prod_{t=1}^{T_{k0}} \left(\frac{c_{k0t}}{w_{kt}}\right)^{w_t}$	kt	$\prod_{i=1}^{m}\prod_{i=1}^{m}$	$\prod_{t=1}^{T_i} \left(\frac{c_{it}}{w_{it}}\right)^{w_{it}}$
$\prod_{k=1}^p w_k^{w_k} \qquad \prod_{i=1}^m \lambda_i^{\lambda_i}$	Where	$\lambda_i(\mathbf{w})$	$=\sum_{t=1}^{T_i} w_{it,}$
i= 1, 2,,m			
Subject to $w_0 = 1$,			
$w_0 w_k - \sum_{t=1}^{T_{k0}} w_{kt}$			=0,
k=1,2,p			
$\sum_{k=1}^{p} \sum_{t=1}^{T_{k0}} a_{k0tj} w_{kt} +$	$\sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{i$	$\sum_{t=1}^{T_i} a_{itj} W_{it}$	=0,
j=1,2,,n			
	W_{kt}	\geq	0,
$\begin{pmatrix} k=1,2,\dots,p\\ t=1,2,\dots,T_{k0} \end{pmatrix}$			
	w_{it}	\geq	0,
$\begin{pmatrix} i=1,2,\dots,m\\ t=1,2,\dots,T_i \end{pmatrix}$			

Using Min-max method the multi-objective optimization functions in (1) can be written as,

So multi-objective optimization problem reduces to a single objective geometric programming problem as λ .

Min(4) Such that $\frac{1}{\lambda} W_k \sum_{t=1}^{T_{k0}} g_k c_{k0t} \prod_{j=1}^n x_j^{a_{k0tj}} \le 1$

$$\begin{array}{ll} & \text{And} & f_{i}(x) = \sum_{t=1}^{T_{i}} c_{it} \prod_{j=1}^{n} x_{j}^{a_{itj}} \leq 1 &, \qquad i = 1, 2, \dots, m \end{array}$$

Solution procedure of multi-objective geometric programming problem based on Min-max method :(MOGPT_{mm}):

The corresponding dual problem of (4) is

Max d (w) =
$$\left(\frac{1}{w_0}\right)^{w_0} \prod_{k=1}^p \prod_{t=1}^{T_{k0}} \left(\frac{w_k c_{k0t}}{w_{kt}}\right)^{w_{kt}}$$

 $\prod_{i=1}^m \prod_{t=1}^{T_i} \left(\frac{c_{it}}{w_{it}}\right)^{w_{it}} \prod_{k=1}^p \lambda_p^{\lambda_p} \prod_{i=1}^m \lambda_i^{\lambda_i}$
Where $\lambda_i(w) = \sum_{t=1}^{T_i} w_{it}$, i=
1, 2,...,m and $\lambda_p(w)$

$$=\sum_{t=1}^{T_i} w_{kt}, \qquad k=$$

Subject to
$$w_0 = 1$$
,
 $w_0 - \sum_{t=1}^{T_{k0}} w_{kt}$ =0,
 $k=1,2,...,p$

 $\sum_{k=1}^{p} \sum_{t=1}^{T_{k0}} a_{k0tj} w_{kt} + \sum_{i=1}^{m} \sum_{t=1}^{T_i} a_{itj} w_{it} = 0,$ (j=1,2,....n) $w_{kt} > 0.$

 $\begin{pmatrix} t=1,2,\dots,T_i \end{pmatrix}$

Degrees of Difficulty:

Degrees of difficulty play an important role to solve the multi-objective geometric programming problems. It is defined as follows.

