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ABSTRACT- This paper addresses the problem of Near Duplicate document. Propose a new method to detect near 
duplicate document from a large collection of document set. This method is classified into three steps. Feature 
selection, similarity measures and discriminant function. Feature selection performs pre-processing; calculate the 
weight of each terms and heavily weighted term is selected as a features of input document. As a result, Feature 
selection helps to select a set of features from an input document. Similarity measure measures the similarity degree 
between two documents. Discriminant derivation use SVM classifier to determine the discriminate function from 
document set based on supervised learning. As a result of this method, discriminant function is to check whether the 
document is near duplicate or not based on similarity degree. These document-level feature selections provide better 
(or) more efficient result than sentence-level feature selection. 
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I. INTRODUCTION 
 

As the World Wide Web is increasingly popular, digital documents are easily generated and put on the 
internet. By using a search engine, one can collect a large set of documents in a veryshort time (Chowdhury, Frieder, 
Grossman, & McCabe, 2002; Henzinger, 2006). Through the delete, copy, and paste commands provided by an editor 
or other tools (de Carvalho, Laender, Goncalves, & da Silva, 2012; Valls & Rosso, 2011), similar documents are likely 
to appear in various web communities (Conrad, Guo, & Schriber, 2003; Fetterly, Manasse, & Najork, 2003; Manku, 
Jain, & Sarma, 2007; Narayana, Premchand, & Govardhan, 2009; Pereira,Baeza-Yates, & Ziviani, 2006; Yang & 
Callan, 2005), e.g., blogs and forums. Such similar documents not only increase the volume of information one may 
have to go through but also require more storage and bandwidth for communication. To reduce the data volume and 
increase the search efficiency, detecting similar documents has become an important issue in the field of information 
retrieval. 

 Similar documents can be divided into two categories, duplicates and near-duplicates. Two documents are 
duplicates if they are totally identical (Broder, 2000). Two documents are near-duplicates if one document is a 
modification of the other document. The modification can be insertion, deletion, or replacement of part of the 
text(Yang & Callan 2006).Duplicate documents can be easily detected then the near duplicate document. These paper 
provide method to detect near-duplicate documents efficiently and effectively. 

To detect near-duplicate documents, one can adopt the bag of-words model (Bag of words, 2012) for 
document representation. Let D = {d1,d2, . . . ,dn} be a set of n documents, in which d1,d2, . . . ,dn are individual 
documents. Each document di, 1 < i < n, is represented by a feature set fi = {fi,1, fi,2,. . . , fi,m} where m is the number 
of features selected for D. 
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Conventionally, a manually designated threshold is provided by the user in advance. If the similarity degree is 
equal to or higher than the threshold, the two documents are near-duplicates. Otherwise, they are not. Usually, trial-
and-error cannot be avoided. Setting a good threshold manually is neither an easy task nor an effective way for near-
duplicate document detection. 

 
 Sentence-level feature selection provides less efficient result compare to document-level feature selection. 
Proposed a new method to detect near duplicate document from a large collection of document set. This method is 
classified into three steps, Feature selection, similarity measures and discriminant function. Feature selection performs 
pre-processing of input document; calculate the weight of each terms in a given document and heavily weighted term is 
selected as features of input document. As a result, Feature selection helps to select a set of features from an input 
document. Similarity measure measures the similarity degree between the given document and each document in a 
given collection. Discriminant derivation use SVM classifier to determine the discriminate function from training 
document set based on supervised learning. As a result of this method, discriminant function is to check whether the 
document is near duplicate or not based on similarity degree. These document-level feature selections provide better 
(or) more efficient result than sentence-level feature selection. 
 Supervised learning techniques, in particular support vector machines (SVM) (Martins, 2011), can be applied 
to determine optimally whether two documents are near-duplicates automatically. Given a training data set with 
instances belonging to one of two classes, near-duplicate and non-near-duplicate, SVM learns how to separate the 
instances of one class from the instances of the other class. As matter of fact, an optimal hyperplane can be derived 
which not only separates the instances on the right side of the hyperplane but also maximizes the margin from the 
hyperplane to the instances closest to it on either side. If the problem is not linearly separable, one can map the original 
space to a new space by using nonlinear basis functions. It is generally the case that this new space has many more 
dimensions than the original space, and, in the new space, the optimal hyperplane can be found. 
 

