
Volume 5, No. 2, February 2014

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 33

MUTATION TESTING: A REVIEW

Pawan Kumar Chaurasia
Assistant Professor

Department of Information Technology,

Babasaheb Bhimrao Ambedkar University,

(A Central University) Lucknow (U.P), India, 226025

pkc.gkp@gmail.com

Abstract— Mutation testing is a fault based testing technique in which mutants are generated in the program and apply different test cases on the

mutants. Some mutants are killed and some mutants are alive. On the base of killed and alive mutants, mutant score is calculated. Mutants are

categorizing into weak, strong and firm mutants on the cost reduction methods. This paper is used to review the mutation testing and categorize

the mutants and focus on cost reduction techniques.

Keywords- Mutants, EX-WEAK, ST-WEAK, BB-WEAK, FOM, HOM, SSHOM, SUPER MUTANT.

INTRODUCTION

The purpose of software testing is a process of verifying and

validating software applications or program so that it

achieves the requirements and development design that

expected by the project or user. The first mutation testing

was proposed in 1970 and its tool was implemented by the

Timothy Budd in 1980 in his research work [1]. According to

Budd “Mutation testing is a fault based testing technique in

which we seek the errors in the program and find the errors”.

These faults are seeded in the original program and compare

with the mutated program. Mutants are introduced when the

programs are started by the mutant operators. Each mutation

produces a mutant program, produced by a mutation

operator.

This paper is described in six phases of the mutation. First

phase is to introduce about the mutation testing. Second

phase is to calculate the mutation score after kill the mutants.

Third phase is how the test cases are effective and calculate

through a mutation score. Next phase is to define the weak

mutation testing and then how mutants are reduced. Last

phase is to calculate the cost of executed mutants.

MUTATION TESTING

Mutation testing is a method of software testing which is

proposed by the Hamlet [3]. Mutation testing is a fault based

testing technique [4,7,8]. It is a kind of testing in which the

application is tested for the code that was modified after

fixing a particular defect. In mostly cases test of a program

that uncover simple errors are also effective in uncovering

much more complex errors. The coupling effects can be used

to save during the testing process. Mutations are based on

operators are called mutant operators [5-6]. As in figure 1

mutants are generated by seeking some changes in the

original program and generate the different test cases and

execute the mutant program. If a test is different from the

original program, it is said to kill the mutants. If the test case

is not different between the mutant and the original program

then the mutant is still live. A mutants remain alive because

it is equivalent to the original program. If the mutant produce

the same output, it can’t be killed.

Figure 1. Mutation Testing Process

It is used to test the test case to kill all the mutants. Test cases

are generated to kill all the mutants. A test set which can kill

all non-equivalent mutants is said to be adequate and the

mutant score which is measured by the total number of killed

mutants over the non-equivalent mutants where a mutant is

said to be equivalent. Mutant score takes real values between

0.0 and 1.0 which is the best score.

EFFECTIVENESS OF TEST CASES

Test cases are effective by generating the relation between

test cases effectiveness and mutation score with the equation

presented [9]. It can be calculated by multiply the mutation

score (M) and the ratio of average of number of test cases

that kill mutants (K) divided by the total no of test cases (T).

Adequacy of test set= Number of killed mutants

 Number of non-equivalent mutants

E = (Mutation score * average no of test cases) / total

test cases

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 33-35

© JGRCS 2010, All Rights Reserved 34

To calculate, average number of test cases that killed

mutants divided by number of dead mutants.

WEAK MUTATION TESTING

To reduce execution cost, Howden [10] proposed weak

mutation testing, which only requires two (reachability,

infection) conditions to kill a mutants. In weak mutation, the

states of both programs are compared at a predetermined

point after the execution of the mutated instruction. If the

states are different at that point, the mutant is killed. Weak

mutation testing is different from other mutation testing

which focus on component in a program. Suppose that

program A and B, where B is simple component of A and

mutated version of B produces B’. So A’ is mutated version

of A containing B.

Howden does not describe the precise definition of program

components in the original paper, but he further refined in

the functional testing [11]. There are basically five types of

components i.e Variable Reference, Variable Assignment,

Arithmetic Expression, Relational Expression and Boolean

Expression.

Woodward and Halewood’s[12] define the component

where the state of the original and mutated program are

compared. Weak mutation testing is categorized into four

types as follows.

EX-WAEK/1 (Expression-Weak/1) Mutation: It compares

the state between an original program and mutant generated

after the execution of the expression component.

ST-WAEK/1 (Statement-Weak/1) Mutation: It compares

the state after the first execution of the mutant statement and

the original program.