DD (degrees of difficulty)=Total number of terms – (Number of variables+1)

Degrees of difficulty of problem (1.1) based on weighted sum method

i.e. $DD_{Ws} = \sum_{i=1}^{p} T_{i0} + \sum_{i=1}^{m} T_i - (n+1)$

Degrees of difficulty of problem (1.1) based on weighted product method i.e. $DD_{Wp}=1+\sum_{i=1}^{p}T_{i0} + \sum_{i=1}^{m}T_i - (n+p+1)$ Degrees of difficulty of problem (1.1) based on weighted min-max method i.e. $DD_{mm}=1+\sum_{i=1}^{p}T_{i0} + \sum_{i=1}^{m}T_i - (n+1+1)$.

(n+1+1). Clearly $DD_{Wp} \le DD_{Ws} \le DD_{mm}$. Example 1: $\min g_{01} = \frac{40}{x_1 x_2 x_3} + 40 x_2 x_3$ $\min g_{02} = \frac{800}{x_1 x_2 x_3}$ Such that $x_1 x_2 + 2x_1 x_3 \le 1$, $x_1, x_2, x_3 > 0$.

The corresponding primal geometric programming problem based on weighted-sum method is

based on weighted-sum method is Min g =w₁($\frac{40}{x_1x_2x_3}$ + 40x₂x₃)+w₂($\frac{800}{x_1x_2x_3}$) Such that x_1x_2 + 2x₁x₃ ≤ 1, $x_1, x_2, x_3 > 0$.

The corresponding primal geometric programming problem based on weighted-product method is

 $\operatorname{Min} g(x_1, x_2, x_3, x_4) = \left(\frac{800}{x_1 x_2 x_3}\right)^{w_1} x_4^{w_2}$ Such that $\frac{1}{4} x_1 x_2 + \frac{1}{2} x_1 x_3 \leq 1$, $\frac{40}{x_1 x_2 x_3 x_4} + \frac{40 x_2 x_3}{x_4} \leq 1$, $x_1, x_2, x_3 > 0$.

The correponding primal geometric programming problem based on weighted-min-max method is

Such that

$$\frac{1}{\lambda}w_1\left(\frac{40}{x_1x_2x_{34}} + 40x_2x_3\right) \le 1$$

$$\frac{1}{\lambda}w_2\frac{800}{x_1x_2x_3} \le 1,$$

$$\frac{1}{4}x_1x_2 + \frac{1}{2}x_1x_3 \leq 1,$$

 $x_1, x_2, x_3 > 0.$
Here DD_{wp}=0, DD_{ws}=0, DD_{mm}=1
Example 2:
minG₀₁= $x_1^2x_2^{-1} + x_1^3x_3$
minG₀₂= $x_1^{-1}x_2^{-1}x_3^{-1}$
such that $2x_1x_2 + x_1x_3 + x_2x_3 \leq 1$
 $x_1, x_2, x_3 > 0.$

The corresponding primal geometric programming problem based on weighted-sum method is

Min g = W₁($x_1^2 x_2^{-1} + x_1^3 x_3$)+w₂($x_1^{-1} x_2^{-1} x_3^{-1}$) such that $2x_1 x_2 + x_1 x_3 + x_2 x_3 \le 1$, $x_1, x_2, x_3 > 0$

The corresponding primal geometric programming problem based on weighted-product method is $\min g = (x_4)^{w_1} (x_1^{-1} x_2^{-1} x_3^{-1})^{w_2}$

Such that

$$= (x_4)^{n_1} (x_1^{-1} x_2^{-1} x_3^{-1})^{n_2}$$

$$2x_1 x_2 + x_1 x_3 + x_2 x_3 \le 1,$$

$$\frac{1}{x_4} (x_1^{-2} x_2^{-1} + x_1^{-3} x_3) \le 1,$$

$$x_1, x_2, x_3 > 0.$$

The corresponding primal geometric programming problem based on weighted-min-max method is

 $Min \lambda$

Such that

$$\frac{\frac{w_1}{\lambda}(x_1^2 x_2^{-1} + x_1^3 x_3) \le 1,}{\frac{w_2}{\lambda}(x_1^2 x_2^{-1} x_3^{-1}) \le 1,}$$

$$\frac{2x_1 x_2 + x_1 x_3 + x_2 x_3 \le 1,}{x_1, x_2, x_3 > 0.}$$

$$D_{ws}=2, DD_{mm}=2$$

Here $DD_{wp}=1$, $DD_{ws}=2$, $DD_{mm}=2$ Clearly above examples show $DD_{Wp} \le DD_{Ws} \le DD_{mm}$.