II. RELATED WORKS 

There are many existing technique available to detect near duplicate document. There are as follows: 

(Manning, Raghavan, & Schutze, 2008)He proposed shingling technique to detect near duplicate document. 
Shingling algorithm views each document as a sequence of strings called shingles. Each string is k word long called k-
gram. The list of such k-grams is taken to be the feature set of this document. For example, if a document consists of L 
words, then the feature set of the document contains L-K+1 element. As a result feature selection, measure similarity 
degree between two document using jaccard or other similarity function. Based on similarity degree, to detect 
document as a near duplicate document. Some improvements to shingles have been proposed.(Li et al. 2007) took 
discontinuous k-grams by skipping the words in between. The strings between two pause symbols are treated as 
features. 

 (Theobald et al. 2008)He proposed a technique spotsigs to detect near duplicate document. First scan the 
document to find stop words in it anchor’s, k tokens right after an anchor excluding stop words are grouped as a special 
k-gram. So, called as “spot signature”. A feature is taken to be a string starting with a stop word. For example, {the 
super computer} and {a good movie} are elements of the feature set. Different stop word lists lead to different feature 
sets for a given documentSpotSigs (Theobald et al., 2008) adopts some rules to cut down the size of a feature set, e.g., 
preferring more frequently used stop words. Other methods based on sentences were proposed (Wang & 
Chang,2009).With these methods, each individual sentence of a document is divided into a series of k-grams. The 
union of the k-grams of all the sentences is taken as the feature set of the document. However, these methods result in 
large feature sets for document representation. 
 
 (Chowdhury et al) presented an approach called I-Match for detection of near duplicate document detection. I-
Match maps each individual document into a single hash value using the SHA1 hash algorithm. If hash values of two 
documents are identical, then two documents are near duplicate. The signature generation process of I-Match views a 
document as a single bag of words (i.e., terms, unigrams). In addition, only the “important” terms are retained in the 
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bag. It first defines an I-Match lexicon L based on collection statistics of terms using a large document corpus. A 
commonly used option is the inverse document frequency (IDF), where L consists of only terms with mid-range IDF 
values. For each document d that contains the set of unique terms U, the intersection S = L∩U is used as the set of 
terms representing d for creating the signature. One potential issue with I-Match occurs when the retained word bag S is 
small (i.e., |࢙| ≪  Because the documents are effectively represented using only a small number of terms, different.(|࢛|
documents could be mistakenly predicted as near-duplicates easily. Two documents are considered near-duplicate only 
if they have enough number of signatures matched. 
 
 (Charikar et al.) Proposed a technique called “simhash”. It is dimensionality reduction technique for near 
duplicate document. This technique obtain f bit fingerprint for each document. A pair of documents are near duplicate 
if and only if fingerprint of document atmost k bit apart. Hamming distance between two strings of equal length is the 
number of positions at which the corresponding symbols are different. For example, if f=64 bit, k=3 bit  Hamming 
distance (simhash(Q1),simhash(Q2)) ≤ k, then (Q1,Q2) are near duplicate document. 

III. PROPOSED SYSTEM 
 

In general, replaced terms, inserted terms, and missed terms are cases frequently occurring in near-duplicate 
documents. For the near-duplicate detection methods based on terms, e.g., Shingles, different document representations 
may be adopted and diverse results can be obtained. For example, suppose we have a document A of the following. 

 
A: People rally on the sidewalk as legal arguments over the Patient Protection and Affordable Care Act take place at 
the Supreme Court. 

 
By replacing sidewalk with pavement, we get another document B. 
 
B: People rally on the pavement as legal arguments over the Patient Protection and   Affordable Care Act take place at 
the Supreme Court. 