BB-WAEK/1 (Basic-Block-Weak/1 execution) Mutation: It

requires check the states to be compared at the end of the

first execution of the mutated statement. There are many

mutants in the loop that could not be killed on the first

execution that could be allowed to multiple execution till all

the mutants are dead.

BB-WAEK/N (Basic-Block Weak/N execution) Mutation:
It is the extended version of BB-Weak/1 that execute each

block for the mutant to check the statement. When the

mutants are checked it can’t be killed in single execution of

the statement and the statement is terminated.

From research work [13] and from the report of [14,10],

weak mutation testing is to be generate mutants framework

as in figure 2 which is applied on the mutants operator and

weak mutation technique. The components and framework

of real mutation testing are:

a. Pre - Test Phase: In this phase testers upload a

program to test and validate it. Mutants are generated

based on mutant operator and store the mutant moved

to the database. Test cases and mutants are loaded

from test case database, into test mutant controller.

b. Testing Phase: In this phase the timer start the

execution time and the test controller deploy the

mutant and test cases on the server. After testing the

program server send the result and compare from the

original program and the result are stored. If the

mutants are killed and live that stored into the

database.

c. Post Testing Phase: It is the last phase of the test

framework. In this phase the results are stored into

the database of the test case. On the base of database

mutation score is calculated and check the

effectiveness of the result after test the mutated

program.

Figure 2. Mutation Framework

REDUCED MUTANTS

Mutation testing is one of the expensive testing technique.

Major sources of computational cost in mutation testing is

the inherent running cost in executing the large number of

mutants against the test set. There are basically four types of

techniques to reduced the mutants.

a. Mutant Sampling: It is a simple approach that

randomly choose a small subset of mutants from the

entire set of mutants. In mutation sampling all possible

mutants are generated and select randomly for

mutation analysis and the remaining are discarded.

b. Mutant Clustering: It is proposed by the Hussain

Master Thesis [15]. Mutant clustering generate all first

order mutants into different based on the killable test

cases. Each mutant in the same cluster is killed by a

similar set of test cases. Only a small number of

mutants are selected from each cluster to be used in

mutation testing and the remaining are discarded.

Domain reduction techniques introduced by the Ji [16].

c. Selective Mutation: It seeks to find small set of

mutation operators that generate a subset of all

possible mutants without significant loss of test

effectiveness. It was first proposed by Mathur[17].

Offut[18] extended the work by omitting four and six

selective mutation operators. Based on Mothra

mutation operators divide them into three categories:

statement, operands and expressions. The most recent

research work on selective mutant was Namin [19-21]

by formulating the selective mutant problem into

Average no of test cases= killed mutants / no of dead

mutants

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 33-35

© JGRCS 2010, All Rights Reserved 35

statistical problem. They applied linear statistical

approach and reduced 92% of all generated mutants.

d. Higher Order Mutant: Mutants can be divided into

first order mutants (FOM) and higher order

mutants(HOM). FOM are generated only once by

applying mutant operator while in HOM are generated

by applying mutation operator more than once. Jia and

Harman introduced the concept of subsuming HOMs

[22]. It is not easy to kill all the FOMs from which it is

constructed. It is preferable to replace FOMs than the

single HOMs to reduce the number of mutants. They

also introduced the concept of strongly subsuming

HOM (SSHOM) which is only killed by a subset of the

intersection of test cases that kill each FOM from

which it is constructed. It is partially proved by Polo et

al [23].

COST REDUCTION TECHNIQUES

Reduced the number of mutants, the computational cost can

also be reduced by reducing the mutant execution process.

There are three techniques to reduce the execution cost that

have been considered in literature.

a. Strong, Weak and Firm Mutation: Strong

mutation is referred as traditional mutation testing

which is proposed by DeMillo et al [4]. The

mutants are killed only if the output is different

from the original program. Optimize the execution

of the strong mutation Howden[24] proposed a

weak mutation instead of checking mutants after

the execution of the entire program, the mutant

only need to check immediately after the execution

point of the mutant or mutated component.

Advantage of weak mutant is that each mutant does

not require a complete execution process; once the

mutated component is executed we can check for

survival mutants.