MULTI-OBJECTIVE GRAVEL BOX DESIGN PROBLEM

Here we have taken gravel box design problem with minor modification from [1]. A total of 800 cubic-meters of gravel is to be ferried across a river on a barrage. A box (with an open top) is to be built for this purpose. The transport cost per round trip of barrage of box is Rs .05; the cost of materials of the ends of the box are $Rs20/m^2$. and other two sides and bottom are made from available scrap materials . Find the dimension of the box that is to be built for this purpose to minimize the transport cost and material cost.

Let length = x_1 m, width = x_2 m , height = x_3 m. The area of the ends of the gravel box = x_2x_3 m². Area of the sides = x_1x_3 m². Area of the bottom = x_1x_2 m². The volume of the gravel box= $x_1x_2x_3$ m³. Transport cost: Rs $\frac{800}{x_1x_2x_3}$. Material cost: $40x_2x_3$. So the multi-objective geometric programming is

Solution procedure of the above example by Weighted sum method:

According to MOGPT_{ws}
Min
$$g(x_1, x_2, x_3) = w_1 \left(\frac{40}{x_1 x_2 x_3} + 40 x_2 x_3\right) + w_2 \frac{800}{x_1 x_2 x_3}$$

.....(6)
 $= \frac{40 w_1 + 800 w_2}{x_1 x_2 x_3} + 40 w_1 x_2 x_3$
Such that $\frac{1}{4} x_1 x_2 + \frac{1}{2}$ $x_1 x_3$
 ≤ 1 ,
 $x_1, x_2, x_3 > 0$.

Here DD =
$$4-(3+1)=0$$

$$= \left(\frac{40w_1 + 800w_2}{w_{01}}\right)^{w_{01}} \left(\frac{40w_1}{w_{02}}\right)^{w_{02}} \left(\frac{1}{4w_{11}}\right)^{w_{11}} \left(\frac{1}{2w_{12}}\right)^{w_{12}} \times (w_{11} + w_{12})^{(w_{11} + w_{12})}$$
....(7)
Such that $w_1 + w_2 = 1$,
 $w_{01} + w_{02} = 1$,
 $- W_{01} + w_{12} = 0$,
 $- w_{01} + w_{02} + w_{11} = 0$,
 $- w_{01} + w_{02} + w_{12} = 0$,
 $w_{01}, w_{02}, w_{11}, w_{12} \ge 0$.

Solving the above normal and orthogonal conditions we get $w_{01} = \frac{2}{2}, w_{02} = \frac{1}{2}, w_{11} = \frac{1}{2}, w_{12} = \frac{1}{2}$.

Primal- dual variable relations are:

$$\frac{40w_1+800w_2}{x_1x_2x_3} = w_{01} d (w),$$

$$40w_1x_2x_3 = w_{02} d (w),$$

$$\frac{1}{4}x_1x_2 = \frac{w_{11}}{w_{11}+w_{12}},$$

$$\frac{1}{2}x_1x_3 = \frac{w_{12}}{w_{11}+w_{12}},$$

$$X_3 = \left(\frac{w_1+20w_2}{8w_1}\right)^{\frac{1}{3}}, \quad x_2 = 2x_3, \quad x_1 = \frac{1}{x_3}$$