 
Document A and B have the same meaning, and it is no doubt that they are near-duplicates. However, existing methods 
may obtain different representations for these two documents. For example, the k-gram feature selection method 
(Manning et al., 2008) produces several k-grams containing the word sidewalk for document A, while it produces 
several k-grams containing the word pavement for document B. Therefore, different representations are obtained. Also, 
for the k-gram method, different values of k could affect both the feature set size and the required computation power. 
To solve this problem, we propose a method for extracting features from individual sentences in a way to better reveal 
the characteristics of a document. The method turns out to be more invariant against insertion, deletion, or replacement 
of terms. As a result, the feature sets obtained are more suitable for near duplicate document detection. 
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3.1 ARCHITECTURAL DESIGN 
 

 

Figure 1 Architectural Design 

3.2 SYSTEM OVERVIEW 

3.2.1Feature Selection 

We propose using weighted keywords to represent individual documents. The weight of a keyword is 
determined by the tf-idf of the keyword. The tf-idf of a word is the product of the term frequency (tf) and the inverse 
document frequency (idf) of the word (Manning et al., 2008). For document I, let I be the modified document after 
pre-processing is done. Then we compute the weight for each remaining word, and sort the words in descending order 
in terms of their weights. For example, the following is document A after stop words and punctuation marks are 
deleted: 
 
Am: rally sidewalk legal arguments patient protection affordable care Supreme Court. 
 
The ordering of the terms sorted by tf-idf is 
 
    supreme ≥ affordable ≥ protection ≥ patient ≥ legal ≥ sidewalk ≥ argument. 
 
For document B, the ordering of the terms sorted by tf-idf is 

    Supreme  ≥  affordable  ≥  protection  ≥  patient  ≥  pavement  ≥  legal  ≥  argument. 
 
The set of the top k words are selected as the feature of the underlying document. For example, let k be 4. The feature 
fA obtained for document A contains four words, supreme, affordable, protection and patient, i.e. 
݂ = ,݈ܾ݁ܽݐݎ݂݂ܽ,݁݉݁ݎݑݏ〉  〈ݐ݊݁݅ݐܽ,݊݅ݐܿ݁ݐݎ
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Note that the ordering of the words in fA matters. The feature fB obtained for document B also contains these four 
words: 
݂ = ,݁݉݁ݎݑݏ〉 ݈ܾ݁ܽݐݎ݂݂ܽ ,݊݅ݐܿ݁ݐݎ,  〈ݐ݊݁݅ݐܽ

 
Therefore, documents A and B are identical from the viewpoint of features. This property is good for near-duplicate 
document detection. For a document, we represent it by a feature set which is the union of the features of that 
document. The procedure of finding the feature set for a document can be summarized below. 
 

 

 

 

 

 

 

With this method, near-duplicate documents tend to have identical or very similar representations. Note that the number 
of words selected from a document may affect the performance of near-duplicate document detection. With fewer 
words, the representation of a document can be shorter in size and the computation time for later processing can be 
smaller. However, detection accuracy can be worse. 
 
3.2.2 Similarity measures  
Conventionally a predesignated threshold is required to determine whether two documents are near-duplicate to each 
other. Setting such a threshold manually is quite difficult and needs a lot of trial-and-error efforts. To alleviate this 
difficulty, we adopt a support vector machine (SVM) (Martins, 2011) to learn a classifier based on a set of training 
patterns. Existing technique based on sentence-level feature selection does not provide efficient similarity degree 
between two documents using similarity functions. 
 
Similarity Function: 

A similarity function is used to calculate the similarity degree between two documents. Let ଵ݂ =
{ ଵ݂,ଵ, ଵ݂,ଶ, … , ଵ݂,} and ଶ݂ = { ଶ݂,ଵ, ଶ݂,ଶ, … , ଶ݂,} be feature sets of documents d1 and d2 respectively. There are some 
similarity functions as follows: 

 Jaccard function: 

sim(d1, d2) ≡ J(d1,d2) =  
భ∩ మ
భ∪ మ

                                           (1)                                                                  

Where ∩ stands for the AND operator and U for the OR operator in set theory. 