Firm mutation was first proposed by Woodward and

Halewood[12] in 1988. In firm mutation, disadvantage of

strong and weak mutation is removed. It lies between the

after execution (weak mutation) and the final output (strong

mutation) of the mutation. In 2001 Jackson and Woodward

[25] proposed a parallel firm mutation approach for java

programs.

b. Optimization techniques for runtime mutation: In

first generation [26] testing tool, interpreter based

technique is used to optimize the mutation, i.e the

result of a mutant is interpreted from its source

code directly. Mutant optimization is sufficient and

efficient for small mutant programs. To reduce the

cost of interpretation, compiler based technique

was proposed [27], because execution of compiled

binary code is much faster than interpretation. In

compiled-based technique, the mutant program is

compiled into an executable program, then each

compiled mutant is executed by a number of test

cases. High speed limitation due to high

compilation cost for large programs [28]. DeMillo

et al. proposed the new technique compiler-

integrated to optimize the performance of

traditional compiler [29]. The new approach of

mutant schema generation reduced the overhead

cost of traditional interpreter based [30-31]. It is

not easy to compile all the mutants, instead of

compiling each mutant separately, mutant schema

generate a meta programs like “super mutant”. This

meta program is need to compile once time to test

each mutant. So the cost is calculated once time

compilation and overall runtime cost. After

compilation technique the new approach is

introduced as a byte code translation technique

which is proposed by the Ma et. al. [32].

CONCLUDING REMARKS

This paper introduce about the mutation testing and the

process of mutation testing to find the live mutants and

killed mutants. On the base of killed mutants mutant score is

calculated. Test cases are effective by generating the

relationship between test case and mutation score. On the

base of test case mutant are defined as weak and strong

mutants. Weak mutants are categorized into four parts as

expression weak, strong weak, basic-block/1 and basic-

block/N. Weak mutation testing is to generate mutant

framework which is applied on the mutant operator and its

technique. It is very expensive testing, for reducing the

mutation testing. Various procedures are described in phase

five. After reduced the mutants, computational cost are also

reduced by optimize the runtime mutants of different

techniques.

In future mutants are used for security policies to find the

weak positions in security features. Efficiency of the

program can also be increased by calculating the mutant

operators. Mutants effectiveness can also be categorized into

highly effective, effective and low effective.

REFERENCES

[1]. E.J Weyuker and T.J Ostrand, “Theories of Program Testing

and the Application of Revealing Subdomains,” IEEE

Transaction Software Engineering., vol. SE-6, 1980.

[2]. J. Goodenough and S. L. Gerhart, “ Towards a theory of Test

Data Selection,” IEEE Transaction Software Engineering.,

vol. SE-3 1977.

[3]. R.G Hamlet, (1977), “Testing programs with the AID of a

Compiler”, IEEE Transactions on Software engineering,

1977.

[4]. R. DeMillo, R. Lipton and F Sayward,(1978), “Hints on Test

Data Selection: Help for the Practicing Programmer,”

Computer, 11(4): 34-41: April, 1978.

[5]. Antonia Estero-Botaro Palomo-Lozano and Inmaculada

Medina Bulo, “Quantitative Evaluation of Mutation

Operators for WS-BPEL Compositions” Department of

Computer Languages and Systems, University of C? adiz,

Spain.

[6]. M.Woodward,“ Errors in Algebaric Specification and an

Experimental Mutaion Testing Tool” Software Engineering

Journal, pages 211-224, July 1993.

[7]. Y. Jia and M. Harman, “An Analysis and Survey of the

Development of Mutation Testing”, CREST Center, King’s

College, London, Tech. Rep. TR-09-06, 2009.

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 33-35

© JGRCS 2010, All Rights Reserved 36

[8]. A.J. Offut., “Investigations of the Software Testing Coupling

Effect”, ACM Transactions on Software engineering

Methodology 1(1):3-18 January 1992.

[9]. A . Derzinska, “Quality Assessment of Mutation Operators

Dedicated for C# Programs” in QSIC 2006: sixth

International Conference on Quality Software, Beijing,

China: IEEE, Computer society , 2006, pp 227-234.

[10]. Howden W. E. (1982), “Weak Mutation Testing and

Completenes of Test Sets”, IEEE transaction on Software

Engineering, 8(4): page 371-379.

[11]. W. E Howden, “Functional Programming Testing and

Analysis”, McGraw-hill Book company New York NY

1987.

[12]. M.R Woodward and K. Halewood, (1988), “From Weak to

Strong, Dead or Alive? An analysis of some mutation testing

issues”, Workshop on Software Testing, Verification and

Analysis, pages 152-158, Banff Alberta, July 1988. IEEE

Computer Society Press.

[13]. Natthapol Thaisakonpun and Taratip Suwannasart,

“Mutation Testing for Expression Modification Operator of

BPEL” Software Engineering Laboratory, Centre of

Excellence in Software Engineering, Faculty of Engineering,

chulaongkorn University, Bangkok, Thailand.