Weights W ₁ ,w ₂	Optimal dual variables	Optimal primal variables			Optimal object	Optimal objective functions		
		X ₁ *	X_2^*	X ₃ *	<i>g</i> ₀₁ *	g ₀₂ *		
W ₁ =.1 W ₂ =.9		.3535	5.6566	2.8283	647.01	141.45		
$W_1 = .2$ $W_2 = .8$.4622	4.3267	2.1633	383.64	184.92		
W ₁ =.3 W ₂ =.7	$w_{01}^* = \frac{2}{3}$.5516	3.6258	1.8129	273.96	220.64		
W ₁ =.4 W ₂ =.6	$W_{02}^* = \frac{1}{3}$.6366	3.1413	1.5706	210.08	254.71		
W ₁ =.5 W ₂ =.5		.7249	2.7589	1.3794	166.72	289.99		

Table -1:Optimal solution of problem (5) by weighted sum method

© JGRCS 2010, All Rights Reserved

$W_1 = .6$	$W_{11}^* = \frac{1}{2}$.8233	2.4291	1.2145	134.47	329.37
$W_2 = .4$	3					
$W_1 = .7$	xx <i>r</i> * 1	.9419	2.1232	1.0616	109.00	376.81
W ₂ =.3	$W_{12} = \frac{1}{3}$					
$W_1 = .8$		1.1006	1.8171	0.9085	88.04	440.30
$W_2 = .2$						
W ₁ =.9		1.3540	1.4770	0.7385	70.71	541.67
$W_2 = .1$						

The table-1 shows different optimal solutions for different weights of the problem (5) by weighted-sum method. First objective gives better optimal result when w₁ increases. Similarly second objective gives better optimal result when w₂ increases.

Solution procedure of the problem (5) by weighted product method:

According to MOGPT_{wp} Min $g(x_1, x_2, x_3) = \left(\frac{800}{x_1 x_2 x_3}\right)^{w_1} \left(\frac{40}{x_1 x_2 x_3} + 40 x_2 x_3\right)^{w_2}$ Such that $x_1 x_2 + 2x_1 x_3 \le 4$. Let $\frac{40}{x_1 x_2 x_3} + 40 x_2 x_3 \le x_4$

Then the above geometric programming problem becomes Min g $(x_1, x_2, x_3, x_4) = \left(\frac{800}{x_1 x_2 x_3}\right)^{w_1} x_4$ $x_4^{w_2}$ Such that $\frac{1}{4}x_1x_2 + \frac{1}{2}x_1x_3 \le 1$, $\frac{40}{x_1x_2x_3x_4} + \frac{40x_2x_3}{x_4} \le 1$, $X_1, x_2, x_3, x_4 > 0$. Here DD = 5-(4+1) =0 Max d(w) = $\left(\frac{800^{w_1}}{w_{01}}\right)^{w_{01}}$ DGPP of (8) is

 $\left(\frac{1}{4w_{11}}\right)^{W_{11}} \left(\frac{1}{2w_{12}}\right)^{W_{12}}$

 $(w_{11} + w_{12})^{w_{11} + w_{12}} \left(\frac{40}{w_{21}}\right)^{w_{21}} \left(\frac{40}{w_{22}}\right)^{w_{22}} + (w_{21} + w_{22})^{w_{21} + w_{22}} \dots \dots (9)$ Such that $w_1+w_2 = 1$, $W_{01} = 1$, $-W_1 w_{01}+w_{11}+w_{12}-w_{21}=0$, $-w_1 w_{01}+w_{11}-w_{21}+w_{22}=0$, $-w_1 w_{01}+w_{12}-w_{21}+w_{22}=0$, $w_2 w_{01} - w_{21} - w_{22} = 0,$ $W_{01},\,w_{11}\,,\,\,w_{12},\,w_{21},\ \ w_{22}\geq 0.$ Primal dual variable relations are: $\left(\frac{\frac{800}{x_1 x_2 x_3}}{\frac{x_1 x_2}{4}}\right)^{w_1} x_4^{w_2} = w_{01} d(w) ,$ $\frac{\frac{x_1 x_2}{4}}{\frac{x_1 x_3}{2}} = \frac{\frac{w_{11}}{w_{11} + w_{12}}}{\frac{w_{12}}{w_{11} + w_{1x2}}} ,$

$$\frac{40}{x_1x_2x_3x_4} = \frac{w_{21}}{w_{21} + w_{22}},$$
$$\frac{40x_2x_3}{x_4} = \frac{w_{22}}{w_{21} + w_{22}}.$$

