

Hydrogels, Sustained Drug Release and Tissue Engineering

Sophie M. Laurent*

Department of Biomedical Sciences, Sorbonne University, France

Editorial

Received: 02-Dec-2025, Manuscript No. dd-25-182247; **Editor assigned:** 04-Dec-2025, PreQC No. dd-25-182247 (PQ); **Reviewed:** 15-Dec-2025, QC No. dd-25-182247; **Revised:** 20-Dec-2025, Manuscript No. dd-25-182247(R); **Published:** 30-Dec-2025, DOI: 10.4172/dd.9.006.

*For Correspondence

Sophie M. Laurent, Department of Biomedical Sciences, Sorbonne University, France

E-mail: sophie.laurent@sorbonne.fr

Citation: Sophie M. Laurent, Hydrogels, Sustained Drug Release and Tissue Engineering. RRJ Drug Deliv. 2025.9.006.

Copyright: © 2025 Sophie M. Laurent, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

fects, and improves treatment outcomes. Hydrogels have been successfully used for the prolonged delivery of proteins, growth factors, and anticancer agents [5].

In tissue engineering, hydrogels function as scaffolds that mimic the extracellular matrix. They provide a three-dimensional structure that supports cell attachment, proliferation, and differentiation. Their porous architecture facilitates the diffusion of oxygen, nutrients, and waste products, which is essential for cell survival. Hydrogels can also be loaded with bioactive molecules that guide tissue regeneration, such as growth factors that promote angiogenesis and cell migration.

Injectable hydrogels represent a major advancement, as they can be delivered minimally invasively and form a gel *in situ*. This property is especially useful for filling irregular tissue defects and delivering cells directly to damaged sites. Smart hydrogels that respond to biological signals further enhance their potential by releasing drugs or growth factors in response to changes in the local environment.

Despite their advantages, hydrogels face challenges related to mechanical strength, long-term stability, and large-scale manufacturing. Some natural hydrogels may degrade too quickly or show batch-to-batch variability, while synthetic hydrogels may lack biological cues necessary for optimal tissue integration.

Conclusion

Hydrogels are versatile biomaterials that play a crucial role in sustained drug release and tissue engineering. Their ability to provide controlled delivery and mimic natural tissue environments makes them valuable tools in regenerative medicine. With continued advances in material design and bioengineering, hydrogels are expected to contribute significantly to the development

Introduction

Hydrogels are three-dimensional polymeric networks capable of absorbing and retaining large amounts of water while maintaining their structural integrity. Due to their high water content and soft consistency, hydrogels closely resemble natural tissues, making them highly suitable for biomedical applications. In drug delivery and regenerative medicine, hydrogels are widely used for sustained release and tissue engineering. Sustained release systems are designed to deliver therapeutic agents at a controlled rate over an extended period, reducing dosing frequency and improving patient compliance. In tissue engineering, biomaterials such as hydrogels provide a supportive environment for cell growth and tissue regeneration [1,2].

Discussion

Hydrogels can be synthesized from natural polymers such as alginate, collagen, gelatin, and chitosan, or from synthetic polymers such as poly(ethylene glycol) and polyacrylamide. Their physical and chemical properties can be precisely tailored by adjusting polymer composition, crosslinking density, and degradation rate. This versatility allows hydrogels to serve as effective carriers for sustained drug release [3,4].

In sustained release applications, drugs are incorporated into the hydrogel matrix and gradually released as the network swells, degrades, or responds to environmental stimuli such as pH, temperature, or enzymes. This controlled delivery maintains therapeutic drug levels for long periods, minimizes side ef-

of advanced therapies for tissue repair and long-term drug delivery.

References

1. Pathania A (2020) Traditional herbs Catharanthus roseus used as a anti-cancer- A Review 7:1019.
2. Ingawad P, Veer V, Bhosale A (2020) Overview on a Vinca Alkaloid & Its Medicinal, Therapeutic Properties. IJTSRD 4:846-49.
3. Aziz S, Saha K, Sultana N, Ahmed S, Mansur AA, et al. (2014) Phytochemical and elemental screening on leaves and flower of Vinca rosea: An important 8, medicinal plant of Bangladesh. Int J Chem Sci 12:1328-36.
4. NVAC, Rajput M Chauhan (2011) Evaluation of Antidiarrheal Activity of Aerial Parts of Vinca Major In Experimental Animals. Middle-East Journal of Scientific Research 784-788.
5. Pillay PP, Nair CPM, Santi Kumari TN (1959) Lochnera rosea as a potential source of hypotensive and other remedies. Bulletin of Research Institute of the University of Kerala 1: 51-54.