 Cosine function: 

sim(d1, d2) ≡  C(d1, d2)  =   భ . మ
||భ||.|| మ||

                           (2)   

Where ଵ݂ . ଶ݂  is defined to be ଵ݂ . ଶ݂ = ଵ݂,ଵ ଶ݂,ଵ + ଵ݂,ଶ ଶ݂,ଶ +⋯+ ଵ݂, ଶ݂, and || ݂|| = ඥf୧  . f୧  for i=1,2. 

 

ALIGN (SRRs) 

1. j=1,i=1 
2. for  all SRRs 
3.     group the data items of same concept using 

Similarity Measures 
4. If  for any two data items Sim>T 
5.   Group data items 
6. Calculate group similarity using mean values to 

shift the data items of other concept. 

 
Input: a document d in document set D 
Output: the feature set fd for d 
Procedure find_feature_set (d) 
For each document d in D 
Perform preprocessing on d 
Calculate the weight for each remaining word 
Sort the words in descending order 
Let f contain the top k words 
Add f into fd 

End Procedure 
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 Euclidean distance: 

sim(d1, d2) ≡  Ec(d1, d2) =  ඥ(fଵ − fଶ) . (fଵ−fଶ)              (3)                       

Where ଵ݂ . ଶ݂ = { ଵ݂,ଵ ଶ݂,ଵ + ଵ݂,ଶ ଶ݂,ଶ + ⋯+ ଵ݂, ଶ݂,}. 

 Extended Jaccard function: 

    sim(d1, d2) ≡  EJ(d1, d2)  =   భ . మ
భ.భା మ.మ ି భ.మ

             (4)                                                        

 Dice function: 

sim(d1, d2) ≡  D(d1, d2) =   ଶభ . మ
భ.భା మ.మ 

                                   (5)                                                               

Note that EJ(d1, d2) is an extended version of J(d1,d2)  and D(d1,d2) is a simplified version of EJ(d1, d2). 

 Before going on, we define the similarity vector between two documents d1 and d2, denoted SV(d1,d2), as 
follows. 
 
Definition 1. The similarity vector between two documents d1 and d2 is defined as ௩ܵ(݀ଵ,݀ଶ) = 〈 ଵܺ, ଶܺ, … ܺ〉  where 
xi, 1 ≤ i ≤ r, is the similarity degree computed for d1 and d2 by a certain similarity function. 

The value of r and the similarity functions involved can be selected by the users. For example, we can let ଵܺ =
and ଶܺ (ଵ,݀ଶ݀)ܬ =  for r = 2. A training pattern set is derived from a collection of training documents. Each (ଵ,݀ଶ݀)ܿܧ
training pattern in the training data set involves a pair of training documents d1 and d2 which are known in advance to 
be near-duplicate or non-near-duplicate to each other, and is expressed as (x, t) where. 

 x = Sv(d1,d2) is the similarity vector between d1 and d2. 
 t is the desired output, and t = +1 if d1 and d2 are near-duplicate and t = -1 if d1 and d2 are non-near-duplicate. 

The process of preparing a training pattern set is summarized below. 
 

 

 

 

 

 

 

 
 
 
 
 
 
 

Input: a set D of training documents 
Output: the derived training pattern set X 
Procedure derive_training_pattern_set (D) 
For each pair of documents d1 and d2 in D 
Calculate the similarity vector x = Sv(d1,d2) 
If d1 and d2 are near-duplicate 
Set t = +1 
Else 
Set t = -1 
Add (x, t) into X 
End Procedure 
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3.2.3 SVM 
 

When the training pattern set is ready, SVM works on the set and finds a hyperplane g(x) = 0 which optimally 
separates the training patterns with t = +1 from those with t = -1. Let the resulting training pattern set contain N training 
patterns, denoted as X = {(xj, tj) |1 ≤ j ≤ N}. We’d like to minimize 

 
ܮ = ଵ

ଶ
||ܹ||ଶ + ܥ ∑ ߦ                                (6)                                                                        

where w is the coefficient vector of the hyperplane to be optimized, C is the penalty factor, and ξj ≤ 0, 1 ≤ j ≤ N, are 
slack variables, subject to the constraints 

