
 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Near Duplicate Document Detection Using
Document-Level Features and Supervised

Learning

Raveena.S, Nandini.V

PG Scholar, Department of CSE, Sona College of Technology, Salem, Tamil Nadu, India1

Associate Professor, Department of CSE, Sona College of Technology, Salem, Tamil Nadu, India2

ABSTRACT- This paper addresses the problem of Near Duplicate document. Propose a new method to detect near
duplicate document from a large collection of document set. This method is classified into three steps. Feature
selection, similarity measures and discriminant function. Feature selection performs pre-processing; calculate the
weight of each terms and heavily weighted term is selected as a features of input document. As a result, Feature
selection helps to select a set of features from an input document. Similarity measure measures the similarity degree
between two documents. Discriminant derivation use SVM classifier to determine the discriminate function from
document set based on supervised learning. As a result of this method, discriminant function is to check whether the
document is near duplicate or not based on similarity degree. These document-level feature selections provide better
(or) more efficient result than sentence-level feature selection.

KEYWORDS- Web mining, near duplicate document, Web database, Feature selection, Similarity measures, Training
data, SVM Classifier, Discriminant function.

I. INTRODUCTION

As the World Wide Web is increasingly popular, digital documents are easily generated and put on the
internet. By using a search engine, one can collect a large set of documents in a veryshort time (Chowdhury, Frieder,
Grossman, & McCabe, 2002; Henzinger, 2006). Through the delete, copy, and paste commands provided by an editor
or other tools (de Carvalho, Laender, Goncalves, & da Silva, 2012; Valls & Rosso, 2011), similar documents are likely
to appear in various web communities (Conrad, Guo, & Schriber, 2003; Fetterly, Manasse, & Najork, 2003; Manku,
Jain, & Sarma, 2007; Narayana, Premchand, & Govardhan, 2009; Pereira,Baeza-Yates, & Ziviani, 2006; Yang &
Callan, 2005), e.g., blogs and forums. Such similar documents not only increase the volume of information one may
have to go through but also require more storage and bandwidth for communication. To reduce the data volume and
increase the search efficiency, detecting similar documents has become an important issue in the field of information
retrieval.

 Similar documents can be divided into two categories, duplicates and near-duplicates. Two documents are
duplicates if they are totally identical (Broder, 2000). Two documents are near-duplicates if one document is a
modification of the other document. The modification can be insertion, deletion, or replacement of part of the
text(Yang & Callan 2006).Duplicate documents can be easily detected then the near duplicate document. These paper
provide method to detect near-duplicate documents efficiently and effectively.

To detect near-duplicate documents, one can adopt the bag of-words model (Bag of words, 2012) for
document representation. Let D = {d1,d2, . . . ,dn} be a set of n documents, in which d1,d2, . . . ,dn are individual
documents. Each document di, 1 < i < n, is represented by a feature set fi = {fi,1, fi,2,. . . , fi,m} where m is the number
of features selected for D.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Conventionally, a manually designated threshold is provided by the user in advance. If the similarity degree is
equal to or higher than the threshold, the two documents are near-duplicates. Otherwise, they are not. Usually, trial-
and-error cannot be avoided. Setting a good threshold manually is neither an easy task nor an effective way for near-
duplicate document detection.

 Sentence-level feature selection provides less efficient result compare to document-level feature selection.
Proposed a new method to detect near duplicate document from a large collection of document set. This method is
classified into three steps, Feature selection, similarity measures and discriminant function. Feature selection performs
pre-processing of input document; calculate the weight of each terms in a given document and heavily weighted term is
selected as features of input document. As a result, Feature selection helps to select a set of features from an input
document. Similarity measure measures the similarity degree between the given document and each document in a
given collection. Discriminant derivation use SVM classifier to determine the discriminate function from training
document set based on supervised learning. As a result of this method, discriminant function is to check whether the
document is near duplicate or not based on similarity degree. These document-level feature selections provide better
(or) more efficient result than sentence-level feature selection.
 Supervised learning techniques, in particular support vector machines (SVM) (Martins, 2011), can be applied
to determine optimally whether two documents are near-duplicates automatically. Given a training data set with
instances belonging to one of two classes, near-duplicate and non-near-duplicate, SVM learns how to separate the
instances of one class from the instances of the other class. As matter of fact, an optimal hyperplane can be derived
which not only separates the instances on the right side of the hyperplane but also maximizes the margin from the
hyperplane to the instances closest to it on either side. If the problem is not linearly separable, one can map the original
space to a new space by using nonlinear basis functions. It is generally the case that this new space has many more
dimensions than the original space, and, in the new space, the optimal hyperplane can be found.