Solving the above DGPP (9) subject to the normal and orthogonal conditions we get

$$\begin{split} W_{01} = 1, \ w_{11} = \frac{1}{3}, \ w_{12} = \frac{1}{3}, \ w_{21} = \frac{2w_2 - w_1}{3}, \ w_{22} = \frac{1}{3}. \\ So \ x_1 = [4(2 - 3w_1)]^{\frac{1}{3}}, \ x_2 = \frac{2}{x_1}, \ x_3 = \frac{x_2}{2}. \\ W_1 \ < \ \frac{2}{3}, \ i.e. \ w_1 \ < \ 0.6 \end{split}$$

Weights	Optimal dual variables	Optimal pr	imal var	iables	Optimal objecti	ve functions
w ₁ ,w ₂		X_1^*	X_2^*	X ₃ *	g_{01}^{*}	${g_{02}}^{*}$
W ₁ =0.1 W ₂ =0.9	$\mathbf{w}_{01}^*=1, \ \mathbf{w}_{11}^*=\frac{1}{3}, \ \mathbf{w}_{12}^*=\frac{1}{3}, \ \mathbf{w}_{21}^*=\frac{17}{30}, \ \mathbf{w}_{22}^*=\frac{1}{3}$	1.89	1.05	0.52	60.60	775.23
W ₁ =0.2 W ₂ =0.8	$\mathbf{w}_{01}^{*}=1, \ \mathbf{w}_{11}^{*}=\frac{1}{3}, \ \mathbf{w}_{12}^{*}=\frac{1}{3}, \ \mathbf{w}_{21}^{*}=\frac{7}{15}, \ \mathbf{w}_{22}^{*}=\frac{1}{3}$	1.77	1.12	0.56	61.11	720.62
W ₁ =0.3 W ₂ =0.7	$\mathbf{w}_{01}^{*}=1, \ \mathbf{w}_{11}^{*}=\frac{1}{3}, \ \mathbf{w}_{12}^{*}=\frac{1}{3}, \ \mathbf{w}_{21}^{*}=\frac{1}{30}, \ \mathbf{w}_{22}^{*}=\frac{1}{3}$	1.63	1.22	0.61	62.74	659.49
W ₁ =0.4 W ₂ =0.6	$\mathbf{w}_{01}^{*}=1, \ \mathbf{w}_{11}^{*}=\frac{1}{3}, \ \mathbf{w}_{12}^{*}=\frac{1}{3}, \ \mathbf{w}_{21}^{*}=\frac{4}{15}, \ \mathbf{w}_{22}^{*}=\frac{1}{3}$	1.47	1.35	0.67	66.26	601.67
W ₁ =0.5 W ₂ =0.5	$\mathbf{w}_{01}^{*}=1, \ \mathbf{w}_{11}^{*}=\frac{1}{3}, \ \mathbf{w}_{12}^{*}=\frac{1}{3}, \ \mathbf{w}_{21}^{*}=\frac{1}{2}, \ \mathbf{w}_{22}^{*}=\frac{1}{3}$	1.25	1.60	0.8	76.20	500.00

Table-2: Optimal solution of problem (5) by weighted product method

The table-2 shows different optimal solutions of the problem (5) by weighted-product method for different weights. If we increase the weights w₁ and w₂ both the optimal objective functions will increase. Here objective functions are inversely related to the weights.

