

Nanotoxicity Assessment: Evaluating the Safety of Nanomaterials in Biomedical Applications

Daniel K. Osei*

Department of Nanopharmaceutical Sciences, Westland University of Science and Technology, Ghana

Editorial

Received: 01-Dec-2025, Manuscript No. jpn-25-177951; **Editor assigned:** 03-Dec-2025, Pre-QC No. jpn-25-177951 (PQ); **Reviewed:** 17-Dec-2025, QC No. jpn-25-177951; **Revised:** 22-Dec-2025, Manuscript No. jpn-25-177951 (R); **Published:** 29-Dec-2025, DOI: 10.4172/2347-7857.13.007

***For Correspondence**

Daniel K. Osei, Department of Nanopharmaceutical Sciences, Westland University of Science and Technology, Ghana

E-mail: dkosei@wust-pharm.gh

Citation: Daniel K. Osei, Nanotoxicity Assessment: Evaluating the Safety of Nanomaterials in Biomedical Applications. *J Pharm Anal.* 2025;13:007.

Copyright: © 2025 Daniel K. Osei, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Advanced analytical and imaging techniques play an important role in nanotoxicity studies. Tools such as electron microscopy, flow cytometry, and molecular assays help track nanoparticle behavior and biological responses at the cellular and molecular levels. Risk assessment also considers dose, exposure duration, and potential environmental impacts. Standardization of testing methods and reproducibility of results remain significant challenges in nanotoxicity research.

Conclusion

Nanotoxicity assessment is essential for ensuring the safe development and application of nanotechnology-based products. By systematically evaluating the biological interactions and potential risks of nanomaterials, researchers can guide safer design and regulatory decision-making. Continued advancements in testing methodologies, standardization, and interdisciplinary collaboration will strengthen nanotoxicity assessment and support the sustainable and responsible use of nanomaterials in healthcare and beyond.

References

1. Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on *Catharanthus roseus* - A phytoremediation study. *Journal of Environmental Biology* 28: 655-662.

Introduction

Nanotoxicity assessment is a critical area of research that focuses on understanding the potential adverse effects of nanomaterials on biological systems and the environment. With the rapid growth of nanotechnology in medicine, pharmaceuticals, and consumer products, engineered nanomaterials are increasingly being used for drug delivery, diagnostics, and imaging. Due to their small size, large surface area, and unique physicochemical properties, nanomaterials may interact with cells and tissues in ways that differ from conventional materials. Therefore, comprehensive nanotoxicity assessment is essential to ensure safety and support responsible innovation [1,2].

Discussion

The toxicity of nanomaterials is influenced by several factors, including particle size, shape, surface charge, chemical composition, and surface functionalization. These characteristics affect how nanoparticles are absorbed, distributed, metabolized, and eliminated in the body. Nanoparticles can enter biological systems through various routes such as inhalation, ingestion, injection, or dermal exposure, and may accumulate in organs like the liver, lungs, spleen, and brain [3,4].

Nanotoxicity assessment typically involves a combination of in vitro and in vivo studies. In vitro assays use cultured cells to evaluate cytotoxicity, oxidative stress, inflammation, and genotoxicity. These methods are useful for initial screening and mechanistic understanding. In vivo studies in animal models provide information on systemic toxicity, biodistribution, immune responses, and long-term effects. However, traditional toxicity testing methods may not fully capture nanoparticle-specific interactions, necessitating the development of specialized protocols [5].

2. Ahmad NH, Rahim RA, Mat I (2010) Catharanthus roseus aqueous extract is cytotoxic to Jurkat leukemic T-cells but induces the proliferation of normal peripheral blood mononuclear cells. *Tropical Life Science Research* 21: 101-113.
3. Subhashini V, Swamy AVVS (2013) Phytoremediation of Pb and Ni Contaminated Soils Using Catharanthus roseus (L.). *Universal Journal of Environmental Research and Technology* 3:465-472.
4. Nayak BS (2007) Evaluation of woundhealing potential of Catharanthus roseus leaf extract in rats. *Phytotherapies* 78.7-8: 540-544.
5. SV, Sain M (2013) Catharanthus roseus (An Anticancerous Drug Yielding Plant) - A Review Of Potential Therapeutic Properties. *International Journal of Pure and Applied Bioscience* 139-42.