II. RELATED WORKS

There are many existing technique available to detect near duplicate document. There are as follows:

(Manning, Raghavan, & Schutze, 2008)He proposed shingling technique to detect near duplicate document.
Shingling algorithm views each document as a sequence of strings called shingles. Each string is k word long called k-
gram. The list of such k-grams is taken to be the feature set of this document. For example, if a document consists of L
words, then the feature set of the document contains L-K+1 element. As a result feature selection, measure similarity
degree between two document using jaccard or other similarity function. Based on similarity degree, to detect
document as a near duplicate document. Some improvements to shingles have been proposed.(Li et al. 2007) took
discontinuous k-grams by skipping the words in between. The strings between two pause symbols are treated as
features.

 (Theobald et al. 2008)He proposed a technique spotsigs to detect near duplicate document. First scan the
document to find stop words in it anchor’s, k tokens right after an anchor excluding stop words are grouped as a special
k-gram. So, called as “spot signature”. A feature is taken to be a string starting with a stop word. For example, {the
super computer} and {a good movie} are elements of the feature set. Different stop word lists lead to different feature
sets for a given documentSpotSigs (Theobald et al., 2008) adopts some rules to cut down the size of a feature set, e.g.,
preferring more frequently used stop words. Other methods based on sentences were proposed (Wang &
Chang,2009).With these methods, each individual sentence of a document is divided into a series of k-grams. The
union of the k-grams of all the sentences is taken as the feature set of the document. However, these methods result in
large feature sets for document representation.

 (Chowdhury et al) presented an approach called I-Match for detection of near duplicate document detection. I-
Match maps each individual document into a single hash value using the SHA1 hash algorithm. If hash values of two
documents are identical, then two documents are near duplicate. The signature generation process of I-Match views a
document as a single bag of words (i.e., terms, unigrams). In addition, only the “important” terms are retained in the

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

bag. It first defines an I-Match lexicon L based on collection statistics of terms using a large document corpus. A
commonly used option is the inverse document frequency (IDF), where L consists of only terms with mid-range IDF
values. For each document d that contains the set of unique terms U, the intersection S = L∩U is used as the set of
terms representing d for creating the signature. One potential issue with I-Match occurs when the retained word bag S is
small (i.e., |࢙| ≪ Because the documents are effectively represented using only a small number of terms, different.(|࢛|
documents could be mistakenly predicted as near-duplicates easily. Two documents are considered near-duplicate only
if they have enough number of signatures matched.

 (Charikar et al.) Proposed a technique called “simhash”. It is dimensionality reduction technique for near
duplicate document. This technique obtain f bit fingerprint for each document. A pair of documents are near duplicate
if and only if fingerprint of document atmost k bit apart. Hamming distance between two strings of equal length is the
number of positions at which the corresponding symbols are different. For example, if f=64 bit, k=3 bit Hamming
distance (simhash(Q1),simhash(Q2)) ≤ k, then (Q1,Q2) are near duplicate document.

III. PROPOSED SYSTEM

In general, replaced terms, inserted terms, and missed terms are cases frequently occurring in near-duplicate
documents. For the near-duplicate detection methods based on terms, e.g., Shingles, different document representations
may be adopted and diverse results can be obtained. For example, suppose we have a document A of the following.

A: People rally on the sidewalk as legal arguments over the Patient Protection and Affordable Care Act take place at
the Supreme Court.

By replacing sidewalk with pavement, we get another document B.

B: People rally on the pavement as legal arguments over the Patient Protection and Affordable Care Act take place at
the Supreme Court.