Solution procedure of the problem (5) by weighted minmax method:

According to MOGPT_{mm}

min max $\left(w_1\left(\frac{40}{x_1x_2x_3}+40x_2x_3\right), w_2\frac{800}{x_1x_2x_3}\right)$ Such that $\frac{1}{4}x_1x_2 + \frac{1}{2}x_1x_3 \le 1,$ $x_1, x_2, x_3 > 0.$ Let max $\left(w_1\left(\frac{40}{x_1x_2x_3}+40x_2x_3\right),w_2\frac{800}{x_1x_2x_3}\right) = \lambda$ Then the above problem becomes Min λ Such that $w_1\left(\frac{40}{x_1x_2x_{34}} + 40x_2x_3\right) \le \lambda$,

$$\begin{split} & w_2 \ \frac{800}{x_1 x_2 x_3} \le \ \lambda, \\ & \frac{1}{4} x_1 x_2 + \frac{1}{2} \ x_1 x_3 \ \le \ 1, \\ & x_1 \ , x_2 \ , x_3 \ > 0. \end{split}$$

The corresponding primal geometric programming problem is

$$\begin{array}{lll}
& \text{Min} & \lambda \\
& \dots & \dots & (10) \\
& & \text{Such that} \\
& \frac{1}{\lambda}w_1\left(\frac{40}{x_1x_2x_{34}} + 40x_2x_3\right) \leq 1, \\
& & \frac{1}{\lambda}w_2\frac{800}{x_1x_2x_3} \leq 1, \\
& & \frac{1}{\lambda}x_1x_2 + \frac{1}{2}x_1x_3 \leq 1, \\
& & X_1, x_2, x_3, \lambda > 0. \\
\end{array}$$
Here DD =6 - (4+1) =1
DGPP of (10) is
Max
$$\begin{array}{ll}
& \text{Max} & \text{d(w)} \\
& \left(\frac{40w_1}{\lambda w_{11}}\right)^{w_{11}} \left(\frac{40w_1}{\lambda w_{12}}\right)^{w_{12}} \left(\frac{800w_2}{\lambda w_{21}}\right)^{w_{21}} w_{21}w_{21}\left(\frac{1}{4w_{31}}\right)^{w_{31}} \\
& \left(\frac{1}{w_{32}}\right)^{w_{32}} (w_{11} + w_{12})^{w_{11} + w_{12}} (w_{31} + w_{32})^{w_{31} + w_{32}} \\
\dots & \dots \\
\end{array}$$

Such that
$$w_1 + w_2 = 1$$
,
 $w_{01} = 1$,
 $w_{01} - w_{11} - w_{12} - w_{21} = 0$,
 $-w_{11} - w_{21} + w_{31} + w_{32} = 0$,
 $-w_{11} + w_{12} - w_{21} + w_{31} = 0$,
 $-w_{11} + w_{12} - w_{21} + w_{32} = 0$,
 $w_{01}, w_{12}, w_{31}, w_{32}, w_{11}, w_{21} \ge 0$
Primal dual variable relations are:
 $\lambda = w_{01} d(w)$
 $\frac{40w_1}{\lambda x_1 x_2 x_3} = \frac{w_{11}}{w_{11} + w_{12}}$,
 $\frac{40w_1 x_2 x_3}{\lambda} = \frac{w_{11}}{w_{11} + w_{12}}$,
 $\frac{40w_1 x_2 x_3}{\lambda} = \frac{w_{12}}{w_{11} + w_{12}}$,
 $\frac{\frac{40w_1 x_2 x_3}{\lambda} = \frac{w_{12}}{w_{11} + w_{12}}$,
 $\frac{\frac{1}{2}x_1 x_2 x_3}{x_1 x_2 x_3} = \frac{w_{21}}{w_{21}} = 1$,
 $\frac{1}{4}x_1 x_2 = \frac{w_{31}}{w_{31} + w_{32}}$,
Solving the above normal and orthogonal conditions
 $w_{01} = 1$, $w_{12} = w_{31} = w_{32} = \frac{1}{3}$, $w_{11} = \frac{w_1}{3(20w_2 - w_1)}$, $w_{21} = \frac{40w_2 - 3w_1}{3(20w_2 - w_1)}$.
 $x_2 = \left[\frac{2(20w_2 - w_1)}{w_1}\right]^{\frac{1}{3}}$, $x_3 = \frac{x_2}{2}$, $x_1 = \frac{1}{x_3}$