(ݔ)்߮ݓݐ ≥ 1− ߦ , 1 ≤ ݆ ≤ ܰ                (7)                                                                                

where ߮(ݔ) = ൫߮ଵ(ݔ),߮ଶ(ݔ), …߮(ݔ)൯is a mapping from the r-dimensional x space to the h-dimensional z space 

ݖ  =  (8)                                                     (ݔ)߮

 with ݖ = ߮(ݔ), 1 ≤ ݆ ≤ ܰ. The hyperplane in the h-dimensional z space is g(z) = 0, and the desired discriminant 
function in the x space is 

(ݔ)݃ = (ݔ)்߮ݓ = ∑ (ݔ)߮ݓ
ୀଵ                 (9)                                                                           

Eq. (6) can be converted to the dual 
 
ܮ = ∑ ߙ − ଵ

ଶ
∑ ∑ ݐݐߙߙ ݔ〉݇ ,                                                                            〉   (10)ݔ

Where ݇〈ݔ 〈ݔ, ≡  is a kernel function, and aj and ai are Lagrange multipliers. Eq. (10) should be  〈ݔ〉்߮〈ݔ〉߮
maximized with respect to αj, subject to  

∑ ݐߙ = 0ᴧ0 ≤ ߙ ≤ 1   ,ܥ ≤ ݆ ≤ ܰ       (11)    
 
3.2.4 Discriminant derivation 

Eq. (10) can be solved using quadratic optimization methods (Martins, 2011). Then the discriminant g(x) is obtained by 

(ݔ)݃ = ∑ ݔ)ܭߙ (ݔ,                                (12)                                                                              

These will be used in the testing phase. 

3.3 Testing phase 
 

Once the discriminant g(x) is obtained, we can use it to determine if a document dc is a near-duplicate to an 
input document dI as follows. Firstly, the feature sets fc and fI of dc and dI, respectively, are obtained. Then we calculate 
the similarity vector Sv(dI, dc). Let x = Sv(dI, dc). Then we calculate g(x). If g(x) ≥ 0, dc is determined to be a near-
duplicate to dI. 
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3.4 System operation 
 

Fig. 2 shows the flowchart of our proposed algorithm for near duplicate document detection. Fig. 2(a) shows 
the training phase of the algorithm. Given a set of training documents, we calculate the feature set for each document 
by procedure find_feature_set. Then we derive a training pattern set by procedure derive_training_pattern_set. Then we 
employ SVM to build a classifier based on the training pattern set. A discriminant function for separating the 
documents of class +1 and class _1 apart is derived. Fig. 2(b) shows the testing phase of the algorithm. Given an input 
document dI, we want to retrieve all documents in Dc that are near-duplicates to dI. We calculate the feature sets for dI 
and each document dc in Dc. We calculate the similarity vector between dI and dc. Then we feed the similarity vector to 
the discriminant function obtained in the training phase. If the returned value is equal to or greater than 0, dc is 
determined to be a near-duplicate to dI. Otherwise, dc is not a near-duplicate to dI. 

 
Figure 2 Flow Chart 

 
IV. CONCLUSION 

Digital documents are easily generated and put on the internet. Through the delete, copy, and paste commands 
provided by an editor or other tools, near-duplicate documents are likely to appear in various web communities, e.g., 
blogs and forums, increasing the volume of information one may have to go through and requiring more storage and 
bandwidth for communication. Detecting near duplicates is an important issue in the field of information retrieval. 
However, it is not an easy task. We have presented a novel method for detecting near-duplicates from a large collection 
of documents. Our method consists of three major components, feature selection, similarity measure, and discriminant 
derivation. For an input document, some pre-processing work is done on it. Then for each sentence, the heavily 
weighted terms are selected to be the feature of the sentence. As a result, the input document is turned into a set of 
features. Then the similarity degree between the input document and each document in the given collection is 
computed. Finally, a discriminant function is derived from a SVM-based classifier, which is then used to determine 
whether a document is a near-duplicate to the input document based on the similarity degree between them. Our 
method has several advantages. The sentence-level features we adopt can better reveal the characteristics of a 
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document, and learning a discriminant by SVM can avoid trial-and-error efforts required in conventional methods. A 
variety of experiments have shown that our method is effective in near-duplicate document detection. 
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