[14]. A. Jefferson Offut and Stephen D. Lee, “An Empirical

Evaluation of Weak Mutation”, Department of Information

of Informal and Software Systems Engineering, George

Mason University Fairfax, VA 22030, Stephen D. Lee, IBM

corporation A00/062, P.O Box 12195, Research Triangle

Park, NC 27709, February 24, 1996.

[15]. S. Hussain, “Mutation Clustering” Masters Thesis, king’s

college London, strand London, 2008.

[16]. C. JI. Z Chen, B. Xu and Z. Zhao, “A Novel method of

Mutation Clustering Based on Domain Analysis” in

Proceedings of the 21st International Conferenceon Software

Engineering and Knowledge Engineering (SEKE’09).

Boston, Massachusetts: Knowledge Systems Institute

Graduate School, 1-3 July 2009.

[17]. A.P. Mathur, “Performance Effectiveness and Reliability

Issues in Software Testing,” in Proceedings of the 5th

International Computer Software and Applications

Conference (COMPASC’79), Tokyo, Japan, 11-13

September 1991, pp 604-605.

[18]. A. J Offut, G. Rothernel and C.Zapf, “An Experimental

Evaluation of Selective Mutants,” in Proceedings of the 15th

International Conference on Software Engineering

(ICSE’93). Baltimore, maryland IEEE Computer Society

Press May 1993, pp100-107.

[19]. A.S Namin and J.H. Andrews, “Finding Sufficient Mutation

Operators via Variable Reduction” in Proceedings of the 2nd

workshop on Mutation analysis (MUTATION’06). Raleigh,

North Carollna: IEEE Computer Society, November 2006, p.

5.

[20]. A.S Namin and J.H. Andrews, “On Sufficiency of Mutants”

in Proceedings of the 29th International Conference on

Software Engineering (ICSE ComPANION’07)

Minneapolis, Minnesota, 20-26 May, 2007, pp. 73-74.

[21]. A.S Namin and J.H. Andrews and D. J. Murdoch, “Sufficient

Mutation Operators for Masuring Test Effectiveness” in

Proceedings of the 30th International Conference on Software

Engineering (ICSE’08), Leipzig, Germany, 10-18 May 2008,

pp. 351-360.

[22]. Y.Jia and M. Harman, “Constructing Subtle Faults Using

Higher Order Mutation Testing,” in Proceedings of the 8th

International Working Conference on Source code Analysis

and Manipulation (SCAM’08), Beijing, China, 28-29

Sepetember 2008 pp 249-258.

[23]. M. Polo, M. Plattini and I Garcala-Rodriguez “Decreasing

the Cost of Mutation Testing with Second Order Mutants”

Software Testing Verification and Reliability, vol. 19, no. 2,

pp. 111-131, June 2008.

[24]. Y. Jia and M. Harman, “Higher Order Mutation Testing”

Journal of Information and Software Technology, King’s

College London, CREST Centre Strand, London, March 11,

2009, pp 1-41.

[25]. D. Jackson and M.R. Woodward, “Parallel Firm Mutation of

Java Programs” in Proceedings of the 1st Workshop on

mutation analysis (MUTATION’00), published in book

form, as Mutation Testing for the New Century, san Jose,

California, 6-7 October 2001, pp 55-61.

[26]. A.J. Offutt and K. N. King, “A Fortran 77 Interpreter for

Mutation Analysis” ACM SIGPLAN Notices, vol. 22, no. 7,

pp. 177-188, July 1987.

[27]. M.E. Delamaro, “Proteum- A Mutation Analysis Based

Testing Environment” Masters Thesis, University ofbSao

Paulo, Sao Paulo, Brazil, 1993.

[28]. B. Chol and A.P. Mathur, “High Performance Mutation

Testing” Journals of Systems and Software, vol. 20, no. 2,

pp. 135-152, February 1993.

[29]. R.A. DeMillo, E.W. Krauser and A.P. Mathur, “Compiler-

Integrated Program Mutation”, in Proceedings of the 5th

Annual Computer Software and applications Conference

(COMPASC’91), Tokyo, Japan: IEEE Computer Society

Press, September 1991, pp. 351-356.

[30]. R.H. Untch, “ Mutation Based Software Testing Using

Program Scemata” in Proceedings of the 30th Annual

Southeast Regional Conference (ACMSE’92), Raleigh,

North Carolina, 1992, pp. 285-291.

[31]. R.H. Untch, “Schema-Based Mutation A New Test Data

adequacy Assessment Method” Ph.d Thesis, Clemson

University, Clemson, south Carolina, December 1995.

[32]. Y.S. Ma., A.J. Offutt and Y.R. kwon, “MuJava: An

automated Class Mutation System” Software Testing,

Verification and Reliability, vol. 15, no. 2, pp. 97-133, June

2005.