Table-3:Optin	nal solution	of problem	(5)bv	weighted	min-max	method
rable 5.0ptm	nul solution	or problem	JUY	weighteu	ппп пал	methou

Weights	Optimal dual variables	Optimal p	Optimal primal variables			Optimal objective functions	
W ₁ , W ₂		X_1^*	X_2^*	X_3^*	${g^{*}}_{01}$	g* ₀₂	
W ₁ =.1 W ₂ =.9	$w^{*}_{12}=0.0018, w^{*}_{12}=0.33, w^{*}_{21}=0.64, w^{*}_{31}=0.33 w^{*}_{32}=0.33$	0.2816	7.1005	3.5502	1013.96	112.69	
W ₁ =.2 W ₂ =.8	$ \begin{array}{c} & w^{*}_{01} = 1, w^{*}_{11} = 0.0042, & w^{*}_{12} = 0.33, \\ & w^{*}_{21} = 0.662, w^{*}_{31} = 0.33 & \\ & W^{*}_{32} = 0.33 & \end{array} $	0.3699	5.4061	2.7030	591.90	148.00	
W ₁ =.3 W ₂ =.7	$\begin{array}{c} W^*_{01}=1, w^*_{11}=0.0072, & w^*_{12}=0.33, \\ w^*_{21}=0.659, w^*_{31}=0.33 & \\ W^*_{32}=0.33 & \end{array}$	0.4441	4.5034	2.2517	414.49	177.64	
W1=.4 W2=.6	$\begin{array}{c} W^*_{01}=1, w^*_{11}=0.0114, & w^*_{12}=0.33, \\ w^*_{21}=0.655, w^*_{31}=0.33 & \\ W^*_{32}=0.33 & \end{array}$	0.5166	3.8708	1.9354	309.99	206.71	
W ₁ =.5 W ₂ =.5	$\begin{array}{c} W^{*}_{01}=1, w^{*}_{11}=0.0175, & w^{*}_{12}=0.33, \\ w^{*}_{21}=0.649, w^{*}_{31}=0.33 & \\ W^{*}_{32}=0.33 & \end{array}$	0.5949	3.3619	1.6809	237.93	237.96	
W ₁ =.6 W ₂ =.4	$ \begin{array}{c} W^{*}_{01}=1, w^{*}_{11}=0.0270, & w^{*}_{12}=0.33, \\ w^{*}_{21}=0.639, w^{*}_{31}=0.33 & \\ W^{*}_{32}=0.33 & \end{array} $	0.6870	2.9109	1.4554	183.20	274.86	
W ₁ =.7 W ₂ =.3	$ \begin{array}{c} W^{*}_{01}=1, w^{*}_{11}=0.0440, w^{*}_{12}=0.33, \\ w^{*}_{21}=0.622, \\ w^{*}_{31}=0.33, \\ W^{*}_{32}=0.33 \end{array} $	0.8084	2.4740	1.2370	138.58	323.36	
W ₁ =.8 W ₂ =.2	$ \begin{array}{c} W^{*}_{01}=1, w^{*}_{11}=0.0833, w^{*}_{12}=0.33, \\ w^{*}_{21}=0.583, \\ w^{*}_{31}=0.33, \\ W^{*}_{32}=0.33 \end{array} $	1.0000	2.0000	1.0000	100.00	400.00	
W ₁ =.9 W ₂ =.1	$ \begin{array}{c} W^{*}_{01}=1, w^{*}_{11}=0.2727, w^{*}_{12}=0.33, \\ w^{*}_{21}=0.393, \\ w^{*}_{31}=0.33, \\ W^{*}_{32}=0.33 \end{array} $	1.4847	1.3470	0.6735	65.980	593.94	

The table-3 shows different optimal solutions of the problem (5) by weighted min-max method for different weights. First objective gives better optimal result when w_1 increases.