Document A and B have the same meaning, and it is no doubt that they are near-duplicates. However, existing methods
may obtain different representations for these two documents. For example, the k-gram feature selection method
(Manning et al., 2008) produces several k-grams containing the word sidewalk for document A, while it produces
several k-grams containing the word pavement for document B. Therefore, different representations are obtained. Also,
for the k-gram method, different values of k could affect both the feature set size and the required computation power.
To solve this problem, we propose a method for extracting features from individual sentences in a way to better reveal
the characteristics of a document. The method turns out to be more invariant against insertion, deletion, or replacement
of terms. As a result, the feature sets obtained are more suitable for near duplicate document detection.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

3.1 ARCHITECTURAL DESIGN

Figure 1 Architectural Design

3.2 SYSTEM OVERVIEW

3.2.1Feature Selection

We propose using weighted keywords to represent individual documents. The weight of a keyword is
determined by the tf-idf of the keyword. The tf-idf of a word is the product of the term frequency (tf) and the inverse
document frequency (idf) of the word (Manning et al., 2008). For document I, let I be the modified document after
pre-processing is done. Then we compute the weight for each remaining word, and sort the words in descending order
in terms of their weights. For example, the following is document A after stop words and punctuation marks are
deleted:

Am: rally sidewalk legal arguments patient protection affordable care Supreme Court.

The ordering of the terms sorted by tf-idf is

 supreme ≥ affordable ≥ protection ≥ patient ≥ legal ≥ sidewalk ≥ argument.

For document B, the ordering of the terms sorted by tf-idf is

 Supreme ≥ affordable ≥ protection ≥ patient ≥ pavement ≥ legal ≥ argument.

The set of the top k words are selected as the feature of the underlying document. For example, let k be 4. The feature
fA obtained for document A contains four words, supreme, affordable, protection and patient, i.e.
݂ = ,݈ܾ݁ܽݐݎ݂݂ܽ,݁݉݁ݎݑݏ〉 〈ݐ݊݁݅ݐܽ,݊݅ݐܿ݁ݐݎ

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Note that the ordering of the words in fA matters. The feature fB obtained for document B also contains these four
words:
݂ = ,݁݉݁ݎݑݏ〉 ݈ܾ݁ܽݐݎ݂݂ܽ ,݊݅ݐܿ݁ݐݎ, 〈ݐ݊݁݅ݐܽ

Therefore, documents A and B are identical from the viewpoint of features. This property is good for near-duplicate
document detection. For a document, we represent it by a feature set which is the union of the features of that
document. The procedure of finding the feature set for a document can be summarized below.

With this method, near-duplicate documents tend to have identical or very similar representations. Note that the number
of words selected from a document may affect the performance of near-duplicate document detection. With fewer
words, the representation of a document can be shorter in size and the computation time for later processing can be
smaller. However, detection accuracy can be worse.

3.2.2 Similarity measures
Conventionally a predesignated threshold is required to determine whether two documents are near-duplicate to each
other. Setting such a threshold manually is quite difficult and needs a lot of trial-and-error efforts. To alleviate this
difficulty, we adopt a support vector machine (SVM) (Martins, 2011) to learn a classifier based on a set of training
patterns. Existing technique based on sentence-level feature selection does not provide efficient similarity degree
between two documents using similarity functions.

Similarity Function:

A similarity function is used to calculate the similarity degree between two documents. Let ଵ݂ =
{ ଵ݂,ଵ, ଵ݂,ଶ, … , ଵ݂,} and ଶ݂ = { ଶ݂,ଵ, ଶ݂,ଶ, … , ଶ݂,} be feature sets of documents d1 and d2 respectively. There are some
similarity functions as follows:

 Jaccard function:

sim(d1, d2) ≡ J(d1,d2) =
భ∩ మ
భ∪ మ

 (1)

Where ∩ stands for the AND operator and U for the OR operator in set theory.

 Cosine function:

sim(d1, d2) ≡ C(d1, d2) = భ . మ
||భ||.|| మ||

 (2)

Where ଵ݂ . ଶ݂ is defined to be ଵ݂ . ଶ݂ = ଵ݂,ଵ ଶ݂,ଵ + ଵ݂,ଶ ଶ݂,ଶ +⋯+ ଵ݂, ଶ݂, and || ݂|| = ඥf୧ . f୧ for i=1,2.

ALIGN (SRRs)

1. j=1,i=1
2. for all SRRs
3. group the data items of same concept using

Similarity Measures
4. If for any two data items Sim>T
5. Group data items
6. Calculate group similarity using mean values to

shift the data items of other concept.

Input: a document d in document set D
Output: the feature set fd for d
Procedure find_feature_set (d)
For each document d in D
Perform preprocessing on d
Calculate the weight for each remaining word
Sort the words in descending order
Let f contain the top k words
Add f into fd

End Procedure

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

 Euclidean distance:

sim(d1, d2) ≡ Ec(d1, d2) = ඥ(fଵ − fଶ) . (fଵ−fଶ) (3)

Where ଵ݂ . ଶ݂ = { ଵ݂,ଵ ଶ݂,ଵ + ଵ݂,ଶ ଶ݂,ଶ + ⋯+ ଵ݂, ଶ݂,}.