Similarly second objective gives better optimal result when w_2 increases. . Here the objective functions are directly related to the weights.

Methods	Degrees of difficulty	Optimal Dual Variables	Optimal primal variables	$\sum_{i=1}^3 x_i^*$	Optimal object Functions	ive
					${m g}_{{m 0}{m 1}}{}^{*}$	${g_{02}}^{*}$
Weighted sum method	0	$W^*_{01}=0.66$ $W^*_{02}=0.33$ $W^*_{11}=0.33$ $W^*_{12}=0.33$	X ₁ =0.7249 X ₂ =2.7589 X ₃ =1.3794	4.8632	166.72	289.99
Weighted product method	0	$W^*_{01}=1$ $W^*_{11}=0.33$ $W^*_{12}=0.33$ $W^*_{21}=0.5$ $W^*_{22}=0.33$	X ₁ =1.25 X ₂ =1.60 X ₃ =0.8	3.65	76.20	500.00
Weighted min-max method	1	$\begin{array}{l} W^*_{01} = 1 \\ W^*_{11} = 0.0175 \\ W^*_{12} = 0.33 \\ W^*_{21} = 0.6491 \\ W^*_{31} = 0.33 \\ W^*_{32} = 0.33 \end{array}$	X ₁ =0.5949 X ₂ =3.3619 X ₃ =1.6809	5.6377	237.93	237.96

Table-4: Optimal solutions of problem (5) for equal weights

We see that DD is Minimum for weighted product method. Among three methods (weighted sum method, Weighted product method and weighted min- max method), optimal value of first objective function $\Box_{01}(x_1,x_2,x_3)$ gives better result by weighted product method and optimal value of second objective function $\Box_{02}(x_1,x_2,x_3)$ gives better result by weighted min-max method. For minimum total optimal variables weighted product method gives better result and for maximum total optimal variables weighted min-max method gives better result.

CONCLUSION

Here we have discussed multi-objective geometric programming based on the weighted sum method, weighted product method, weighted min-max method, We have also formulated the multi-objective optimization model of the gravel-box design problem and solved this problem by multi-objective geometric programming technique based on said three methods. The different objective functions are combined into a single objective function by the above three methods. The GP technique is used to derive the optimal solutions for different preferences on objective functions. In tables 1-4 we have shown the optimal solution of our problem for different preference values of the objective functions. This multi-objective optimization model may also be solved by multi-objective geometric programming technique based on global criterion method.

REFERENCES

[1]. C.S. Beightler and D.T.Phillips : applied geometric programming , John Wiley and sons, New York 1976

- [2]. C.S. Beightler and D.T.Phillips, D.J.Wilde:foundation of optimization , Prentice-hall, New Jersy ,1979
- [3]. R.J.Duffin , E.L.Peterson and C.M.Zener : geometric programming theory and application , Wiely , New York,1967
- [4]. A.K.Ojha and A.K.Das : geometric programming problem with coefficients and exponents associated with binary numbers, international journal of computer science, volm.7, issue1,2010
- [5]. G.P.Liu ,J.B.Yang, J.F.whidborne , Uk: Multiobjective optimization and control.
- [6]. Claude Mc-Millan ,Jr John wiley and sons: Mathematical programming,An introduction to the design and application of optimal design machines ,1970.
- [7]. A.K.Ojha and A.K. Das : Multi-objective geometric programming problem being cost coefficients as continuous function with mean method, Journal of computing 2010.
- [8]. S.B.Sinha ,A.Biswas ,and M.P.Bishal :geometric programming problem with negative degrees of difficulty ,Europian journal of operation research .28,pp.101-103 , 1987.
- [9]. M.P.Bishal, fuzzy programming technique to solve multiobjective geometric programming problems, fuzzy sets and systems, 51: 67-71,1992.
- [10]. R.k.Verma, fuzzy geometric programming with several objective functions, fuzzy sets and systems, 35:115-120,1990.