 Extended Jaccard function:

 sim(d1, d2) ≡ EJ(d1, d2) = భ . మ
భ.భା మ.మ ି భ.మ

 (4)

 Dice function:

sim(d1, d2) ≡ D(d1, d2) = ଶభ . మ
భ.భା మ.మ

 (5)

Note that EJ(d1, d2) is an extended version of J(d1,d2) and D(d1,d2) is a simplified version of EJ(d1, d2).

 Before going on, we define the similarity vector between two documents d1 and d2, denoted SV(d1,d2), as
follows.

Definition 1. The similarity vector between two documents d1 and d2 is defined as ௩ܵ(݀ଵ,݀ଶ) = 〈 ଵܺ, ଶܺ, … ܺ〉 where
xi, 1 ≤ i ≤ r, is the similarity degree computed for d1 and d2 by a certain similarity function.

The value of r and the similarity functions involved can be selected by the users. For example, we can let ଵܺ =
and ଶܺ (ଵ,݀ଶ݀)ܬ = for r = 2. A training pattern set is derived from a collection of training documents. Each (ଵ,݀ଶ݀)ܿܧ
training pattern in the training data set involves a pair of training documents d1 and d2 which are known in advance to
be near-duplicate or non-near-duplicate to each other, and is expressed as (x, t) where.

 x = Sv(d1,d2) is the similarity vector between d1 and d2.
 t is the desired output, and t = +1 if d1 and d2 are near-duplicate and t = -1 if d1 and d2 are non-near-duplicate.

The process of preparing a training pattern set is summarized below.

Input: a set D of training documents
Output: the derived training pattern set X
Procedure derive_training_pattern_set (D)
For each pair of documents d1 and d2 in D
Calculate the similarity vector x = Sv(d1,d2)
If d1 and d2 are near-duplicate
Set t = +1
Else
Set t = -1
Add (x, t) into X
End Procedure

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

3.2.3 SVM

When the training pattern set is ready, SVM works on the set and finds a hyperplane g(x) = 0 which optimally
separates the training patterns with t = +1 from those with t = -1. Let the resulting training pattern set contain N training
patterns, denoted as X = {(xj, tj) |1 ≤ j ≤ N}. We’d like to minimize

ܮ = ଵ

ଶ
||ܹ||ଶ + ܥ ∑ ߦ (6)

where w is the coefficient vector of the hyperplane to be optimized, C is the penalty factor, and ξj ≤ 0, 1 ≤ j ≤ N, are
slack variables, subject to the constraints

(ݔ)்߮ݓݐ ≥ 1− ߦ , 1 ≤ ݆ ≤ ܰ (7)

where ߮(ݔ) = ൫߮ଵ(ݔ),߮ଶ(ݔ), …߮(ݔ)൯is a mapping from the r-dimensional x space to the h-dimensional z space

ݖ = (8) (ݔ)߮

 with ݖ = ߮(ݔ), 1 ≤ ݆ ≤ ܰ. The hyperplane in the h-dimensional z space is g(z) = 0, and the desired discriminant
function in the x space is

(ݔ)݃ = (ݔ)்߮ݓ = ∑ (ݔ)߮ݓ
ୀଵ (9)

Eq. (6) can be converted to the dual

ܮ = ∑ ߙ − ଵ

ଶ
∑ ∑ ݐݐߙߙ ݔ〉݇ , 〉 (10)ݔ

Where ݇〈ݔ 〈ݔ, ≡ is a kernel function, and aj and ai are Lagrange multipliers. Eq. (10) should be 〈ݔ〉்߮〈ݔ〉߮
maximized with respect to αj, subject to

∑ ݐߙ = 0ᴧ0 ≤ ߙ ≤ 1 ,ܥ ≤ ݆ ≤ ܰ (11)

3.2.4 Discriminant derivation

Eq. (10) can be solved using quadratic optimization methods (Martins, 2011). Then the discriminant g(x) is obtained by

(ݔ)݃ = ∑ ݔ)ܭߙ (ݔ, (12)

These will be used in the testing phase.

3.3 Testing phase

Once the discriminant g(x) is obtained, we can use it to determine if a document dc is a near-duplicate to an
input document dI as follows. Firstly, the feature sets fc and fI of dc and dI, respectively, are obtained. Then we calculate
the similarity vector Sv(dI, dc). Let x = Sv(dI, dc). Then we calculate g(x). If g(x) ≥ 0, dc is determined to be a near-
duplicate to dI.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

3.4 System operation

Fig. 2 shows the flowchart of our proposed algorithm for near duplicate document detection. Fig. 2(a) shows
the training phase of the algorithm. Given a set of training documents, we calculate the feature set for each document
by procedure find_feature_set. Then we derive a training pattern set by procedure derive_training_pattern_set. Then we
employ SVM to build a classifier based on the training pattern set. A discriminant function for separating the
documents of class +1 and class _1 apart is derived. Fig. 2(b) shows the testing phase of the algorithm. Given an input
document dI, we want to retrieve all documents in Dc that are near-duplicates to dI. We calculate the feature sets for dI
and each document dc in Dc. We calculate the similarity vector between dI and dc. Then we feed the similarity vector to
the discriminant function obtained in the training phase. If the returned value is equal to or greater than 0, dc is
determined to be a near-duplicate to dI. Otherwise, dc is not a near-duplicate to dI.

Figure 2 Flow Chart

IV. CONCLUSION

Digital documents are easily generated and put on the internet. Through the delete, copy, and paste commands
provided by an editor or other tools, near-duplicate documents are likely to appear in various web communities, e.g.,
blogs and forums, increasing the volume of information one may have to go through and requiring more storage and
bandwidth for communication. Detecting near duplicates is an important issue in the field of information retrieval.
However, it is not an easy task. We have presented a novel method for detecting near-duplicates from a large collection
of documents. Our method consists of three major components, feature selection, similarity measure, and discriminant
derivation. For an input document, some pre-processing work is done on it. Then for each sentence, the heavily
weighted terms are selected to be the feature of the sentence. As a result, the input document is turned into a set of
features. Then the similarity degree between the input document and each document in the given collection is
computed. Finally, a discriminant function is derived from a SVM-based classifier, which is then used to determine
whether a document is a near-duplicate to the input document based on the similarity degree between them. Our
method has several advantages. The sentence-level features we adopt can better reveal the characteristics of a

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

document, and learning a discriminant by SVM can avoid trial-and-error efforts required in conventional methods. A
variety of experiments have shown that our method is effective in near-duplicate document detection.

V. REFERENCES

[1] Wang, J. -H. & Chang, H. -C. (2009). Exploiting sentence-level features for nearduplicate document detection. In: Proceedings of the 5th Asia
information symposium on information retrieval technology (pp. 205–217).

[2] Hajishirzi, H., Yih, W., & Kolcz, A. (2010). Adaptive near-duplicate detection via similarity learning. In: Proceedings of the 33rd international
ACM SIGIR conference on research and development in information retrieval (pp. 419–426).

[3] Zhao, Z., Wang, L., Liu, H., & Ye, J. (2011). On similarity preserving feature selection. IEEE Transactions on Knowledge and Data Engineering.
10.1109/TKDE.2011.22.

[4] Narayana, V. A., Premchand, P., & Govardhan, A. (2009). A novel and efficient approach for near duplicate page detection in web crawling. In:
Proceedings of IEEE international advance computing conference (pp. 1492–1496).

[5] Arnosti, N. A., & Kalita, J. K. (2011). Cutting plane training for linear support vector machines. IEEE Transactions on Knowledge and Data
Engineering. 10.1109/TKDE.2011.24.

[6] Yang, H. & Callan, J. (2006). Near-duplicate detection by instance-level constrained clustering. In: Proceedings of the 29th annual international
ACM SIGIR conference on research and development in information retrieval (pp. 421–428).

[7] Broder, A. Z. (2000). Identifying and filtering near-duplicate documents. In:Proceedings of the 11th annual symposium on combinatorial pattern
matching(pp. 1–10).

[8] Theobald, M., Siddharth, J., & Paepcke, A. (2008). Spotsigs: Robust and efficient nearduplicate detection in large web collections. In:
Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval (pp. 563–570).

[9] Sood, S. & Loguinov, D. (2011). Probabilistic near-duplicate detection using simhash. In: Proceedings of the 20th ACM international conference
on information and Knowledge management (pp. 1117–1126).

